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General introduction

The early history of the theory of the Moon’s motion is marked with a famous controversy. Let
us explain it briefly. The orbit of the moon is well described as a “moving Keplerian ellipse”,
in such a way that one can speak about the respective motions of two geometric lines, namely
the line of apsides and the line of nodes. The first is the principal axis of the ellipse, the second
is the intersection of the plane of the ellipse with the plane of the geocentric motion of the sun
(called plane of the ecliptic). The first computations, by Newton, Machin, Euler or Clairaut,
based on the Newton’s laws, for the motion of these lines, gave a wrong result [Smi].

In these computations the main perturbation, the effect of the Sun, was taken into account
at the first order. The predicted result was that both lines of apsides and nodes should
undergo uniform rotations, the first being direct with a period of about 18 years, the second
being retrograde with the same period. The result about the nodes is quite in agreement
with the data obtained from the observations. But the period the apsis is of only 9 years.
The explanation for this discrepancy was given by Clairaut in 1750, who found an important
contribution of the higher order terms.

We are not interested here in the discrepancy, but in the strange phenomenon occurring at
the first order, that makes the two periods above equal. Indeed, a nice integrable model for
planetary systems appeared in the works of Lagrange and Laplace. Let us call it for short the
first secular system. It is essentially a linear system with constant coefficients. It comes just
after the “Keplerian model”, where the planets all describe fixed keplerian orbits, and it is an
interesting approximation if the Keplerian model is good, and if the orbits are nearly circular
and nearly in the same plane. This includes the Lunar problem, even if it is quite strange to
take the earth as a central body and to consider the moon and the sun as “planets”.

Generally this approximation is not considered as sufficiently accurate, but it is used as a
step to go further. The strange phenomenon pertains to the first secular system. It is a well-
known fact, but the literature is not very talkative about it. Delaunay [Del] speaks about “un
résultat singulier”. Poincaré [Po1] calls it a “très petit diviseur analytique”, and tells that the
discrepancy prevents it to be a “très petit diviseur numérique”. He then sketches a proof of
the phenomenon. Finally, the same facts are known to exist for asteroids [Mil].

In his unpublished attempts to adapt KAM theory to the case of a general planetary system,
M. Herman had to study carefully the first secular system. He remarked a strange relation
between the frequencies of this linear system: their sum is always zero. In the lunar case above
the orbit of the sun is nearly fixed and Herman’s relation tells simply that the sum of the two
frequencies concerning the moon is zero. This is our “strange phenomenon”. The same is true
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for asteroids, because the Keplerian orbit of Jupiter is nearly fixed. But apparently the general
case was not noticed before Herman. However, the proof is a quite standard computation.

The aim of this paper is to give a lemma which in turn gives an infinite sequence of unexpected
relations between the coefficients of the classical expansion of the perturbating function. The
first of these relations is the source of Herman’s resonance.

1. An introduction to complex variable in perturbation theory

The first step in the description of a motion by a “moving keplerian ellipse” is to express the
position of a body giving the elements (i.e. the coordinates) of the ellipse where it is supposed
to move, and an angle to place it on the ellipse. The past decades were marked by a more
and more systematic use of complex numbers for this expression. It is convenient to avoid the
traditional e and i for eccentricity and inclination of the orbit, denoting them respectively by
ε and δ.

Our starting point is the classical recipe for the “2-body” or “fixed center” problem, in a plane
with cartesian coordinates:

x = a(cos u− ε), y = a
√

1− ε2 sinu, l = u− ε sinu. (1)

The angle l (defined mod. 2π) is called the “mean anomaly” and is such that dl/dt is a
constant. The variable u is also an angle called the “eccentric anomaly”, and a is a positive
number called “semi major axis”. The recipe (1) puts the perihelion at the point x = a(1− ε),
y = 0. We always suppose that the orbit is elliptic: the eccentricity satisfies 0 ≤ ε < 1.

We must now put our ellipse in a general position in the plane. The use of complex numbers
is quite natural to make the required rotation. Also, it will be useful to expand

√
1− ε2. The

complex position of the body now reads

R = (x + iy)eiω = aeiω
(
cos u− ε + i(1− 1

2
ε2 + · · ·) sinu

)
, (2)

where ω is an angle indicating the direction of the perihelion. Now we observe that nor this
angle nor the eccentric anomaly u is defined when ε = 0. But when we keep a and the sum
ω + u constant, making ε → 0, the position R has a limit. To regularize the case ε = 0 we set
ũ = ω + u and L = εeiω. The formula (2) becomes

R

a
= eiũ − L− 1

4
(eiu − e−iu)LL̄eiω + · · · = eiũ − L− 1

4
eiũLL̄ +

1
4
e−iũL2 + · · · . (3)

The other terms in the expansion also appear to be monomials in eiũ, L and their conjugates.

Rationalizing elements. In the following we will just need the terms in the square of eccentricity,
so we could content ourself with the displayed terms in the expansion (3). But it is worth
noting that there exists an exact rational formula as simple as the truncated expansion (3).
The computations giving it are closely related to [Po2], p. 291. Let us put ε = sinφ. As cos φ

2



appears in (1), we may rationalize putting τ = tan φ
2 . Then we use instead of L the complex

number k = τeiω. Starting again from (1), we find

(1 + τ2)
R

a
= eiω

(
(1 + τ2) cos u− 2τ + i(1− τ2) sinu

)
= eiω(eiu − 2τ + τ2e−iu)

= eiωeiu(1− τe−iu)2 = eiũ(1− ke−iũ)2.

The resulting factorization is quite remarkable, but it will not be useful in this work. We
obtained the rational expression for the position R of the body in the plane :

R =
aeiũ(1− ke−iũ)2

1 + kk̄
. (4)

The ellipse in 3-space. We choose in the Euclidean space a conventional orthonormal frame.
The first two vectors generate the reference plane, called “horizontal”. The first vector is the
origin of the “longitudes”. What should we do with complex numbers in the 3D case? We give
us the position of the body by a pair (rc, rz), where rc ∈ C is the projection on the horizontal
plane, and rz ∈ IR is the height. As we shall see, the ellipse will be given by a and two complex
numbers, that curiously enough appears quite symmetrically in the formulas.

The intersection of the ellipse with the reference plane is called the line of nodes, and is
oriented in the direction of the “ascending node”. Its angle with the first reference vector is
the “longitude of the ascending node” Ω. The inclination of the plane is called δ and satisfies
0 ≤ δ ≤ π.

Formula (4) gives us the position R of the body in the plane of the ellipse. To obtain its
projection on the horizontal plane, we transform R by the affine transformation

R 7→ (cos2
δ

2
)R + (sin2 δ

2
)R̄, (5)

and we multiply by eiΩ. One will check easily that (5) fixes the real axis, i.e. the line of
nodes, and contracts the imaginary axis by a ratio cos δ. And this is exactly the effect of the
projection on the horizontal plane.

We should now introduce the complex element s = −i tan δ
2eiΩ. As k above, this element is

helpful both in the question of the indetermination δ = 0 and for the rationalization of the
formulas. The factor −i is a convention that makes some formulas nicer. Transformation (5)
becomes

R 7→ (1 + ss̄)−1(R + ss̄R̄). (6)

Applying this to (4), we get

(1 + ss̄)(1 + kk̄)rc = a
(
eiũ(1− ke−iũ)2 + e−iũ(1− k̄eiũ)2ss̄

)
eiΩ.

We introduce the new variables $ = ω+Ω, called longitude of the perihelion, û = ũ+Ω = u+$,
called eccentric longitude, and g = keiΩ = tan φ

2 ei$. We obtain

(1 + ss̄)(1 + gḡ)
rc

a
= eiû(1− ge−iû)2 − e−iû(1− ḡeiû)2s2

= eiû
(
1 + ḡs− (g + s)e−iû

)(
1− ḡs− (g − s)e−iû

)
.
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Here again a nice factorization, useless in this paper, appears as a good surprise in the compu-
tations. Similarly we compute the vertical component rz and the “weight” lu = dl/du, useful
in the process of averaging:

(1 + ss̄)(1 + gḡ)
rz

a
= −eiû(1− ge−iû)2s̄− e−iû(1− ḡeiû)2s,

(1 + gḡ)lu = (1− ḡeiû)(1− ge−iû).

2. Various expressions of the Lemma

Possible variables in the Lemma. The above pair (g, s) ∈ C2 is one among various possible
choices of coordinates for the set of Keplerian ellipses with semi major axis a. We will state
the Lemma using the pair (w1, w2) ∈ C2, which is one of the following pairs of coordinates:
(2g, 2s) or (Lc, Sc) or (ξc/

√
2, ηc/

√
2) or (X, Y ). We use in these notations the index c as

above: a vector ~L in 3-space is written as a pair (Lc, Lz) ∈ C × IR, giving its horizontal and
vertical components. We now explain the meaning of these variables and the relations between
them.

The vectors ~L and ~S are respectively the eccentricity vector and the normalized angular
momentum. They satisfy ‖~L‖ = ε, ‖~S‖ =

√
1− ε2, and ~L · ~S = 0. If we call µ the gravitational

constant (defined later), the vector
√

µa~S is the angular momentum. Our convention here is
that ~L points the perihelion of the orbit. A computation shows that

Lc =
2(g − ḡs2)

(1 + ss̄)(1 + gḡ)
, Sc =

2s(1− gḡ)
(1 + ss̄)(1 + gḡ)

.

The difference (Lc, Sc) − (2g, 2s) is small. More precisely, if we expand it in (g, s, ḡ, s̄), the
series begins at order three (the terms are odd monomials). From this we can conclude that
the two set of variables are exactly equivalent for the purpose of the Lemma below.

The vectors ~ξ and ~η are the “Souriau vectors” [Sou]. They are defined by the relations ~ξ = ~S+~L

and ~η = ~S − ~L, and satisfy ‖~ξ‖ = ‖~η‖ = 1.

Finally,

X =
2g√

1 + gḡ
, Y =

√
1− gḡ

1 + gḡ

2s√
1 + ss̄

.

These variables possess the following property. Let Il =
√

µa be the conjugate variable to
the mean anomaly l. We set

√
IlX = x1 + ix2 and

√
IlY = y1 + iy2. Then the canonical

symplectic form is dIl∧dl̂+dx2∧dx1 +dy2∧dy1. The canonical elements (Il, l̂, x2, x1, y1,−y2)
are Poincaré’s variables (cf. [Po2], p. 30). They are introduced in the complex framework in
[Las] and [LaR].

We can now give a Lemma due to the first author [Abd].

Lemma. Let a be a non negative real number. Let E(w1, w2) be the Keplerian ellipse in
3-space with focus at the origin O, semi major axis a and complex coordinates (w1, w2) as
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explained above. Let B be a point in the complementary of the “reference circle” E(0, 0). We
consider the average

Dλ(w1, w2) =
1
2π

∫ 2π

0

‖ ~AB‖2λdl̂,

where A is the point of E(w1, w2) with mean longitude l̂ (the mean longitude is the sum of the
already defined mean anomaly l and of the longitude of the perihelion $.) We have

( ∂2

∂w1∂w̄1
+

∂2

∂w2∂w̄2
)Dλ

∣∣
w1=w2=0

=
1
2
λ(2λ + 1)a2Dλ−1

∣∣
w1=w2=0

.

Proof. We set ~OA = (Ac, Az) ∈ C × IR, ~OB = (Bc, Bz) ∈ C × IR. We work in the variables
(g, s), and make the substitution dl̂ = ludû. We want to expand Dλ at the neighborhood of
(g, s) = (0, 0) and look at the coefficients of the terms gḡ and ss̄. We can truncate at each
step of the computation, excluding any term of order greater than 2, and any term of order 2
which is not gḡ or ss̄. Thus

Ac = aeiû + ϕ with ϕ = −a(ss̄ + gḡ)eiû − 2ag + · · · ,

Az = −a(s̄eiû + se−iû + · · ·) and lu = 1− ḡeiû − ge−iû + · · · .

Now

‖ ~AB‖2 = (Ac −Bc)(Āc − B̄c) + (Az −Bz)2 = (J + ϕ)(J̄ + ϕ̄) + (Az −Bz)2 = K + ε,

with J = aeiû − Bc, K = JJ̄ + B2
z and ε = Jϕ̄ + J̄ϕ + ϕϕ̄− 2BzAz + A2

z. The expression to
integrate in eccentric longitude û is

‖ ~AB‖2λlu = (Kλ + λKλ−1ε +
1
2
λ(λ− 1)Kλ−2ε2 + · · ·)lu.

We substitute ε and ε2 using:

ε =− a(ss̄ + gḡ)(Je−iû + J̄eiû)− 2a(ḡJ + gJ̄)

+ 4a2gḡ + 2Bz(se−iû + s̄eiû) + 2a2ss̄ + · · ·
ε2 = 8a2JJ̄gḡ + 8a2B2

zss̄ + · · ·

We must now make the sum of the respective coefficients of gḡ and ss̄. The contribution of
the ε2 term is

λ(λ− 1)Kλ−2(4a2JJ̄ + 4a2B2
z) = 4a2λ(λ− 1)Kλ−1.

The contribution of the ε term

2aλKλ−1(−Je−iû − J̄eiû + 3a + Je−iû + J̄eiû) = 6a2λKλ−1.

The last two terms in the parenthesis come from the expansion of lu. The sum is finally
2a2λ(2λ + 1)Kλ−1. This is the formula in the lemma, before averaging on û, and before the
required division by 4 due to (w1, w2) = (2g, 2s).
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An equivalent formulation. Let a be a non negative real number. Let E(~ξ, ~η) be the
Keplerian ellipse in 3-space with focus at the origin O, semi major axis a and Souriau variables
~ξ and ~η. Let B be a point such that ‖ ~OB‖ 6= a. We consider the time average

S × S −→ IR,

(~ξ, ~η) 7−→ Dλ =
1
T

∫ T

0

‖ ~AB‖2λdt,

where A is the position at the time t of a point moving on the orbit E(~ξ, ~η), T is the period,
and S is the unit sphere with center O (the function Dλ is the same as in the Lemma, but we
now avoid the use of a reference frame.) Let ∆ be the Laplace-Beltrami operator on S × S.
We have on the diagonal ~ξ = ~η (corresponding to circular orbits) the identity

∆Dλ = λ(2λ + 1)a2Dλ−1.

Use of the Lemma. The most remarkable fact is the cancellation of the second member when
λ = −1/2, i.e. when the averaged function is the newtonian potential corresponding to the
interaction between A and B. This result is significant in the dynamics of the first secular
system, that we wish to construct briefly now.

3. Secular dynamics

The first secular system is obtained from the Newtonian equations of motion after an averaging
process and a linearization. The averaging process starts with the choice of an uncoupled
system and then defines an averaged system.

Uncoupled system. It is a differential system sufficiently close to the system of Newtonian
equations and whose solutions can be completely described as sums of uncoupled Keplerian
motions. The freedom in the choice is mainly to decide which are the vectors whose motions
are Keplerian motions. We make here the “barycentric” choice, equally good in the case of
an “Earth, Moon, Sun” type system and in a “Sun+two planets” system, but which leads to
difficulties in the case “Sun+n planets”. It is related to what is called “Jacobi reduction of
the center of mass”.

Let ~r0, ~r1, ~r2 be the position vectors of the three bodies with masses m0, m1, m2. We always
suppose that

m0~r0 + m1~r1 + m2~r2 = 0 (7)

for all time. Thus the data of two of the position vectors ~ri and their first derivative ~̇ri = ~vi

with respect to time is sufficient to describe the state of the system. The system of Newtonian
equations is

~̈ri =
∑
k 6=i

mk
~rk − ~ri

‖~rk − ~ri‖3
. (N)

The uncoupled system is defined introducing the center of mass J of the Earth-Moon system.
We denote by ~rJ the vector satisfying (m0 + m1)~rJ = m0~r0 + m1~r1. The two vectors ~r01 =
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~r1 − ~r0, ~rJ2 = ~r2 − ~rJ, together with the constraint (7), are sufficient to recover ~r0, ~r1 and ~r2.
The uncoupled system is chosen to be

~̈r01 = −(m0 + m1)
~r01

‖~r01‖3
, ~̈rJ2 = −(m0 + m1 + m2)

~rJ2

‖~rJ2‖3
. (U)

This system appears as a limit when one writes ~̈r01 and ~̈rJ2 in the Newtonian system, and
neglect small terms using the assumption that ‖~r01‖ is much smaller than ‖~rJ2‖.

Averaged system. We can give the state of the system giving ~r01, ~rJ2, ~v01 = ~̇r01 and ~vJ2 = ~̇rJ2,
but also, after some restriction in the domain, giving the elements (a1, w1, w2, l̂1) of the elliptic
orbit described by the vector ~r01 in the uncoupled system, (a2, w3, w4, l̂2) of the elliptic orbit
described by the vector ~rJ2. This is just a change of variables, and the Newtonian system in
this set of variables reads:

ȧi = Ai(a1, a2, w1, . . . , w4, l̂1, l̂2), ẇi = Wi(a1, . . .),
˙̂
li = Li(a1, . . .).

The averaged system is a differential system defined by

ȧi =
1

(2π)2

∫ 2π

0

∫ 2π

0

Aidl̂1dl̂2, ẇi =
1

(2π)2

∫
Widl̂1dl̂2,

˙̂
li =

1
(2π)2

∫
Lidl̂1dl̂2.

The following characterization makes clear that the definition does not depend on the choice
of the elliptic elements. It also makes clear that our definition of averaging coincides with
Moser’s definition in [Mos].

Proposition 1. Let X1 and X2 be the vector fields respectively associated to the differential
systems

ȧ1 = · · · = ẇ4 = ˙̂
l2 = 0,

˙̂
l1 = 1; ȧ1 = · · · = ẇ4 = ˙̂

l1 = 0,
˙̂
l2 = 1.

Let b be any function of the elements such that ∂X1b and ∂X2b are constant functions. Then
if in the system (N)

ḃ = B(a1, a2, w1, . . . , w4, l̂1, l̂2), (N1)

in the averaged system

ḃ =
1

(2π)2

∫ 2π

0

∫ 2π

0

Bdl̂1dl̂2. (A1)

Proof. In the averaged system (2π)2ḃ = (∂b/∂a1)
∫

A1+· · ·+(∂b/∂l̂2)
∫

L2. But the coefficients
does not depend on the l̂i by the hypothesis, so they can pass under the symbol of integration.
But B = (∂b/∂a1)A1 + · · ·+ (∂b/∂l̂2)L2 by its definition.

Symplectic properties. System (N) is associated to the Lagrangian

LN =
1
2
K + U =

1
2
(m0‖~v0‖2 + m1‖~v1‖2 + m2‖~v2‖2) +

m0m1

‖~r01‖
+

m0m2

‖~r02‖
+

m1m2

‖~r12‖
,
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Using (7) the vis viva K may be written

K =
m0m1

m0 + m1
‖~v01‖2 +

(m0 + m1)m2

m0 + m1 + m2
‖~vJ2‖2.

System (U) is associated to any Lagrangian of the family

α(‖~v01‖2 +
m0 + m1

‖~r01‖
) + β(‖~vJ2‖2 +

m0 + m1 + m2

‖~rJ2‖
),

with α and β two non-zero numbers. It is an important property of the uncoupled system (U)
that one can choose α and β such that the vis viva for (U) is K:

LU =
1
2
K +

m0m1

‖~r01‖
+

(m0 + m1)m2

‖~rJ2‖
.

We can make the classical identification of the tangent space to the cotangent space using
the Legendre transform associated to K. There is now just one space, where are defined the
energy functions or Hamiltonians

HN =
1
2
K − m0m1

‖~r01‖
− m0m2

‖~r02‖
− m1m2

‖~r12‖
, HU =

1
2
K − m0m1

‖~r01‖
− (m0 + m1)m2

‖~rJ2‖

and the symplectic form

ω =
m0m1

m0 + m1
d~v01 ∧ d~r01 +

(m0 + m1)m2

m0 + m1 + m2
d~vJ2 ∧ d~rJ2, (8)

using the abusive notation d~v ∧ d~r = dvx ∧ drx + dvy ∧ dry + dvz ∧ drz, where (vx, vy, vz) and
(rx, ry, rz) are coordinates for ~v and ~r in an orthonormal frame.

Proposition 2. Let HN (a1, . . . , w4, l̂1, l̂2) be the Hamiltonian of (N) expressed in the Keple-
rian elements. The averaged system is a Hamiltonian system with Hamiltonian function

H̄ =
1

(2π)2

∫ 2π

0

∫ 2π

0

HN (a1, . . . , w4, l̂1, l̂2)dl̂1dl̂2.

Proof. Using the Poisson bracket notations, equation (N1) in Proposition 1 reads ḃ = {HN , b}.
We must prove that equation (A1) takes the form ḃ = {H̄, b}, i.e. that

{H̄, b} =
1

(2π)2

∫
{HN , b}dl̂1dl̂2.

Let us denote by γi, 1 ≤ i ≤ 8, the elements a1, . . . , l̂2. We have

{HN , b} =
∑
i,j

cij
∂HN

∂γi

∂b

∂γj
,
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where the cij are the coefficients of the Poisson form. We claim that these coefficients does
not depend on the l̂i. This is the expression in coordinates of the fact that the Lie derivative
of the Poisson form with respect to the vector fields X1 and X2 is zero (i.e. these vector fields
are symplectic fields). We also know, from proposition 1, that the ∂b/∂γj does not depend on
the l̂i. Thus we can put these quantities and the cij out of the symbol of integration. The end
of the computation is easy.

Reduction of the averaged system. By its very (non hamiltonian) definition, the averaged
system possesses “ignorable” variables, namely, the l̂i. In the Hamiltonian framework, the
ai appear as the associated integrals : we have ȧi = {H̄, ai} = 0 (Lagrange theorem). For
each choice of the ai, we can thus define a reduced space, the “secular space”, endowed with
a symplectic form. This form is very nice in Souriau spherical elements, and very simple in
Poincaré’s variables, but here we will content ourselves of its expression at the circular-non-
inclined point. This is sufficient in for the present work.

Deduction of the equations for the first secular system. The first secular system is obtained
from the reduced averaged system by linearization at the equilibrium point w1 = · · · = w4 = 0,
corresponding circular motions in the plane of reference. The quickest way to obtain its ex-
pression is to compute the symplectic form of the secular space at this point and the quadratic
part of the Hamiltonian function.

The linearized symplectic form. Let us consider first the system

~̈r = −µ
~r

‖~r‖3
.

We call µ the gravitational constant. We want the expression of the symplectic form σ = d~v∧d~r
in the elements of the Keplerian motion. In complex notation, we write ~r = (rx, ry, rz) =
(rc, rz), with rc = rx + iry, and ~v = (vc, vz), and we get

2σ = dvc ∧ dr̄c + dv̄c ∧ drc + 2dvz ∧ drz.

The recipe giving ~r is at the beginning of the paper. To obtain ~v, the additional formula
ν2a3 = µ, where ν = dl/dt is the frequency, is required. We get ~v = νl−1

u d~r/du. Thus

(1 + ss̄)(1 + gḡ)
luvc

iνa
= eiû(1− g2e−2iû) + e−iû(1− ḡ2e2iû)s2,

(1 + ss̄)(1 + gḡ)
luvz

iνa
= −eiû(1− g2e−2iû)s̄ + e−iû(1− ḡ2e2iû)s.

We just need the symplectic form at the origin s = g = 0, so we can truncate all these formulas
at the first order in (g, s, ḡ, s̄). This gives (fixing û)

drc = −2adg + · · · , drz = a(−eiûds̄− e−iûds) + · · · ,

dvc = iνa(dg + e2iûdḡ) + · · · , dvz = iνa(−eiûds̄ + e−iûds) + · · · ,

σ = i
√

µa(−2dg ∧ dḡ − 2ds ∧ ds̄) + · · · .
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We write now the expression (8) for the symplectic form ω. There are two uncoupled Keplerian
motions in (U), corresponding to different values of µ. Thus

ω = −2iΛ1(dg1 ∧ dḡ1 + ds1 ∧ ds̄1)− 2iΛ2(dg2 ∧ dḡ2 + ds2 ∧ ds̄2) + · · · ,

with

Λ1 =
m0m1

√
a1√

m0 + m1
, Λ2 =

(m0 + m1)m2
√

a2√
m0 + m1 + m2

.

The perturbating function and the quadratic part of its average. We must take the average
H̄ of the hamiltonian HN . An Hamiltonian function equivalent to H̄ is obtained subtracting
any function of a1 and a2, which are constant function in the reduced averaged system. The
Hamiltonian HU is such a function, so we can consider as well the average H̄P of

HP = HN −HU = −m0m2

‖~r02‖
− m1m2

‖~r12‖
+

(m0 + m1)m2

‖~rJ2‖
,

called the perturbating function. The last term gives a constant when we take its average in
l̂2, so we can also omit it, and consider

V = −m0m2V0 −m1m2V1, with Vj =
1

(2π)2

∫ 2π

0

∫ 2π

0

dl̂1dl̂2
‖~rj2‖

.

It appears that we have to take the average of the inverse of the distance between two points
moving on Keplerian ellipses. But our Lemma gives a property for such averages, more precisely
a property of the quadratic part of the expansion at the neighborhood of the circular coplanar
motions.

Equations for the first secular system. Here we consider w = (w1, w2, w3, w4) as another nota-
tion for the elements (g1, s1, g2, s2) and l = (l1, l2, l3, l4) as another notation for (Λ1,Λ1,Λ2,Λ2).
Taking into account some obvious symmetries we deduce that Vj (and consequently V ) pos-
sesses an expansion of the form

Vj(w) = Vj(0) +
∑ ∂2Vj

∂wµ∂w̄ν
wµw̄ν + · · ·

Hamilton’s equations for the linearized symplectic form are

ẇk = − i

2lk

∂V

∂w̄k
, ˙̄wk =

i

2lk

∂V

∂wk
.

Let us introduce the diagonal matrix Q with diagonal l. We obtain the first secular system in
the form

ẇ =
1
2i

Q−1 · ∂̄∂V · w, with ∂̄∂V =
(

∂2V

∂w̄µ∂wν

∣∣∣
w=0

)
µν

. (9)

Proposition 3. The trace of the matrix Q−1 · ∂̄∂V is zero.
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Proof. We have

tr(Q−1 · ∂̄∂V ) = −
1∑

j=0

mjm2tr(Q−1 · ∂̄∂Vj)

and

tr(Q−1 · ∂̄∂Vj) =
1
Λ1

(
∂2Vj

∂w1∂w̄1
+

∂2Vj

∂w2∂w̄2
) +

1
Λ2

(
∂2Vj

∂w3∂w̄3
+

∂2Vj

∂w4∂w̄4
).

Each of the parenthesis is zero. To see this, note that Vj is obtained by a double integration,
in l̂1 and l̂2, of the function ‖~rj2‖−1. The Lemma shows that fixing l̂2, the Laplacian of the
average in l̂1 of the same function is zero. Integrating this in l̂2, we obtain the vanishing of
the first parenthesis. For the second, we simply exchange the roles of l̂1 and l̂2.

Proposition 4. System (9) can be diagonalized with spectrum iλ1, . . . , iλ4. The λj are real
numbers, satisfying Herman’s relation λ1 + · · ·+ λ4 = 0. One of them is zero.

Remark. M. Herman claimed that no other such relation exists between the λj .

Proof. What remains to be proven is quite standard. To prove the first claim, one uses the
fact that there exists a unitary transformation U of C4, endowed with the Hermitian form∑

ljwjw̄j , putting the auto-adjoint matrix ∂̄∂V in a diagonal form, with real entries. In
equations, this reads tŪQU = Q, ∂̄∂V = tŪqU , where q is a diagonal matrix with real entries.
If we set x = Uw, system (9) takes the diagonal form ẋ = 1

2iQ
−1q · x. The trace is preserved

by these transformations. This is the second claim. The claim that one of the eigenvalues is
zero is classical. It is due to the first integral of the angular momentum.

Identities at higher order. Let us consider the full expansion of V at the neighborhood of
w = (0, 0, 0, 0):

V (w) =
∞∑

m=0

∑
|j|=m
|k|=m

1
j!k!

∂2mV

∂wj∂w̄k

∣∣∣∣
w=0

wjw̄k,

with the usual multi-index notation j = (j1, . . . , j4), |j| = j1 + · · · + j4, j! = j1!j2!j3!j4!,
wj = wj1

1 · · ·wj4
4 . The Lemma gives

∂2V

∂w1∂w̄1
+

∂2V

∂w2∂w̄2

∣∣∣∣
w1=w2=0

= 0

for any value of w3 and w4. The proof of Herman’s resonance used only this identity at the
point w3 = w4 = 0. It would have been sufficient to prove the Lemma for a point B in the
horizontal plane, which is much easier. The full application of the identity gives an infinite
number of relations between the coefficients of the expansion of V , such as

∂4V

∂w3∂w̄4∂w1∂w̄1
+

∂4V

∂w3∂w̄4∂w2∂w̄2

∣∣∣∣
w=0

= 0.

It is not clear for us what are the implications of these relations on the dynamics of the
averaged system.
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Remark on the case of n planets. As this work consists in giving properties of the averaged
system, we felt necessary to give a clear status to this system. This is the aim of Propositions
1 and 2, and this is why we chose to restrict our exposition to the case of three bodies and a
barycentric uncoupled system. We must insist that Herman’s resonance also exists in the case
of a system of n planets, and the proof does not present any new difficulty. What is a little
bit annoying is that the averaged system may loose part of its intrinsic character in this case.

A reasonable choice in the case of n planets is to use an heliocentric uncoupled system, where
all the planets describe Keplerian ellipses around the sun. But it appears that the kinetic
energy for the uncoupled system and for the Newtonian system are not identical. Thus the
tangent space to the configuration space is identified in two different ways to the cotangent
space. The two spaces cannot be considered as the same space, and we have to choose where
live the systems we want to study and compare. If our choice is to work in the tangent
space, we have to pull back the canonical symplectic form from the cotangent by the Legendre
transform, and as we have two Legendre transforms, we have two symplectic forms. This
complicates the symplectic properties of the averaged system.

If our choice is to work on the cotangent, everything works perfectly well, but we have a bad
surprise, already noticed by [Po3] or [Las], p. 70. To an initial condition of the Newtonian
system, we want to associate the so-called “osculating elements”, which are the elements of the
Keplerian orbits in the uncoupled system with same initial condition. Here the initial condition
is a covector, not a tangent vector: the three bodies will not start with the same velocities in
the Newtonian system and in the uncoupled system. In brief, we gave us a new freedom in
the definition of the averaged system: the use of a non-standard relation of osculation.

In a system of n planets, if we choose to define the averaged system using an heliocentric
uncoupled system, and to work on the cotangent of the configuration space, one can check
that Herman’s resonance is still there (apparently Herman made precisely this computation).
The sum of the 2n eigenvalues of the linearized averaged system is zero.

Remarks on Herman’s resonance. Maybe Herman’s relation should be called a degeneracy
rather than a resonance, as it is true for any value of the parameters. One can ask if its existence
makes troubles when one constructs normal forms for the averaged system. The answer is no,
according to [MRL] where the case of n planets is studied. Resonant terms do not appear.

Indeed there is a simple way to show that Herman’s resonance has no effect on the “main”
dynamics of a (averaged) planetary problem, i.e. the reduced dynamics, the dynamics after
reduction by the symmetry group SO(3). Let us form the Hamiltonian Hλ = H̄ + ρCz, where
ρ is a real number and Cz is the vertical component of the total angular momentum. The
reduced dynamics is the same for any value of ρ. But for different values of ρ the dynamics
before reduction “rotates” differently in the absolute space. The spectrum (λ1, . . . , λ2n) of the
first secular system is changed in (λ1 + ρ, . . . , λ2n + ρ) and Herman relation disappears.

The degeneracy of the Kepler problem, among the family of fixed center problems with the
potential ‖~r‖α, is of the same nature. The reduced dynamics of this family of problems is not
particular for the case α = −1 (Kepler). But the dynamics before reduction is resonant only
for this value and for α = 2.
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