
Generalized Euler’s Configurations and Kushnirenko Problem

Alain Albouy
UMR8028 / CNRS

IMCCE, 77, av. Denfert-Rochereau, 75014 Paris
albouy@imcce.fr

version of 8/2003, with addendum of 3/2006

Abstract. According to Euler, there is exactly one collinear configuration of three particles
of given masses in a given order, that allows a motion of relative equilibrium in the 3-body
problem. In Proposition 3 we extend this result to more general homogeneous laws of force.
In Propositions 1 and 2 the homogeneous law of force is arbitrary and the masses are arbitrary
real numbers; the maximum number of configurations is 3.

Introduction. Consider a system of n equations in n real unknowns, with real parameters.
The description of the solution may be complicated. Even the number of solutions may vary
in a complicated way with the parameters. Sometimes, one can give the minimum number or
the maximum number of solutions. Very few tools are available if we look for the maximum
number, or for an upper bound. It is even difficult to determine the conditions for the finiteness.
We consider here the equations for central configurations in Celestial Mechanics. Some basic
questions about the set of central configurations have remained without answer for several
decades (see [Alb]). An interesting attempt is to put our equations in the form of a system
of “fewnomials”. It is then natural the study together all the force laws in rb, where r is the
distance and b a real parameter. We study in this paper the simplest particular cases according
to this point of view.

1. A result on generalized Euler’s configurations
1.1. Definitions and Equations. We consider the “collinear configuration” (x1, . . . , xn) ∈
IRn. The “particle” i has the abscissa xi and the “mass” mi. The “attraction” γi exerted on
the particle i by the remaining particles is

γi =
∑
k 6=i

mkρ(xki), xki = xi − xk, ρ(x) = x|x|b−1. (1)

We take (m1, . . . ,mn, b) ∈ IRn+1. In the case b = −2, xij 6= 0 for any i 6= j, and mi > 0 for any
i, the number −γi is the Newtonian acceleration ẍi of the particle i due to the gravitational
interaction between the particles. In the case b = −1, xij 6= 0 for any i 6= j, there is another
physical interpretation: we consider the n collinear particles as Helmholtz’ vortices in the
Euclidean plane, with vorticities mi ∈ IR. Formula (1) defines now the oriented measure of
the velocity of the particle i, which is a vector orthogonal to the line.
Central configurations. Moulton configurations. Euler configurations. The collinear
central configurations are, by definition, the collinear configurations (x1, . . . , xn) such that
there exists a λ ∈ IR with γij = λxij for any i 6= j (denoting γij = γj−γi). They are also called
Moulton configurations, and in the case n = 3, Euler configurations. This terminology comes
from Celestial Mechanics. In the n-body problem, with Newtonian attraction, if a motion
is homothetic or of relative equilibrium, with a collinear configuration, this configuration is
central. In the Helmholtz problem, where b = −1, a collinear central configuration of vortices
has a motion of relative equilibrium: during the motion, the distances between particles remain
constant.
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The conditions for central configuration express that the n-uple (x1, . . . , xn) and the n-
uple (γ1, . . . γn) are equal up to a translation and a change of scale. This may be written∣∣∣∣∣∣

1 1 1
xi xj xk

γi γj γk

∣∣∣∣∣∣ = 0, for any 1 ≤ i < j < k ≤ n. (2)

We expand this formula in the masses. The term in mi is

mi

∣∣∣∣∣∣
1 1 1
xi xj xk

0 ρ(xij) ρ(xik)

∣∣∣∣∣∣ = mi

(
xijρ(xik)− xikρ(xij)

)
. (3)

This suggests an interesting way to write (2):∣∣∣∣∣∣
mi mj mk

xjk xki xij

ρ(xjk) ρ(xki) ρ(xij)

∣∣∣∣∣∣ +
∑

l 6=i,j,k

ml

∣∣∣∣∣∣
1 1 1
xi xj xk

ρ(xli) ρ(xlj) ρ(xlk)

∣∣∣∣∣∣ = 0. (4)

1.2. Euler configurations. It is the case n = 3. System (4) reduces to an equation for Euler
configurations similar to that in [Win], §358:∣∣∣∣∣∣

m1 m2 m3

x23 x31 x12

ρ(x23) ρ(x31) ρ(x12)

∣∣∣∣∣∣ = 0. (5)

We want to describe the set of Euler configurations. Our domain will be the cell in the space
of configurations defined by the inequalities x1 < x2 < x3. If we normalize the configuration
putting x1 = 0 and x2 = 1, this cell is the interval ]0,+∞[ with variable s = x23. We have to
find the zeros of the function

g(s) =

∣∣∣∣∣∣
m1 m2 m3

s −(1 + s) 1
sb −(1 + s)b 1

∣∣∣∣∣∣ . (6)

Definition 1. We denote by E the number of normalized Euler configurations in the cell
x1 < x2 < x3, i.e. the number of roots of the function g with s ∈]0,+∞[.
Proposition 1. Let m1, m2, m3 be arbitrary real masses. The number E of Euler configurations
is infinite if and only if g vanishes identically on ]0,+∞[. This happens only in the following
cases: i) m1 = m2 = m3 = 0, ii) b = 0 and m1 = −m2 = m3, iii) b = 1, iv) b = 2, m2 = 0 and
m1 = m3, v) b = 3 and m1 = m2 = m3.
Proposition 2. For any (m1,m2,m3, b) ∈ IR4, except those listed in Proposition 1, E ≤ 3.
Proof. We put g in a convenient form and compute its second derivative

g(s) = (m2 + m3)sb + (m1 + m3)(1 + s)b + m3

(
sb+1 − (1 + s)b+1

)
−m1(1 + s)−m2s, (a)

g′′(s)
b(b− 1)

= (m2 + m3)sb−2 + (m1 + m3)(1 + s)b−2 + m3
b + 1
b− 1

(
sb−1 − (1 + s)b−1

)
. (b)
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We make a substitution in g′′ putting s = −1 + 1/x, x ∈]0, 1[. The resulting function is
k(x) = b−1(b− 1)−1g′′(−1 + 1/x). We write below this expression multiplied by xb−1, and its
second derivative in x.

xb−1k(x) = (m2 + m3)x(1− x)b−2 + (m1 + m3)x + m3
b + 1
b− 1

(
(1− x)b−1 − 1

)
. (c)

(
xb−1k(x)

)′′
b− 2

= (1− x)b−4
(
(b− 3)(m2 + m3)x−

(
2m2 + (1− b)m3

)
(1− x)

)
. (d)

The main observation is that the expression (d) possesses at most one root in the interval
x ∈]0, 1[, except if it is identically zero. By successive applications of Rolle’s theorem, this
implies that expression (c) possesses at most three roots in the closed interval x ∈ [0, 1], except
if it is identically zero. We observe that (c) vanishes at x = 0. Thus (c) vanishes at most twice
in the open interval u ∈]0, 1[, except if it is identically zero.

We deduce that expression (b) vanishes at most twice in the interval s ∈]0,+∞[, except if
it vanishes identically. Thus expression (a) vanishes at most four times in the closed interval
[0,+∞], except if it vanishes identically.

Let us look at this more carefully, first giving all the cases where (a) vanishes identically.
We must consider separately the cases b = 0, b = 1 and b = 2, because of the denominators
in our formulas. If b = 0, g(s) = m2 + m3 − s(m1 + m2), which is identically zero iff m1 =
−m2 = m3. If b = 1, g(s) = 0. If b = 2, g(s) = (m1 + m2 − m3)s2 + (m1 − m2 − m3)s,
identically zero iff m1 = m3 and m2 = 0. The other cases where g vanishes identically must
be such that the affine factor in (d) vanishes at x = 0 and x = 1. A possibility is b = 3, and
2m2 + (1− b)m3 = 0, i.e. m2 = m3.

At this point we use a useful trick: we exchange the “exterior” masses m1 and m3. The set
of roots is simply reflected. We continue our argument knowing now that (b−3)(m1 +m2) = 0
and 2m2 + (1 − b)m1 = 0. In the case b = 3 this gives m1 = m2. We check that these
conditions (v) give g = 0.

If b 6= 3, then m2 +m3 = 0. We have (b+1)m3 = 0 by (d), and (b+1)m1 = 0 exchanging
m1 and m3. If b 6= −1 we are in the trivial case (i). If b = −1 we also have m1 + m2 = 0. We
check that g is not identically zero in this case.

The cases where g is identically zero are now listed and excluded. The function g has at
most four roots with s ∈ [0,+∞] by the conclusion above. In the case b > 0, g(0) = 0 and we
have at most three roots in the interval s ∈]0,+∞[, which is the conclusion required.

The last step is to exclude the possibility of four roots when b < 0. By the main observation
the expression (d) should vanish exactly once. Let p = m2 + m3 and q = 2m2 + (1 − b)m3.
We have pq < 0. In particular b = −1 or m2 = 0 are excluded. Let p̂ = m2 + m1 and
q̂ = 2m2 + (1− b)m1, obtained exchanging m1 and m3. We have p̂q̂ < 0. But (1− b)p− q =
(1− b)p̂− q̂ = −(b + 1)m2. This shows that p and p̂ have the same sign.

Thus m2 + m3 and m1 + m2 are non zero and have the same sign, let us say positive.
We look now at expression (a). In our case b < 0, it tends to +∞ when s → 0, and to −∞
when s → +∞. But this is impossible, because g has exactly four roots, so it changes of sign
four times (the four roots should be non-degenerate because degenerate roots would give other
roots for g′ and contradict the main argument). QED.
Remark. Cases with E = 3 are easy to find, even with the symmetry condition m1 = m3.

2. Other results in the case of positive masses
2.1. Euler’s result and some extensions. Euler gave the following result: if mi > 0,
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i = 1, 2, 3, and b = −2, then E = 1. At §8 of [Eul], he computes the following polynomial

(1+s)2s2g(s)=m1s2
(
1−(1+s)3

)
+m2(1+s)2(1−s3)+m3

(
(1+s)3−s3

)
=−(m1+m2)s

5−(3m1+2m2)s
4−(3m1+m2)s

3+(m2+3m3)s
2+(2m2+3m3)s+m2+m3

(7)

and writes “eumque unicum elici, cum unica signorum variatio occurat”: the sequence of
coefficients changes of sign exactly once; thus by Descartes’ rule of signs there is exactly one
positive root. The success of this argument is surprising: it is not often that Descartes’ rule
of signs gives an answer for all the required values of the parameters. Moreover, we can check
that the argument works as well for the other negative integer values of b.

We will obtain below the same conclusion, E = 1, for any b < 1 and any choice of positive
masses. Elementary proofs of this are well known for b < 0. For b > 0, a main change occurs,
that was explained to me by Carles Simó. We have g(0) = 0, and the collision configuration
x1 < x2 = x3 is a central configuration.
Proposition 3. Let m1,m2,m3 be any positive masses. If b < 1 then E = 1. If 1 < b ≤ 2 then
E = 1 if

(
m1 + m2 − (b− 1)m3

)(
−(b− 1)m1 + m2 + m3

)
> 0, and E = 0 elsewhere.

Proof. We normalize differently the configuration putting x1 = 0 and x3 = 1. Our cell is the
interval ]0, 1[ with variable x = x12. We compute

f(x) =

∣∣∣∣∣∣
m1 m2 m3

1− x −1 x
(1− x)b −1 xb

∣∣∣∣∣∣ , f ′(x) =

∣∣∣∣∣∣
m1 m2 m3

−1 0 1
(1− x)b −1 xb

∣∣∣∣∣∣ + b

∣∣∣∣∣∣
m1 m2 m3

1− x −1 x
−(1− x)b−1 0 xb−1

∣∣∣∣∣∣ .

We have to find the zeros of f . If b ≤ 0, a surprising feature of the formula for f ′ is that the 8
terms of its brutal expansion are non negative. We have f ′ > 0; so f is strictly increasing in the
interval ]0, 1[, from −∞ to +∞. This gives the required result. Now f (3)(x) = b(b− 1)C3(x),
with

C3(x) = 3

∣∣∣∣∣∣
m1 m2 m3

−1 0 1
(1− x)b−2 0 xb−2

∣∣∣∣∣∣ + (b− 2)

∣∣∣∣∣∣
m1 m2 m3

1− x −1 x
−(1− x)b−3 0 xb−3

∣∣∣∣∣∣ .

Again the complete expansion gives only positive terms, if b < 2. Thus C3(x) > 0, if b ≤ 2.
We have at most three roots of f in the interval [0, 1], under the hypotheses of Proposition 3.
But if b > 0, f(0) = f(1) = 0. There is at most one root in the open interval. The discussion
of the existence is easily done looking at the following table

0 < b < 1 : f ′(x) + b(m1 + m2)xb−1 is bounded as x → 0,

f ′(x) + b(m2 + m3)(1− x)b−1 is bounded as x → 1,

b > 1 : f ′(0) = m1 + m2 − (b− 1)m3, f ′(1) = −(b− 1)m1 + m2 + m3. QED

2.2. Moulton’s result. Moulton’s result is an extension of Euler’s result in the case of n > 3
particles on the line. The proof of Moulton [Mou] has been clarified by Smale and Shub in
[Sma]. Saari [Saa] made a subsequent step, indicating that Moulton’s uniqueness result was
a mere application of the result: a convex function possesses at most one critical point. A
technical simplification was recommended in [Yoc]: rather than the usual normalization by
the moment of inertia I, one should fix the multiplier λ.
Definition 2. We denote by M the number of normalized Moulton configurations with x1 <
x2 < . . . < xn (an example of normalization is x1 = 0, xn = 1).
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Proposition 4 (Moulton). If mi > 0, i = 1, . . . , n, and if b < 0, then M = 1.
Proof. Let x > 0 and Pb(x) = xb+1/(b+1), if b 6= −1, and P−1(x) = lnx. We have P ′

b(x) = xb.
Let xG is the center of mass of the n particles, well defined because M = m1 + · · ·+ mn 6= 0.
Let

V (x1, . . . , xn) =
∑

1≤i<j≤n

mimjPb(|xij |), I(x1, . . . , xn) =
n∑

i=1

mi(xi − xG)2.

We have
miγi =

∂V

∂xi
, 2mi(xi − xG) =

∂I

∂xi
.

Comparing these relations with the definition of a central configuration, we check that a
critical point (x1, . . . , xn) of the function −2V + I is a central configuration with multiplier
λ = 1. Reciprocally, if (x1, . . . , xn) is a central configuration, the definition gives a λ such that
γij = λxij . We use the identity

∑
miγi = 0 to deduce γi = λ(xi − xG). We use the identity∑

mixiγi =
∑

i<j mimj |xij |b+1 to deduce that λ > 0. The normalized configuration

(x̂1, . . . , x̂n) = λ1/(1−b)(x1, . . . , xn)

satisfies γ̂i = x̂i − x̂G, and thus is a critical point of the function −2V + I. We look for the
normalized central configurations looking for the critical points of the function −2V +I. Using
the so-called Leibniz identity, we find

−2V + I =
∑

1≤i<j≤n

mimj

(
−2Pb(|xij |) +

x2
ij

M

)
.

Each term of the sum is a convex function of (x1, . . . , xn) if b ≤ 0. The sum is then a convex
function, but we need a strictly convex function to conclude. The sum is constant if we
translate the xi’s together; we must pass to the quotient space IRn/[(1, 1, . . . , 1)]. In this space
a critical point must be non-degenerate as shown by the following expression of the second
derivative of −2V + I on an arbitrary vector (q1, . . . , qn) ∈ IRn:∑

1≤i<j≤n

2mimj

(
−b|xij |b−1 +

1
M

)
q2
ij .

This quadratic form is strictly positive if (q1, . . . , qn) is not proportional to (1, . . . , 1). This
gives the uniqueness. The existence comes from the fact that −2V +I is increasing when going
to the border of the domain 0 = x1 < x2 < · · · < xn = 1. QED

3. Discussion. How could we improve these results?
The techniques used in this paper to find upper bounds on the number of solutions of our
system are very poor. In Propositions 1 to 3, the system is reduced to one equation in one
unknown, and Rolle’s theorem is applied several times. In Proposition 4, the convexity is used,
and the upper bound is one. To go further, we would need techniques giving an upper bound
greater than one in cases that cannot be simply reduced to the dimension one. It would help
to prove the following fact, that is clear from the numerical experiments of [Sim].
Conjecture. There are at most four planar central configurations (defined up to isometry and
rescaling) of four particles with given positive masses, such that the first particle is inside the
triangle formed by the three remaining particles.
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This arrangement of the particles is called the “non-convex” case. In the “convex” case,
where no particle is inside the triangle of the others, the corresponding conjectured upper
bound is one. In each of these questions, we should first prove the finiteness of the number of
solutions, a famous open problem risen by Chazy, Wintner and Smale.

I consider Propositions 1 and 2 as a model in trying to solve these conjectures. The
finiteness is easy to obtain when we have an efficient way to give upper bounds. Also the idea
to work with a free exponent b instead of its value −2 seems to be efficient. If we fix b = −2 and
reduce the system to a polynomial system, we find too complicated equations, as (7), which
is not the best tool to prove Proposition 2. Another example is my work on the symmetric
planar central configurations of equal masses [Al2]. I found the following polynomial system
in two variables (z, u) and could prove, using standard techniques of computer algebra, it has
only one root in the domain u > 0, z > 0. I guess that keeping free the exponent of the
attraction, one could obtain this result in a simpler way and generalize it.

A(z)=0, (z3−1)zC(z)+uB(z)=0,

A(z)=z37−61 z34+336 z33−240 z32+2052 z31−12120 z30+8400 z29−30456 z28+175113 z27−88548 z26+241040 z25

−1364385 z24+338994 z23−1081984 z22+6241506 z21+642162 z20+2319507 z19−15790278 z18−12287376 z17

+1386909 z16+11212992 z15+55894536 z14−19889496 z13+53738964 z12−128353329 z11+44215308 z10−172452240

z9+160917273 z8−42764598 z7+217615248 z6−115440795 z5+17124210 z4−139060395 z3+39858075 (z2+1)

B(z)=3 z32−2 z30−108 z29−60 z28+128 z27+1875 z26+2424 z25−3121 z24−22362 z23−35088 z22+44802 z21

+186900 z20+262764 z19−392367 z18−1066896 z17−1140663 z16+2171932 z15+4108782 z14+2897544 z13−7895660

z12−10281168 z11−4046067 z10+18998496 z9+15345693 z8+2381886 z7−28348380 z6−11534238 z5+131220 z4

+22491108 z3+3247695 z2−472392 z−7085880

C(z)=3 z30−21 z28−105 z27+146 z26+639 z25+1464 z24−3830 z23−8517 z22−9486 z21+40393 z20+67767 z19+30408

z18−247009 z17−366192 z16−72252 z15+1084985 z14+1363620 z13+364053 z12−3596987 z11−3510702 z10−1332243

z9+7705152 z8+6206706 z7+1637577 z6−8200278 z5−6567561 z4+85293 z3+2650644 z2+2657205 z−472392

Kushnirenko problem. Consider a system of n equations in n unknowns f1(x1, . . . , xn) =
0, . . . , fn(x1, . . . , xn) = 0. The unknowns xi are real and positive. The fi are finite sums of
“generalized monomials” of the form axα1

1 xα2
2 · · ·xαn

n , where in each monomial the αi’s are real
numbers. Kushnirenko asked for an upper bound to the number of solutions of such a system.
In contrast to Bézout’s result, the upper bound should not depend on the magnitudes of the
exponents αi, but rather on the number of monomials used to write the system. The fi are
called “fewnomials”.

The set of equations (4), with 1 ≤ i < j < k ≤ n, is of such form, except for the fact
that it is overdetermined: there are n(n− 1)/2 unknowns xij , 1 ≤ i < j ≤ n, and much more
equations.

The Kushnirenko problem has a perfect solution in the case n = 1. It is Laguerre’s
extension to Descartes’ rule of signs. The upper bound is the number of monomials minus
one (or better, the number of changes of signs in the ordered list of the coefficients of the
monomials.)

One can obtain a nearly as good answer to the Kushnirenko problem in the case n = 2,
when one of the equations is a trinomial, i.e. consists in three generalized monomials. The
trinomial may be put into the form x1 + x2 = 1 by multiplications and ordinary changes of
variables. Successively “killing monomials” by derivations after convenient multiplications, we
can check that if N is the number of monomials of the second equation, 2N − 2 is an upper
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bound for the number of roots. This bound is probably not optimal, but is not bad in the case
N = 3, where an example with 5 roots has been recently published by Haas.

Our Euler system is in this class. However, to obtain our optimal bound E = 3, we had
to apply the technique of “killing monomials” associated with other ideas. In this example it
was not difficult to control the finiteness, and probably the same is true in examples of the
same class, i.e. examples that can be explicitly reduced to the dimension one.

Khovanskii obtained remarkable results in the general case (and indeed for equations of
a much more general type). He obtained upper bounds for the number of nondegenerate
roots in the Kushnirenko problem, that could be applied to our system (4). His technique
has in common with the elementary technique we just explained the successive “killing” of
monomials. But we were not able to decide if his technique allows a control on the finiteness,
similar to our Proposition 1. Also it is well-known that the upper bounds are far from being
optimal. In the case above of a trinomial and a N -nomial, the theorem at p. 12 of [Kho] gives,
counting as does Haas, the upper bound 3N+22(N+2)(N+1)/2. Note that in a similar theory
with non-zero complex variables, due to Bernstein, the finiteness can be controlled, and the
upper bounds are optimal (see [Moe]).

As a conclusion, we wish to recall that the problem of counting the real roots of an
equation or of a system is very old. The introduction of [Lag] emphasizes some questions in
the case of one polynomial equation. The theorem published by Sturm in 1835 answers most
of them. For other cases general ideas may be found in the complete works of Hermite, vol. 1
and 3, Laguerre, vol. 1 or Picard, vol. 4, and in the references given by Khovanskii and Haas.
The question of lower bounds made a considerable progress with the development of topology,
but the question of upper bounds seems to be of another nature.

I wish to thank Ilias Kotsireas for the discussions we had and for the reference to Haas,
Carles Simó for the stimulating data he showed me on generalized Moulton configurations,
and Rick Moeckel for many discussions.
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Addendum (30/3/2006). The main result of this preprint (Proposition 2) is reproduced
in the article: Alain Albouy, Yanning Fu, Euler configurations and quasi-polynomial systems
(2006) http://arxiv.org/abs/math-ph/0603075
Abstract. In the Newtonian 3-body problem, for any choice of the three masses, there are
exactly three Euler configurations (also known as the three Euler points). In Helmholtz’
problem of 3 point vortices in the plane, there are at most three collinear relative equilibria.
The “at most three” part is common to both statements, but the respective arguments for it
are usually so different that one could think of a casual coincidence. By proving a statement on
a quasi-polynomial system, we show that the “at most three” holds in a general context which
includes both cases. We indicate some hard conjectures about the configurations of relative
equilibrium and suggest they could be attacked within the quasi-polynomial framework.

Proposition 2 leaves the possibility of a total of 9 Euler configurations, 3 for each ordering
of the particles. With Yanning Fu we arrived at the conclusion that 3 is the maximal total
number if b < 0, which includes the Newtonian case b = −2 (with possibly negative masses)
and the vortex case b = −1 (for which this result is trivial). For 0 < b < 1, the maximal total
number of Euler configurations is 5. We leave open the case 1 < b.

Erratum (30/3/2006). The part of Proposition 3 which is not reproduced in the above
article had a sign mistake in the previous version (13/8/2003), which is corrected here, thanks
to Zheng Dong Li.
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