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1. Lagrange’s reduced three-body problem

If we try to describe the evolution of three particles under gravitational interaction (for example
the Earth, the Sun and Venus), we can introduce the “relative” motion and distinguish it from
the usual or “absolute” motion. The relative motion is given when the three mutual distances
are given as functions of the time. The absolute motion may be thought as less directly
perceptible. To give the “absolute coordinates” (x, y, z) of each particle, we have to choose a
Galilean frame. Fortunately there is a good choice for the origin of this reference frame: the
center of mass of the three particles. But we should also decide what are the “fixed directions”
(O, x), (O, y), (O, z). We have to decide what is a truly non-rotating frame, and this is not
easy. And we are not sure that at the end we are interested in these “absolute coordinates”. Is
their knowledge important if we want to predict some astronomical events, such as the transit
of Venus of 2004/6/8?

The idea to take the mutual distances rij between particles as variables, and to concentrate
on the prediction of the future values of the rij ’s, is quite old. In 1772, Lagrange obtained a
very elegant system of differential equations in these variables, which happened to be the first
complete “reduction” of the three-body problem. Some authors still erroneously attribute to
Jacobi the first complete reduction, who called “elimination of the node” the last step of an
equivalent, but less elegant, process of reduction published in 1842. Even today it is quite
difficult to find in the literature the complete expression of Lagrange’s system, and the easiest
reference is the short exposition by Serret that follows Lagrange’s paper in his “œuvres”,
volume 6. We will write this system explicitly after some explanation.
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To present quickly the work of Lagrange, it is probably useful to explain first what a process
of reduction is. Most modern presentations explain this in the Lagrangian or Hamiltonian
frameworks, which is a huge pedagogical mistake. One should teach what is the reduced
system obtained from a system of ordinary differential equations with symmetry to students
that do not know what a Lagrangian system is (nor what a Lie group is). Once this concept
has been understood, it can be applied to Hamiltonian systems, and a wonderful compatibility
with the symplectic structure is observed. But it can also be applied to systems from non-
holonomic dynamics with a continuous symmetry. And these are not Hamiltonian.

Reduction and separation of variables have belonged to the toolbox of theoretical mechanics
since the times of Newton, Euler and Lagrange. They were used to integrate differential sys-
tems from mechanics. In the modern language of geometry, they are associated respectively to
a fibration and to a product structure of the phase space. Respectively again, these structures
correspond to the diagrams

M
↓
B

M
↙ ↘

A B

where M is the phase space, i.e. the space of states of the system, or as well the space of
possible initial conditions. A state or an initial condition is the data of the positions and the
velocities of the particles.

Our first diagram M→ B (we will not discuss the second) maps the phase space on a “base”
B of lower dimension (this “reduction” of the dimension explains the name of the process).
Two states project on the same point of B if and only if there exists a transformation in the
symmetry group of the mechanical system that sends one to the other. The base B is the
“quotient space”. To any of its point is attached a whole class of states. For example, if we
imagine a configuration of n particles, with n velocity vectors attached, as an “object” that we
can rotate, all the objects deduced from this first object by rotation or translation will project
on the same point of B. It is enough to know the projection on B of some initial condition to
predict the future evolution of the projection on B.

There is another kind of “reduction”, of more trivial nature: the reduction corresponding to a
first integral. Its geometrical counterpart is a foliation of M in the level hypersurfaces of this
first integral. Here again the dimension of the phase space is “reduced”, the new phase space
being one of these invariant hypersurfaces of M.

The modern theory of quotient spaces and the old theory of reduction were explicitly related
for the first time by S. Smale in 1970, in his paper “Topology and mechanics”. This resulted in
a strong renewal of the old tool of classical mechanics*, marked at the beginning by the works
of K.R. Meyer in 1973, and Marsden and Weinstein in 1974. These works were dedicated to

* Significant efforts of description of B (denoted by M7) in the 3-body case were made by
G.D. Birkhoff at a time when the word “quotient space” was not yet in use: “The ‘reduced
manifold M7 of states of motion’ corresponds to the ∞7 set of states of motion given by sets
of coördinates such as u1, . . . , u7, which are distinct except in orientation about the axis of
angular momentum.” (see [Bir], p. 285)
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the “wonderful compatibility” with the symplectic structure mentioned above.

Let us come back to Lagrange’s work on the 3-body problem. Our “object” is the triangle of
the three particles, with three arrows attached to the vertices representing the instantaneous
velocities. How can we describe this object, up to translation and rotation? Curiously it is
both simpler and more satisfying to replace the word “rotation” by the word “isometry”, which
includes reflections. Second objection: if we add the same vector to each velocity, which is
called a “boost”, the future evolution of the three mutual distances is the same. Our expression
“translation and isometry” is not accurate to describe the full Galilean symmetry.

Well, we are meeting some complications, which were resolved more than 200 years ago. The
Jacobian way, the “dirty one”, was to report everything to the center of mass of the system,
which has a uniform rectilinear motion, then remark that two position vectors of the particles
determine the third. Finally, Jacobi chose as well as it can be two vectors to represent the
three.

But we will try to be as elegant as Lagrange was. We will object first: wait a minute, what
have the masses to do with our problem of parameterizing the isometry classes of objects?
Let us forget the masses and continue. We call q1, q2, q3 the positions of the particles,
q23 = q3 − q2, q31, q12 the three separation vectors, from the second particle to the third, etc.
As q23 + q31 + q12 = 0 our three vectors actually give the information that two vectors could
give. The remark on boost symmetry suggests that the situation is similar with the velocities.
So we take three more vectors q̇23, q̇31, q̇12. This is enough. The symmetries of translation and
boost are treated. We will call the data we get the six-vector object. It is the figure formed by
the six vectors. We should not forget that q23+q31+q12 = q̇23+ q̇31+ q̇12 = 0, thus four vectors
determine the whole object, which can be of dimension 1, 2, 3 or 4. Newton’s equations are
such that this dimension does not vary during the motion.

From the six-vector object to the 10 Lagrange’s variables. To “reduce” the isometry symmetry,
we replace the 6 vectors, which are actually four, by their mutual scalar products. Four vectors
give 10 possible scalar products (four of which being the scalar products of the vectors with
themselves). Thus we need 10 scalar products, but we need an elegant choice. The list ‖q23‖2,
‖q31‖2, ‖q12‖2, ‖q̇23‖2, ‖q̇31‖2, ‖q̇12‖2, 〈q23, q̇23〉, 〈q31, q̇31〉, 〈q12, q̇12〉 is quite nice. One variable
is missing. Lagrange chose, and he was absolutely right, as we will see later,

ρ = 〈q23, q̇31〉 − 〈q31, q̇23〉 = 〈q23, q̇1〉+ 〈q31, q̇2〉+ 〈q12, q̇3〉.

The differential system of the 3-body problem reduces to a differential system in these ten
variables. The resulting “reduced system” will describe the relative motion of the particles.
We did not say anything about the dimension of the space, which is naturally three. A
surprising feature of Lagrange’s reduced system is that it describes the motion as well if the
motion is one-dimensional (the three particles remain on a fixed line, which implies that they
collide in the past or/and in the future), if it is planar, spatial, or even if it is four-dimensional!
In the collinear and planar cases we must admit we have too many variables. F.D. Murnaghan
devised a smaller set of adapted variables.

In the 3D case we would need only 9 variables, because the four vectors have 12 coordinates,
and the rotation group has 3 dimensions. It is easy to see what happens. The so-called Gram
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matrix of four vectors is the symmetric four by four matrix with the 16 scalar products, which
are only 10 by symmetry, as entries. The condition that the four vectors generate a 3D space
of dimension at most 3 is: the determinant of the Gram matrix vanishes. It is a complicated
relation between the 10 Lagrange’s variables. Lagrange wrote explicitly its long expansion
(the notation for a determinant was not yet invented). Of course, if we compute the 10 scalar
products from an initial condition of the 3D three-body problem, the relation will be satisfied.
We do not always need to know the long formula.

What concepts do we need to learn in order to be able to deduce the reduced system? Shall
we need to master the theory of Lie algebras, the moment map, the coadjoint actions? No,
we only need to compute the first derivatives of our ten variables with respect to time. So we
first write Newton’s equations and deduce q̈23, etc.

Newton’s equations. Let q1, . . . , qn represent the positions at time t of n particles with
respective masses m1, . . . ,mn. We have a notation for the vectorial separations qik = qk − qi,
and we put Sik = Ski = ‖qik‖−3/2. The so-called Newton’s equations are

q̈i =
∑
k 6=i

mkSikqik. (1)

There is a nice way to write q̈ij . We put

Σij = (mi +mj)Sij +
1
2

∑
k 6=i,j

mk(Sik + Sjk). (2)

Then
q̈ij = −Σijqij −

∑
k 6=i,j

mk(Sik − Sjk)
(
qk −

1
2
(qi + qj)

)
. (3)

Equations (3) form a “closed” system, involving only the vectorial separation qij and their
derivatives. From (3) we deduce for example that

〈qij , q̈ij〉 = −Σij‖qij‖2 −
1
2

∑
k 6=i,j

mk(Sik − Sjk)〈qik + qjk, qij〉. (4)

But qij = qik + qkj so 〈qik + qjk, qij〉 = ‖qik‖2 − ‖qkj‖2, that we can substitute above. Doing
such manipulations in the case of three bodies, we arrive to Lagrange’s system. Let

a = ‖q23‖2, b = ‖q31‖2, c = ‖q12‖2, a′ = 〈q23, q̇23〉, b′ = 〈q31, q̇31〉, c′ = 〈q12, q̇12〉,

a′′ = ‖q̇23‖2, b′′ = ‖q̇31‖2, c′′ = ‖q̇12‖2, ρ = 〈q23, q̇31〉 − 〈q31, q̇23〉.

be the ten variables. We need intermediate expressions that we leave as above with indices:

Σ23 = (m2 +m3)a−3/2 +
1
2
m1(b−3/2 + c−3/2), Σ31 = · · · , Σ12 = · · · ,
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where the last are simply circular permutations of the first. Lagrange’s system is

ȧ = 2a′, ḃ = 2b′, ċ = 2c′, ȧ′ = a′′ − aΣ23 −m1(c−3/2 − b−3/2)(c− b)/2, ḃ′ = · · · ,

ċ′ = · · · , ȧ′′ = −2a′Σ23 −m1(c−3/2 − b−3/2)(c′ − b′ − ρ), ḃ′′ = · · · , ċ′′ = · · · ,

ρ̇ =
1
2

∣∣∣∣∣∣
1 1 1

m1(a− b− c) m2(b− c− a) m3(c− a− b)
a−3/2 b−3/2 c−3/2

∣∣∣∣∣∣ . (5)

The fundamental observation is that this system is “closed”, i.e. the second members are
expressed in the ten variables. One could reasonably guess that there exists a “theory of
reduction” that is able to predict this observation, avoiding the computations above. This is
only half true. On the open set of M corresponding to states of dimension 4, one could predict
that the second member may be expressed uniquely as a function of the scalar products.

But this is much less than what we got. We got simple algebraic expressions that are available
in any dimension. Lagrange indicated that we can actually derive a rational system. It is
enough to take the rij = ‖qij‖ and the ṙij as variables instead of the ‖qij‖2 and 〈qij , q̇ij〉,
keeping the other four variables unchanged.

This contrast between theoretical prediction and computation is a known difficulty that is
commonly met when dealing with invariants. We are working with scalar products, which
are the basic invariants under the action on the isometry group. Some theoretical arguments
may predict that the second members of Lagrange’s system are invariant under the action
of this group, and that they can be expressed in terms of the basic invariants. However, it
seems more difficult to predict that these second members will have simple (algebraic or even
rational) expressions, well-behaved when the dimension of the state changes.

In his presentation of the theory of invariants, Hermann Weyl discussed this point: “In those
cases, and here is the point I wish to emphasize, one will find the purely functional part—
asserting the value of all invariants are determined by the values of basic invariants—almost
trivial; the essential difficulties lie in the algebraic part only.”

In brief, the computations above, due to Lagrange, remain today the most reasonable approach
to discuss the reduction in term of mutual distances. As we wish to study this reduction more
deeply, we will have to understand those computations better. Our tools will not come from
differential geometry, but from linear algebra.

The first challenge is to pass to the n-body problem. There are some difficulties with the
variable ρ, but Betti solved them and obtained the long system generalizing Lagrange’s system
for n ≥ 3 particles. But these long pages of formulas raise questions: is it possible to do
anything at all with this system? Is it possible, for example, to solve with n > 3 the problems
that Lagrange solved in the case n = 3? We will discuss these problems in the next chapter.

Last comments about Lagrange’s reduction. The aim of the reduction is to reduce the order
of the differential system. What is the order of Lagrange’s system? Our definition of the order
is such that an autonomous system of n first order ordinary differential equations

ẋ1 = f1(x1, . . . , xn), ẋ2 = f2(x1, . . . , xn), . . . , ẋn = fn(x1, . . . , xn)
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is of order n. Of course there exist other conventions, but this one seems to be very natural.

Lagrange’s system is thus of order 10, but it admits several first integrals. Fixing the first
integrals, we can eliminate some variables and reduce the order. If the dimension of the
state is three, there is also a relation expressing the three-dimensionality, which can be used to
eliminate one variable. The first integrals are the energy and the Euclidean norm of the angular
momentum. The order of the system is 7. If the dimension is four, there are two independent
O(4)-invariants of the angular momentum instead of one. The dimension is 7 again. It can be
shown that for some particular values of the angular momentum (equal diagonal terms in the
diagonalization), the reduced dimension falls to 5. Of course all these statements assume that
there is no other first integral or symmetry than the known ones. Several results about this
have been established, starting with the famous result of Bruns in 1887. They all leave some
possibilities for (improbable) new invariants.

For information, we give expressions of the energy H and the squared norm of the angular
momentum ‖C‖2 in Lagrange’s set of variables. We make first M = m1 +m2 +m3 and

I =
1
M

(m2m3a+m3m1b+m1m2c), J =
1
M

(m2m3a
′ +m3m1b

′ +m1m2c
′)

K =
1
M

(m2m3a
′′ +m3m1b

′′ +m1m2c
′′), U = m2m3a

−1/2 +m3m1b
−1/2 +m1m2c

−1/2.

ψ = −aa′′ − bb′′ − cc′′ + ab′′ + bc′′ + ca′′ + a′′b+ b′′c+ c′′a,

φ = −a′2 − b′2 − c′2 + 2a′b′ + 2b′c′ + 2c′a′.

Then
H =

1
2
K − U, ‖C‖2 =

m1m2m3

2M
(φ− ψ + ρ2) + IK − J2. (6)

2. Special motions

Lagrange used his system to classify the self-similar motions of three bodies. Here are three
definitions, including the definition of a self-similar motion (called “homographic” by Wintner).

Definitions. A motion of three bodies is called self-similar if the ratios of mutual distances
r31/r23 and r12/r23 remain constant with time. A motion is called rigid if the three mutual dis-
tances r23, r31, r12 are constant. A motion is called a relative equilibrium if the ten Lagrange’s
scalar products are constant.

A relative equilibrium is an equilibrium of the reduced system. In such a motion, the 6-vector
object q23, . . . , q̇12 remains in the same isometry class. We will also say that the relative state
is constant. In a rigid motion, the relative configuration is constant.

Lagrange completely classified self-similar motions. The set of configurations he obtained is
well-known: there are the collinear configurations previously discovered by Euler, and the
equilateral triangle. In 1843, Gascheau discovered that Lagrange’s equilateral configuration
was linearly stable if one of the three bodies has a much bigger mass than the other two. It was
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discovered later that such configuration is realized in the solar system: some asteroids have
such a motion that the triangle they form with the Sun and Jupiter remains nearly equilateral.

These “Lagrange’s solutions” remain the striking discovery in the 95 pages long “Essai sur le
problème des trois corps”. But one should not forget that this work also contains an elegant
and effective reduction of the three-body problem, which is a necessary tool to prove the
following non trivial result (in contrast, Jacobi’s reduction would not help to deduce it):

Proposition (Lagrange). Any self-similar motion of the three-body problem is planar.

The motion is assumed to be at most three-dimensional, and the conclusion is that it is
two-dimensional. To avoid any ambiguity, let us state again what we call “dimension of the
motion”. It is the dimension of the vector space generated by the six vectors q23, . . . , q̇12. As
already asserted, this dimension is 1, 2, 3 or 4. It is what one would call “dimension of the
motion”, provided one correctly chooses the Galilean frame. For example, the dimension of
an elliptic motion of two bodies is two. In a frame where the velocity of the center of mass
is non-zero and not in the plane of the elliptic orbit, one could think that the dimension is
three. This is why one has to fix a correct Galilean frame, where the center of mass is at rest,
to determine the dimension. But if we wish to avoid considerations about the center of mass,
it is enough to look at System (3) instead of Newton’s equations.

To show the effectiveness of Lagrange’s system, let us undertake the classification of rigid
motions. We assume that a, b and c are constant. Then a′ = b′ = c′ = 0. The following
equations assign to a′′, b′′ and c′′ fixed values. Then 0 = ȧ′′ = m1(c−3/2 − b−3/2)ρ = ḃ′′ = · · ·.
If the triangle is not equilateral, these equations imply ρ = 0. If the triangle is equilateral, we
can check from the last equation that ρ̇ = 0. Thus the motion is a relative equilibrium.

We will now prove that a motion of relative equilibrium is of dimension 2 or 4. This point
is rather technical if we use Lagrange’s system only, and Lagrange himself devoted to it one
page of subtle computations (p. 277). With A. Chenciner we devised a different strategy,
considering the rigid dynamics of the state, i.e. the 6-vector object. We know that this object
is constant up to rotation. Suppose that the object is three-dimensional. Then there exists an
instantaneous rotation vector Ω such that the six vector equations

q̇23 = Ω× q23, q̇31 = Ω× q31, . . . , q̈31 = Ω× q̇31, q̈12 = Ω× q̇12,

are satisfied. We don’t know a priori if Ω is constant. But we know that if we rotate the 6-vector
object around Ω, these equations still coincide with Newton’s equations. So the solution with
fixed Ω, which is a uniform rotation of the 6-vector object around Ω, is a solution of Newton’s
equations. But the solution is unique: it is this solution, and consequently Ω is fixed.

But this motion is impossible if the configuration does not lie entirely in the vectorial plane
orthogonal to Ω. This is a quite simple and intuitive argument. Consider that Ω is verti-
cal, and take the “highest” particle. It is attracted by the other particles, situated “below”.
So its gravitational attraction points downward. The centrifugal acceleration points horizon-
tally. It cannot balance the gravitational acceleration. Thus the particle will go down, which
contradicts the hypothesis of a uniform rotation with vertical axis.

Consequently the hypothesis of a three-dimensional relative equilibrium leads to the conclusion
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that the motion is actually two-dimensional. For the corresponding result on self-similar
motions, we suggest the reader could read Lagrange’s paper, or our paper with Chenciner.
There are also interesting works by Pizzetti, Banachiewitz, Müntz, Carathéodory, etc. The
remaining steps, i.e. the classification of 2-dimensional self-similar motion, will motivate our
definition of a central configuration.

But first we will describe some four-dimensional motions. Lagrange was reasonable so he did
not treat these exotic cases! However, we will quickly discover something interesting. As ρ̇ = 0,
the configuration is subject to the constraint∣∣∣∣∣∣

1 1 1
m1(a− b− c) m2(b− c− a) m3(c− a− b)

a−3/2 b−3/2 c−3/2

∣∣∣∣∣∣ = 0. (7)

It can be shown that any triangle with sides
√
a,
√
b,
√
c, satisfying this constraint can un-

dertake a four-dimensional uniform rotation under Newton’s laws. The intuition is not easy,
but crudely there will be two orthogonal axes drawn on the triangle and crossing at the center
of mass, such that the triangle rotates uniformly with angular velocity n1 around one axis,
and angular velocity n2 around the other. If there exist two integers k1 and k2 such that
k1n1 = k2n2, the motion is periodic. If not, it is only quasi-periodic. If the triangle is isosce-
les, with two equal mass particles at the base, one of the axes of rotation is the “vertical” axis,
i.e. the axis of symmetry, while the other is horizontal.

What we want to emphasize is a lemma concerning only Eq. (7). If m1 = m2 = m3, then the
solutions of (7) are all the isosceles triangles. This statement is particularly nice and simple,
as is its proof. If φ is a strictly convex* function, or a strictly concave function, then∣∣∣∣∣∣

1 1 1
a b c

φ(a) φ(b) φ(c)

∣∣∣∣∣∣ = 0 =⇒ a = b or b = c or c = a.

The proof is evident. Indeed the determinant is the area the triangle (a, φ(a)), (b, φ(b)),
(c, φ(c)). It is zero iff the triangle is flat, i.e. the three points are collinear. But this is not
possible on the graph of a strictly convex function, if a, b and c are distinct.

We apply the argument to φ(x) = x−3/2, which is strictly convex on the domain x > 0, and
this proves the lemma. The choice of a, b and c as the variables is crucial in the success of this
deduction.

Less exotic dimensions. Let us classify the self-similar motions of n particles in the plane.
We associate to the particle j of mass mj a complex number zj , its position on the complex
plane. The center of mass is at zero. In a self-similar motion, we have zj = reiθz0

j , which gives
żj = (ṙ + irθ̇)eiθz0

j , and z̈j = (r̈ + i(2ṙθ̇ + θ̈)− rθ̇2)zj .

* A real function is called convex if any segment from one point of its graph to another is “above”
the graph. It is strictly convex if furthermore the interior of the segment does not contain any
point of the graph.
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Let us deduce two fundamental identities from Newton’s equations. As z̈j =
∑

k 6=j mkSkjzjk,
we get first

∑
mj z̈j = 0, then

∑
mjIm(z̄j z̈j) = 0. Substituting z̈j from the above equation,

we obtain (2ṙθ̇ + θ̈)
∑
mj |zj |2 = 0. This implies 2ṙθ̇ + θ̈ = 0. There exists at any time a real

number λ = r̈ − rθ̇2 such that z̈j = −λzj .

This motivates the introduction of the main object of these lectures, the central configurations.
The name was given by Wintner, but the definition goes back to Laplace.

Definition. A central configuration of n particles q1, q2, . . . , qn in a Euclidean space of finite
dimension, with masses m1, m2, . . .mn, with center of mass qG, is a configuration such that
there exists a real number λ with

λqGj =
∑
k 6=j

mkSkjqkj (8)

for any j, 1 ≤ j ≤ n. We denote as usual qjk = qk − qj the vector from the point qj to the
point qk, and Ski = ‖qki‖−3/2. We also make qGj = qj − qG.

Remark. The center of mass qG is defined by the formula MqG =
∑
mjqj , where M =

∑
mj .

Recently with R. Moeckel we slightly extended the definition of a central configuration in order
to adapt it to the n-vortex problem in hydrodynamics. In this problem, what plays the role
of the mass of a particle is the vorticity of the vortex, and it can be negative. The sum of
the masses may be zero. The definition of qG fails and the center of mass does not exist. The
extended definition is not more complicated, but somewhat less intuitive (see [Alb], [Cel]).

Let us relate the different definitions. A relative equilibrium is a state of the n-body problem.
How will we describe a state independently of the choice of a Galilean frame? We will simply
give the qjk and their derivatives q̇jk. There are obvious relations between these vectors. A
state of relative equilibrium is characterized by the fact that all the scalar products 〈qjk, qhl〉,
〈qjk, q̇hl〉, 〈q̇jk, q̇hl〉 are constant with time. The more general states of self-similar motion are
such that the ratios 〈qij , qkl〉/‖q12‖2 are constant with time.

A central configuration is a configuration, i.e. is given by the vectors qjk only. A result of
Pizzetti is: the configuration in any state of self-similar motion in a three-dimensional space
is a central configuration. As we saw, this statement is false in dimension four, already with a
relative equilibrium of three bodies. In dimension three, most of the self-similar motions are
planar, but there are exceptions: three-dimensional central configurations exist if n ≥ 4, and
a state made of such a configuration and of zero velocities generates a particular self-similar
motion, called homothetic. In a homothetic motion the configuration does not rotate; only its
scale changes. The configuration is central in any homothetic motion.

In the three-body case, for any choice of the masses, the central configurations are the three
collinear Euler configurations and the equilateral Lagrange configuration. In the n > 3 body
case, the number of central configuration does depend on the choice of the masses.

Now these lectures bifurcate into two parts. Chapters 3 and 4 may be read independently after
this chapter. Chapter 4 introduces a tool to handle mutual distances, which will allow us to
use standard results of linear algebra to prove results about central configurations. Chapter 3
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will focus on results of symmetry of central configurations, using elementary algebra, Dziobek’s
theory, and some elements of convex analysis.

3. Dziobek’s theory and symmetry of central configurations

Dziobek published in 1900 nice identities satisfied by central configurations. A related recipe
was published in 1932 by MacMillan and Bartky. Here we will simplify both presentations,
picking Dziobek’s variables rather than MacMillan’s, but choosing a nice argument by MacMil-
lan in the proofs, rather than the heavier Cayley determinant and variational characterization
by Dziobek. These choices were inspired by Hampton’s thesis [Ham].

Dziobek’s approach concerns central configurations of n bodies in dimension n − 2. It is the
second highest possible dimension for a configuration of n particles. In dimension n − 1 the
theory of central configurations is trivial, and left to the reader. Dziobek was interested in
planar configurations of 4 bodies, which is also our main interest.

Suppose we have n points q1, . . . , qn in an affine space of dimension n − 2. The affine space
can of course be Euclidean but we will not need any metrical relation at the beginning. The
n− 1 vectors q12, q13, . . . , q1n cannot be independent. There is a linear combination with real
coefficients relating them. To be elegant, we will write it:

n∑
i=1

∆iqi = 0, with
n∑

i=1

∆i = 0, (∆1, . . . ,∆n) 6= (0, . . . , 0). (9)

We can consider that the qi are vectors. Then the second relation shows that we can choose
any origin for the vectors qi in the first. But we can also consider that the qi are points and
refer to a standard convention in affine geometry: a linear combination of points with real
coefficients is defined in two cases: 1) the sum of the coefficients is zero; then the combination
is a vector; 2) the sum of the coefficients is one; then the combination is a point. Here we are
in the first case.

The following statement is clear: if the qi are not contained in an affine subspace of dimen-
sion n − 3, there exists a non-zero (∆1, . . . ,∆n) ∈ IRn satisfying (9), which is unique up to
multiplication by a real factor.

Let us now show a useful manipulation of Equations (8) for central configurations. In the
first member we read λqjG. But MqjG =

∑
mkqjk according to the definition of the center of

mass. The equations become:

0 =
∑
k 6=j

mk(Sjk − λ/M)qjk, with M = m1 + · · ·+mn. (10)

But we deduce from (9) that
∑

∆kqjk = 0, and we said that this relation is the unique linear
relation, up to a factor, between the n − 1 vectors qjk, k 6= j. Thus, for any j there exists a
factor µj such that mk(Sjk−λ/M) = µj∆k. As Skj = Sjk we get µj∆k/mk = µk∆j/mj . This
is true for any j, k thus (∆1/m1, . . . ,∆n/mn) and (µ1, . . . , µn) are proportional. We obtained
Dziobek’s relations:

Sjk = ‖qjk‖−3 =
λ

M
+ µ

∆j∆k

mjmk
, (11)
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for some real number µ. As there is a mutual distance in the left hand side, it is natural to
try to express ∆i as a function of the mutual distances. However, such an expression contains
square roots, which complicates a lot the computations. Much better are the following implicit
relations between the ∆i and the sij = ‖qij‖2. First notice that the quantity

∑
i ∆i‖q − qi‖2

does not depend on the point q. This result is obtained expanding ‖q − qi‖2 and using both
relations (9). Consequently the quantities

ti =
∑

j

∆jsij , with sij = ‖qij‖2 (12)

are equal: t1 = t2 = · · · = tn. These are the implicit relations.

From (12) we deduce

0 = ti − tj = sij(∆j −∆i) +
∑

k

∆k(sik − sjk),

and
0 =

(∆i

mi
− ∆j

mj

)
sij(∆j −∆i) +mk

∑
k

(∆i∆k

mimk
− ∆j∆k

mjmk

)
(sik − sjk).

Substituting with (11) a term of the sum in k becomes (Sik − Sjk)(sik − sjk)/µ. But the
function s 7→ S = s−3/2 decreases. This quantity has the sign of −µ. Thus

µ
(∆i

mi
− ∆j

mj

)
(∆i −∆j) ≤ 0.

Let us choose the index i corresponding to the smallest ∆i, and j corresponding to the greatest
∆j . We have ∆i < 0 < ∆j , because

∑
∆k = 0. We get

µ < 0 and
(∆i

mi
− ∆j

mj

)
(∆i −∆j) ≥ 0 for any i, j, 1 ≤ i < j ≤ n. (13)

It can be easily shown that the case of equality in the second inequality corresponds to a
symmetric configuration with mi = mj . The fact that the ∆i/mi’s are ordered as the ∆i’s
is a strange observation, that is extended to the “non-Dziobek” case, i.e. to arbitrary central
configurations in [Alb].

From (12) we can extract weaker identities. Why they are useful is something we cannot fully
explain. We write

Qijk =

∣∣∣∣∣∣
1 1 1
ti tj tk
∆i ∆j ∆k

∣∣∣∣∣∣ = 0. (14)

Of course Qijk = 0 if ti = tj = tk. But if all the Qijk are zero, we can only deduce that
ti = α∆i + β for some (α, β) ∈ IR2, and for all i. We should also remark that if we add the
same constant to all the slm, 1 ≤ l < m ≤ n, the value of Qijk is unchanged. This property
simplifies some arguments in what follows.
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Convex and concave configurations. Symmetry of central configurations.

The case where one of the ∆i is zero is special. The point qi is distinguished. Eq. (9) becomes
an affine relation between the other points. It means that they are in a (n − 3)-dimensional
affine subspace. On another side, Eq. (11) shows that all these points are equidistant from qi.

In the case of four bodies this is impossible. If three points are on a line, and also on a circle
with center qi, two of them must coincide. This is not allowed. Thus the case ∆i = 0 is a
good “frontier” to define classes of central configurations.

Definition. A configuration of n particles, of dimension n − 2 is called concave if all the ∆i’s
have same sign except one. It is called convex in the remaining cases.

Discussion. Indeed this is not the general definition; it is rather a useful characterization. A
convex configuration is more generally a configuration of n particles in any dimension such
that the boundary of the convex hull contains all the points. The word “concave” is used for
non-convex. Let us check the agreement between both definitions. If the configuration has
dimension n−2, at most one particle is not on the boundary of the convex hull. The remaining
particles form a simplex. The barycentric coordinates of the interior particle are positive. We
have a relation as qn = (α1q1 + · · · + αn−1qn−1)/(α1 + · · · + αn−1), with αi > 0. We make
∆i = αi > 0 and ∆n = −α1−· · ·−αn−1 < 0. This is the concave case in the above definition.

Symmetry. In 1995, I managed to prove that any central configuration of four particles of
equal masses possesses some symmetry. This result was completed later by some polynomial
calculations with a computer, giving the complete classification of these central configurations.
Two results of symmetry were indeed necessary, one in the convex case, one in the concave
case. Long and Sun published interesting extensions of both results, where only some of the
masses are supposed to be equal. The study of the concave case below includes the extension.
I will not present the convex case. The extensions are less easy and up to now incomplete.
The reader should consult the paper by Long and Sun. I have also an unpublished paper in
French, that needs to be improved and corrected before publication. In the 5-body case, the
concave case is not easy. Almeida Santos [San] obtained several interesting results.

One of the results of symmetry. It corresponds to the concave case if we have four bodies, and
to some convex cases in higher dimensions, e.g. 5 bodies in dimension 3.

Proposition. A central configuration of n bodies in dimension n− 2, such that (i) three of the
∆i’s in Eq. (9) are negative, let us say ∆1 < 0, ∆2 < 0 and ∆3 < 0, (ii) m1 = m2 = m3,
(iii) the remaining ∆i’s are non-negative, possesses some symmetry. It satisfies ∆1 = ∆2 or
∆2 = ∆3 or ∆3 = ∆1. If for example ∆1 = ∆2, by Equation (11) the perpendicular bisector
hyperplane of particles q1 and q2 contains all the remaining particles.

Proof. We use Equation (14) Q123 = 0. To expand it, we expand t1, t2 and t3 in the
determinant. We write first the terms in ∆1, ∆2, ∆3.

Q123 =

∣∣∣∣∣∣
1 1 1

∆2s12 + ∆3s13 ∆1s12 + ∆3s23 ∆1s13 + ∆2s23
∆1 ∆2 ∆3

∣∣∣∣∣∣ +
∑

l

∣∣∣∣∣∣
1 1 1
s1l s2l s3l

∆1∆l ∆2∆l ∆3∆l

∣∣∣∣∣∣ .
12



Suppose ∆1 < ∆2 < ∆3 < 0 and all the remaining ∆i are non-negative. Then

0 < ∆2∆3 < ∆1∆3 < ∆1∆2, and ∆1∆l < ∆2∆l < ∆3∆l < 0, (15)

for any ∆l > 0. If ∆l = 0 the corresponding term vanishes. By (11) and µ < 0 the determinant
in ∆l has the sign of

−

∣∣∣∣∣∣
1 1 1
s1l s2l s3l

S1l S2l S3l

∣∣∣∣∣∣ .
This reminds us the determinant used to study the four-dimensional 3-body relative equilibria
with equal masses. The determinant is the oriented area of the triangle (s1l, S1l), (s2l, S2l),
(s3l, S3l). As the function s 7→ S = s−3/2 is convex, and S1l > S2l > S3l, the determinant is
positive and the term is negative.

Now the first determinant in the expression of Q123 above must be studied separately. We will
use a technique, the simplex method, in the simplest case (of a 1-dimensional simplex). The
general case is explained and used in [AlL] and [San].

Let us consider the three points in IR2 with coordinates (s12, S12), (s13, S13), (s23, S23). The
ordinates satisfy S12 < S13 < S23 by (15) and (11) with µ < 0. The three abscissa are
ordered in the other way s23 < s13 < s12 because s 7→ S = s−3/2 is a decreasing function.
Furthermore, the convexity of this function implies an inequality s13 < s013, where s013 is defined
by the collinearity condition ∣∣∣∣∣∣

1 1 1
s12 s013 s23
S12 S13 S23

∣∣∣∣∣∣ = 0. (16)

We claim that ∣∣∣∣∣∣
1 1 1

∆2s12 + ∆3s ∆1s12 + ∆3s23 ∆1s+ ∆2s23
∆1 ∆2 ∆3

∣∣∣∣∣∣
is indeed negative for any s such that s23 ≤ s ≤ s013, so it is negative for s = s13. As it is
an affine function of s, it is sufficient to prove it is negative for s = s23 and for s = s013. At
s = s23, the above determinant has the same sign it has on (s23, s, s12) = (0, 0, 1), because we
can change (s23, s, s12) in (s23+x, s+x, s12+x) without changing the value of the determinant.
It is the sign of ∆2

2 −∆2
1 + ∆3(∆1 −∆2) = (∆1 −∆2)(∆3 −∆1 −∆2) < 0. To estimate the

sign on s = s013, we can replace (s12, s, s23) by (−S12,−S13,−S23) using the same invariance
and (16), and then replace by (∆1∆2,∆1∆3,∆2∆3) using (11). Subtracting the third line
multiplied by ∆2

1 + ∆2
2 + ∆2

3 we get

−

∣∣∣∣∣∣
1 1 1

∆3
1 ∆3

2 ∆3
3

∆1 ∆2 ∆3

∣∣∣∣∣∣ .
The function ∆ 7→ ∆3 being concave for ∆ < 0, this quantity is negative. Finally, all the terms
in the expansion of Q123 are non-positive, and several of them are non-zero. Then Q123 = 0 is
impossible. The condition ∆1 < ∆2 < ∆3 is impossible.
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4. A tensor of mutual distances

From n points q1, . . . , qn in a finite-dimensional Euclidean space we obtain the list s12, s13,
. . . , sn−1,n of the squared mutual distances. A very natural question is: given such a list of
(n − 1)n/2 real numbers, is there a configuration of n points in a Euclidean space such that
it is the list of the squared mutual distances? Obviously, the answer is not always yes. For
example, the sij ’s must be non-negative. There are also the triangular inequalities, etc.

Some conditions must be satisfied. There is a good way and a bad way to write them. Cu-
riously, the bad way is the most widely known: the Cayley determinant of the configuration,
and of all the subconfigurations, must be non-negative. We recall that the Cayley determinant
of a tetrahedron q1, . . . , q4 is ∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 s12 s13 s14
1 s12 0 s23 s24
1 s13 s23 0 s34
1 s14 s24 s34 0

∣∣∣∣∣∣∣∣∣ . (17)

Why do we call this the bad way to express the conditions? Because in most natural questions
it leads to intractable computations. The good way is the following.

Lemma 1 (Borchardt). The real numbers s12, . . . , sn−1,n are the squared mutual distances of
a configuration in a Euclidean space if and only if the quadratic form

−
∑

1≤i<j≤n

sijξiξj

restricted to the hyperplane H ⊂ IRn of equation ξ1 + . . .+ ξn = 0 is non-negative. The rank
of this restricted quadratic form is the dimension of the configuration.

To illustrate Lemma 1, we compute the quadratic form on (ξ1, . . . , ξn) = (1,−1, 0, . . . , 0) ∈ H.
If a configuration exists, this number is non-negative according to Lemma 1. It is s12. For a
triangle, we can also take (ξ1, ξ2, ξ3) = (2,−1,−1), which gives an example of funny condition:
2s12 + 2s13 ≥ s23.

Lemma 1 is similar to a well-known “vectorial” statement, associated to the Gram matrix.

Lemma 2. The m(m+ 1)/2 real numbers t11, t12, . . . , t1m, t22, t23, . . . , tmm are such that there
exist m vectors v1, . . . , vm in a Euclidean vector space with 〈vi, vj〉 = tij , 1 ≤ i ≤ j ≤ m, if
and only if the quadratic form

∑
1≤i,j≤m tijηiηj is non-negative on IRm 3 (η1, . . . , ηm). Note

that j < i is allowed in the sum: we make tij = tji. The rank of this quadratic form is the
dimension of the vectorial subspace spanned by the vi’s.

To deduce Lemma 1 from Lemma 2, make m = n − 1, vi = qi − qn (denoted by qni). We
get 2tij = 2〈qni, qnj〉 = −‖qij‖2 + ‖qni‖2 + ‖qnj‖2 = −sij + sin + sjn if i < j, and tii = sin.
The relations between the ξ’s and the η’s are: ηi = ξi if i < n, ξn = −η1 − · · · − ηm. This
substitution transforms −

∑
i<j sijξiξj into

∑
i,j tijηiηj .

Some attributions. Lemma 1 was stated by Borchardt in 1866 in the case of maximal rank.
He omitted to prove that the condition of positive-definiteness is sufficient. Darboux gave
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some geometrical interpretations of Borchardt’s Lemma. Schoenberg independently published
Lemma 1 with complete proofs in 1935. But instead of Borchardt’s quadratic form, he used the
less elegant and more obvious quadratic form

∑
i,j(sin+sjn−sij)ηiηj . He corrected this defect

in 1938, thus establishing Lemma 1 completely. On another hand, Cayley’s first mathematical
publication, in 1841, contains the determinant that expresses the squared volume of a simplex
as a function of the mutual distances. Actually, Cayley equalled to zero such a determinant in
order to relate the ten mutual distances between five points in the three-dimensional space. The
interpretation as a squared volume and the generalization to any number of points are quite
trivial, so we can attribute everything to Cayley. However, different expansions of Cayley’s
determinant were known to be the squared volume of a tetrahedron much before Cayley. Euler
and Lagrange are often quoted, but Tartaglia wrote such an expansion in his “General trattato
di numeri et misure”, p. 35, in 1560.

Lemma 1 shows that a quadratic form can replace the list of squared mutual distances. This
will allow us to compute with mutual distances as we compute with quadratic forms. But we
missed some intermediate step, that will allow us to prove Lemma 1 without using Lemma 2,
and to understand Lemmas 1 and 2 as particular cases of the following Lemma 3.

Notation. Let E be a Euclidean space. We denote by Q the Euclidean “identification” Q :
E → E∗ from E on its dual vector space E∗. The linear map Q is symmetric: tQ = Q. We
now use the bracket notation for the duality product of E with E∗, and 〈Qu, v〉 = 〈u, tQv〉 is
the Euclidean scalar product of u ∈ E with v ∈ E. We also denote the Euclidean vector space
E by the pair (E,Q).

Lemma 3. Let F be a vector space and T : F → F ∗ be a symmetric (tT = T ) linear map
from F to its dual F ∗. The map T is such that there exist a Euclidean space (E,Q) and a
linear map B : F → E with T = tBQB if and only if the quadratic form on F : v 7→ 〈Tv, v〉 is
non-negative. The rank of T is the rank of B.

Proof. The part “only if” is easy: 〈Tv, v〉 = 〈QBv,Bv〉 ≥ 0 because Q is positive definite (i.e.
Euclidean). We prove the part “if” taking any basis of F . We endow F with the standard
Euclidean form, such that this basis is orthonormal. The matrix t of T is symmetric and
non-negative: it possesses a non-negative square root, i.e. a matrix b such that b2 = t and
tb = b. The matrix b has the rank of t. It defines a linear application from F to F . We
take as E the image of this application, and as Q the restriction to this image of the standard
Euclidean form. We have T = tBQB, as required. To obtain the assertion on the rank of T ,
it is sufficient to remark that KerB = KerT . One inclusion comes from the composition, the
other is as follows. If Tv = 0, then 〈Tv, v〉 = 0, and 〈QBv,Bv〉 = 0. Thus Bv = 0.

Let us quickly analyze what are F , E, B and Q in Lemma 2. Clearly T is the Gram matrix
(〈vi, vj〉)i,j , a symmetric form on IRm = F . The vj are elements of E. The linear map
B : IRm → E associate to (η1, . . . , ηm) the linear combination

∑
ηivi. Finally, Q is the

Euclidean form on E. We have T = tBQB.

In Lemma 1, B : H → E is the natural “affine” analogue of the above B. It associates to
(ξ1, . . . , ξn) ∈ H ⊂ IRn the affine combination

∑
ξiqi ∈ E of the points qi. As in Chapter 3

we meet this nice distinction: the qi are points in an affine space, but the linear combinations
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∑
ξiqi, with

∑
ξi = 0, are vectors. Lemma 1 is now completely natural and as easy as

Lemma 2. The reader will check easily the identity T = tBQB in this case.

Remark. It seems that the fundamental concepts of affine geometry are not taught everywhere
in the world. This difficulty is doubled by a certain confusion on the use of the word “affine”.
One tends to use this word negatively, i.e. to express the lack of a certain structure. This is
probably a bad habit. At the origin, it was used negatively to denote the lack of Euclidean
structure. But later the finite-dimensional vector space became a more familiar object for
the mathematician than the old Euclidean space. So “affine” began to be used negatively
to express that the space does not possess a “base point”, an element called zero. There is
nothing to object. If we start with a Euclidean vector space, and want to arrive to an affine
space, we must “forget” successively the Euclidean structure and that a special element is
called zero. It seems difficult to speak clearly about these things today. We try to use the
word positively, i.e. to express what is the structure, instead of what it is not. But we know
that this raises a lot of questions from most readers. A good way would have been to follow
the wise Schouten, who called “affine”, “centered affine”, “Euclidean”, “centered Euclidean”,
what we call respectively “affine”, “vector”, “Euclidean” and “Euclidean vector” spaces.

The application B : H → E will be our configuration. The “three-vector figure” in Chapter 1
was precisely such an object. The respective images by B of the three elements (0,−1, 1),
(1, 0,−1) and (−1, 1, 0) of H are q23, q31 and q12.

We should write B ∈ Hom(H,E) but we will call D the dual of H and denote H by D∗. We
will also use tensorial notations. We will choose to write B ∈ D⊗E. The next chapter comes
to explain this.

5. Two topics in linear and multilinear algebra

First topic. The disposition space. When we study Euclidean vector spaces, it is not
necessary to explain what is the dual space of a vector space. The space and its dual are
identified, they are the same space. Here our main vector spaces arrive with a natural Euclidean
structure, but for computational reasons it is better to distinguish D and its dual H = D∗.

A general principle is: the dual of a subspace is a quotient space. More precisely, if F is a
finite-dimensional vector space, and H ⊂ F is a subspace, there is a subspace H0 ⊂ F ∗ of the
dual space called the annulator. In the Euclidean intuition it corresponds to the orthogonal
of H. The space H0 is the space of linear forms that vanish on H.

Our principle becomes the statement: the dual of the subspace H of F is the quotient space
F ∗/H0. When we say “H∗ is F ∗/H0” we mean “there is a canonical identification between H∗

and F ∗/H0” and “we will identify these two spaces”. When there is a canonical identification
between two spaces, to insist in distinguishing them is often “purely pedantic”, to quote
Hermann Weyl, but in some cases there is a good reason to make the distinction. For example,
if A and B are two sets, the Cartesian product A×B is canonically isomorphic to B×A, but
if you take the bad habit to identify (x, y) with (y, x), you will get into troubles when A = B...

To see the canonical identification H∗ ≡ F ∗/H0, observe simply that a linear form on F is a
linear form on the subspace H ⊂ F , and that two linear forms on F coincide on H if and only
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if their difference is in H0.

The subspace we met is the hyperplane H ⊂ IRn with equation ξ1 + · · ·+ ξn = 0. The dual of
IRn “is” IRn. The annulator of H is the line [L] generated by the vector L = (1, . . . , 1) ∈ IRn.
Thus H∗ = IRn/[L]. Our preferred notation is D = IRn/[L]. We have H = D∗ and D∗ is the
new name for H.

It is the second time in this lecture that we meet a quotient space. The first time was in
connection with reduction. But look at D; an element of this quotient space is a class of
elements of IRn. Two elements (x1, . . . , xn) and (y1, . . . , yn) are in the same class iff x1− y1 =
· · · = xn−yn. If the numbers are the coordinates of particles on the line, two configurations of
n particles are in the same class if they are deduced one from the other by a translation. The
space D is the space of collinear configurations “reduced” by the translations. With Chenciner
we called an element of D a “disposition”.

Dispositions often appear in the theory of central configurations. They are not always directly
related to true particles disposed on a line. In Chapter 3, we met the n-uple (t1, . . . , tn), and
wrote the condition t1 = · · · = tn. This condition characterizes the null disposition.

Second topic. Tensorial notations. Linear algebra is important. The theory of matrices
is important. Linear algebra becomes the theory of matrices if we choose bases of the vector
spaces. In our problem a good choice of a basis of D∗ = H is induced by the so-called “Jacobi
coordinates”. But any specific choice of a basis leads to unnatural computations. We could
also choose “any basis”, an unspecified basis, and compute with matrices. But it would be
difficult to distinguish D and D∗. We would need to tell this old story of contravariant and
covariant coordinates.

Let us call (M) a mathematician who likes the theory of matrices and finds that everything
else is useless abstraction. A second mathematician (L) learned abstract linear algebra at the
university. Finally, a third mathematician (T ) learned tensor calculus (which is common), and
decided not to be (L) anymore, i.e. to translate any question of linear algebra in term of tensor
calculus (which is less common).

We met the space Hom(D∗, E) of configurations of n = m+1 points in the 3D vector space E
(or in an affine space with direction E) up to translation. We ask our three mathematicians
the question: what is the dual of this space?

(M) probably answers: the space is the space of 3×m matrices. To dualize I exchange lines
and columns as I do with line vectors and column vectors. The dual is the space of m × 3
matrices.

(L) objects: dear (M), when you write tXQX, where X is a column vector and Q a quadratic
form, X and tX are twice the same vector. They cannot live in two different spaces, as D and
D∗. I don’t agree that duality is related to the presentation of a vector as a line or a column.

(L) thinks one minute and answers: it is Hom(D, E∗). He thinks one more minute and says: it
may be Hom(E,D∗) as well, I cannot really decide. It is funny: I can put stars to each space,
and use (D∗)∗ = D or I can simply switch the order of the spaces.

(T ) answers immediately: I don’t use Hom, I am tired with heavy notation. Your question is:
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what is the dual of D ⊗ E? The answer is: D∗ ⊗ E∗.

And the next question comes: if B ∈ Hom(D∗, E), where lives tB?

(M) answers: it is a m× 3 matrix, obviously!

(L) continues: oh, I was trained a lot at the university: B ∈ Hom(E∗,D). I know the rule by
heart: you exchange the order and put stars. It is the map which pulls-back a form.

(T ) answers: what I know is that if B ∈ D⊗E, then tB ∈ E⊗D. My answer is much simpler
than (L)’s, and as simple as (M)’s. But (M) will never answer these questions correctly,
because he has only two possibilities, 3 × m and m × 3, while we have eight distinctions:
D ⊗ E, E∗ ⊗D, D∗ ⊗ E, etc.

Another question: prove that rankB = rank tB.

(M) answers: the rank of a matrix is computed from the determinants of square submatrices,
so this is obvious.

(L) answers: the rank of B is the dimension of the image of B. The image of tB is called the
coimage. I learned this later at the university. I have dimD∗ = m and dimE = ν. I know
that dim kerB+rankB = m (oh, I confess that I sometimes hesitate between ν and m...) and
dim ker tB + rank tB = ν. Now ker tB is called the co-kernel. It is the annulator of the image
of B so its dimension is ν − rankB. Thus rank tB = ν − (ν − rankB).

(T ) answers: what (L) calls image and coimage are for me “image at the left” and “image at
the right”. In the language of tensors one would rather speak about “support” than about
“image”; but indeed “image” is convenient also. For symmetric or antisymmetric tensors
the left support and the right support are the same, it is simply called the support. The
basic proposition is that the dimensions of the left support and the right support are equal.
This is the first statement in my theory and it is very easy to remember. The statement
dim kerB + rankB = m is an easy corollary.

(L) objects: but you will not deal easily with the fundamental operation, the composition of
linear maps.

(T ) answers: the fundamental operations of tensor calculus are tensor product and contraction.
The composition of linear maps in a “contracted product”, a secondary operation, obtained
by tensor product and contraction. I use the same symbol as yours, ◦, for a composition, and
use it exactly as you do. But I call it contracted product. If α ∈ E ⊗ F and β ∈ F ∗ ⊗ G,
then α ◦β ∈ E ⊗G. I allow this “contraction” in α⊗ β ∈ E ⊗ F ⊗ F ∗ ⊗G because F and F ∗

“touch” each other in the ordered list E, F , F ∗, G.

(L) answers: for me α ∈ Hom(F ∗, E) and β ∈ Hom(G∗, F ∗) so I can form α ◦β ∈ Hom(G∗, E).

(T ) answers: this is a possible translation of my relation. You contract an element ξ ∈ G∗ at
the right hand side. You contract first with β: it gives β ◦ ξ ∈ F ∗, that you contract with α.
You have got an element of E. Your “composition” is for me an easy game!

(T ) continues: but there is another possible interpretation of the contracted product α ◦β as
a composition. Contracting η ∈ E∗ at the left hand side is equally good, and gives in your
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language: α̂ ∈ Hom(E∗, F ) and β̂ ∈ Hom(F,G) so β̂ ◦ α̂ ∈ Hom(E∗, G). I put aˆ for you, it
looks like your transposition. It is not my transposition. I don’t transpose here. I use the
possibility I have to read the tensorial relations as composition rules from the left to the right!

(M): Should I recognize the αijβ
j
k of my colleagues using indices and Einstein’s convention?

(T ): Yes! Index notation constitutes even today the unique “official” way to deal with tensor
calculus. Schouten in his “Ricci calculus” improved it and discussed it quite a lot. Here I
consider that with my small tensors (at most two indices) it would be too “expensive” to
write indices. But you can write them if you wish. For compatibility, I add a rule to Einstein’s
convention: the summation is allowed on repeated indices, one up, one down, that are adjacent
in the ordered list of indices. In our formula αijβ

j
k, this list is ijjk so the summation in j

is allowed. You should use the transposition to bring together the indices as needed. In
compensation, you will quickly notice that it is no longer necessary to write the indices.

Last question: How do you write the evaluation of a quadratic form Q on a vector X?

(M) answers tXQX.

(L) answers: well, rather than a notation for the quadratic form, I prefer to give the name Q
to the associated linear map Q ∈ Hom(F, F ∗). So I use 〈Q(X), X〉. I can also do something
similar to (M). I can see X as a linear map from IR to the vector space F that contains X.
It is the map λ 7→ λX. So I can use tX ◦Q ◦X. It a “1× 1 matrix”, a real number.

(T ) answers: X ◦Q ◦X. I have X ∈ F , Q ∈ F ∗ ⊗ F ∗, but Q is a symmetric form and I have
a notation for this: Q ∈ F ∗ ∨ F ∗. I took this notation in Deheuvels, but many authors use
F ∗ � F ∗. There is no official notation in the language of (L).

(T ) continues: I don’t transpose X. The transposition on vectors is undefined: I cannot
exchange the spaces as I did with E and D because there is only one space F . If we have
another opportunity I will draw some pictures for you to explain why your transposition and
mine are different things, even if we agree to write Q = tQ.

6. Generalized Lagrange’s system and equations for central configurations

As you noticed (L) wrote Chapter 4 and he also wrote [AlC]. But who is writing now is (T ). If
your way of thinking looks like (L)’s, you can translate easily. Just interpret ◦ as a composition.
If you rather think matricially as (M), you will recognize your familiar formulas but you need
to understand that we wish to distinguish clearly D and D∗.

We recall that our main space is D = IRn/[L], where L = (1, . . . , 1) ∈ IRn and [L] means the
vectorial line generated by L. We will often write X = (x1, . . . , xn) ∈ D. Indeed (x1, . . . , xn)
is an element of IRn whose class is X ∈ D. Also ξ = (ξ1, . . . , ξn) ∈ D∗ means ξ1 + · · ·+ ξn = 0.
The duality bracket is 〈ξ,X〉 =

∑
i ξixi. Of course the value depends only on the class X.

We introduce some notation. The “position” configuration is x ∈ E ⊗ D. Its time derivative
is ẋ = y ∈ E⊗D. The mutual distances tensor is β = tx ◦x ∈ D∨D. We denote by D∨D the
subspace of symmetric tensors in D⊗D. The subspace of antisymmetric tensors is D∧D. We
make E = E∗, identifying with the Euclidean structure. The formula β = tx ◦x is the same as
T = tB ◦Q ◦B in the previous two chapters, but the convention of identification means Q = Id,
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so Q disappears. This is why the convention is decided: to simplify the formulas.

If we give masses (m1, . . . ,mn) to the n particles, there is a Euclidean structure on D. The
Euclidean form is the “mass form” µ ∈ D∗ ∨D∗. To obtain its value on X = (x1, . . . , xn) ∈ D
we can use one of the formulas:

X ◦µ ◦X =
1
M

∑
1≤i<j≤n

mimj(xi − xj)2 =
n∑

i=1

mi(xi − xG)2,

where
M = m1 + · · ·+mn and xG =

1
M

(m1x1 + · · ·+mnxn).

The form µ is positive definite: if X ◦µ ◦X = 0, then X is the null disposition x1 = · · · = xn.

In purely geometrical problems, there are no masses and thus no preferred identification be-
tween D and D∗. But after the introduction of the masses the convention D = D∗ becomes a
possibility. It simplifies the tensorial relations we will establish as much as E = E∗ does. But
it happens that most of the formulas we meet are linear in the masses, and that we can observe
this important property looking at the tensorial relations only if we don’t make D = D∗.

Force function and factorization of Newton’s equations. Let us deduce a useful fac-
torization of Newton’s equation from simple computations using the force function. It is
well-known, and was first observed by Lagrange [La2], that Newton’s equations

q̈i = −
∑
j 6=i

mjSijqji (18)

can be also written using the force function U(q1, . . . , qn) =
∑

i<j mimj‖qij‖−1,

miq̈i =
∂U

∂qi
. (19)

But x ∈ E ⊗ D is the configuration. We consider now U as a function of x, and write U(x).
The equation becomes

ẍ ◦µ = dU |x. (20)

Here dU |x means the differential of U at the point x ∈ E ⊗D. It is element of the dual space
E∗ ⊗D∗ = E ⊗D∗. Fortunately, both sides of the equation are in the same space.

Observe now that U is function of the mutual distances only. There exists a function Û :
D ∨ D → IR such that U(x) = Û(β), where β = tx ◦x is the tensor of mutual distances.
Differentiating this equation, and computing the differential on a “small” variation x′ of x, we
obtain

〈dU |x, x′〉 = 〈dÛ |β , tx′ ◦x+ tx ◦x′〉 = 2〈dÛ |β , tx ◦x′〉

because dÛ ∈ (D∨D)∗ = D∗∨D∗ is a symmetric tensor. A suitable expression for the duality
bracket 〈φ, ψ〉 of φ ∈ A⊗B and ψ ∈ A∗ ⊗B∗ is 〈φ, ψ〉 = trace(tφ ◦ψ) = trace(ψ ◦ tφ). It is an
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easy exercise to deduce from it the familiar rule 〈a ◦ b, c〉 = 〈b, ta ◦ c〉. Applying this rule we get
〈dU |x, x′〉 = 2〈x ◦ dÛ |β , x′〉. This is true for any x′ and gives the factorization we announced

dU |x = −x ◦α, making α = −2dÛ |β ∈ D∗ ∨ D∗, (21)

to be substituted in Newton’s equations (20).

Factorization of Newton’s equations again. Direct approach. The projection of (18)
on any axis of coordinates is ẍi = −

∑
j 6=imjSij(xi−xj). The second member depends on the

disposition X = (x1, . . . , xn), and depends on it linearly. From the first member we retain only
the disposition Ẍ = (ẍ1, . . . , ẍn). We can write this equation Ẍ = −X ◦Z, where Z ∈ D∗⊗D.
It gives Ẍ ◦µ = −X ◦Z ◦µ. The comparison with (21), projected on the same axis, suggests

α = Z ◦µ. (22)

To check this relation, let us choose any disposition T = (t1, . . . , tn). We have (T ◦Z)i =∑
j 6=imjSij(ti−tj). As

∑
imi(T ◦Z)i = 0, the multiplication by µ is simply the multiplication

of each coordinate (T ◦Z)i by mi. Consequently

T ◦Z ◦µ ◦T =
∑

i

(∑
j 6=i

mimjSij(ti − tj)
)
ti =

∑
i<j

mimjSij(ti − tj)2.

The last identity is obtained joining both terms in mimjSij . To compare Z ◦µ with α, we
have to compute dÛ . Let β′, with “standard coordinates” s′ij , i.e. such that ξ ◦β′ ◦ ξ =
−

∑
i<j s

′
ijξiξj , be a “small” variation of the mutual distances tensor. We have

U =
∑
i<j

mimjs
−1/2
ij , 〈dÛ , β′〉 = −1

2

∑
mimjs

−3/2
ij s′ij .

We conclude that α = −2dÛ = Z ◦µ, using T ◦Z ◦µ ◦T = 〈Z ◦µ, T ⊗ T 〉, and noticing that if
β′ = T ⊗ T , then s′ij = (ti − tj)2.

Remark. As µ and α are both positive definite on D, the “operator” Z has n − 1 positive
eigenvalues.

Generalized Lagrange’s system. We can now compute efficiently with the mutual dis-
tances. The absolute state is (x, y), with y = ẋ. The basic invariants under the action of the
isometries are

β = tx ◦x, γ =
1
2
(ty ◦x+ tx ◦ y), ρ =

1
2
(ty ◦x− tx ◦ y), δ = ty ◦ y.

We decomposed ty ◦x in symmetric part and antisymmetric part. In the three-body case ρ
has only one coordinate, the scalar ρ used in the first chapter. Lagrange’s system is:

β̇ = tẋ ◦x+ tx ◦ ẋ = 2γ,
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γ̇ = δ − 1
2
(tZ ◦ tx ◦x+ tx ◦x ◦Z) = δ − 1

2
(tZ ◦β + β ◦Z),

δ̇ = −tZ ◦ tx ◦ y − ty ◦x ◦Z = −tZ ◦ γ − γ ◦Z + tZ ◦ ρ− ρ ◦Z,

ρ̇ = −1
2
(tZ ◦β − β ◦Z).

We observe again that the system is closed, i.e. that the second member is expressed in β, γ,
ρ, δ and Z only. Note that Z is a function of β and the masses. In the three-body case, we
proved as an exercise that a rigid motion is a relative equilibrium. Let us do this here again.

Suppose that β is constant. Then β̇ = 2γ = 0. By the second equation above 2δ = tZ ◦β +
β ◦Z. So δ is constant and 0 = tZ ◦ ρ − ρ ◦Z by the third relation. Let ρµν and βµν be the
matrices of ρ and µ in a base where Z is diagonal with diagonal entries ζ1, . . . , ζn−1. This
equation reads (ζν−ζµ)ρµν = 0, while the last equation of the system is ρ̇µν = −(ζµ−ζν)βµν/2.
For (µ, ν) such that ζν = ζµ we have ρ̇µν = 0. For the other values we have ρµν = 0. So
ρ̇ = 0 = β̇ = γ̇ = δ̇. The state is of relative equilibrium.

Balanced configurations. For a motion of relative equilibrium we have ρ̇ = 0, thus

tZ ◦β − β ◦Z = 0.

This equation in the unknown β = tx ◦x (the relative configuration) defines what we call the
balanced configurations. One can prove that there exist motions of relative equilibrium with
any such configuration. If the configuration is not central such a motion will be at least four-
dimensional, so it could be concluded that the balanced configurations are useless in usual 3D
mechanics. However, Moeckel showed in 1997 that the clusters of small masses in a central
configuration are asymptotically balanced configurations.

The main known result on balanced configuration has been established in Chapter 2: any
balanced configuration of three particles with equal masses is an isosceles triangle. Some
results in the case of three particles with different masses may be found in [AlC]. We conclude
with the following characterization.

Lemma. For any balanced configuration x ∈ E ⊗ D of “full” dimension dimE, there exists a
positive S ∈ E ∨ E such that S ◦x = x ◦Z.

Proof. Let F ⊂ D be the right image (or coimage) of x. A necessary condition for the
existence of S is: the right image G of x ◦Z is included in F . But F is the image of β by
the “isotropy implies degeneracy” argument (used in the proof of Lemma 3, Chapter 4) and
consequently G is the right image of β ◦Z. Then tZ ◦β = β ◦Z implies G ⊂ F , as required.
Actually as Z is invertible F = G. But we don’t want to use this property of Z here. Now
we restrict everything to F ⊂ D. In particular x ∈ E ⊗ F is invertible, so we simply make
S = x ◦Z ◦x−1 = tx−1 ◦(β ◦Z) ◦x−1.

Central configurations. A configuration x ∈ E ⊗D is central iff there exists a λ ∈ IR such
that λx = x ◦Z. Let us denote Ž = Z − λId. A configuration is central with multiplier λ iff
x ◦ Ž = 0. It means that the right image F ⊂ D of x is in the kernel of Ž.
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Mutual distances. We can also characterize the relative configuration β. As F is also the
image of β, a relative configuration β ∈ D ∨ D is central with multiplier λ iff β ◦ Ž = 0.

In the Dziobek case treated in Chapter 3, the dimension of F is n − 2, so the rank Ẑ is one.
Let ∆ = (∆1, . . . ,∆n) ∈ D∗ and d = (∆1/m1, . . . ,∆n/mn) ∈ D be the quantities met in this
chapter. The reader will easily check the identity Ž = ∆⊗ d.

Dizzy configurations. A dizzy configuration x with multiplier λ is a configuration such that
β = tx ◦x satisfies

tŽ ◦β + β ◦ Ž = 0, with Ž = Z − λId.

For a dizzy configuration x ∈ E ⊗ D with rank dimE there exists an Ω ∈ E ∧ E such
that Ω ◦x = x ◦ Ž. The argument is the same as in the balanced case, but now β ◦ Ẑ is
antisymmetric.

Dizzy implies central. Multiplying Ω ◦x = x ◦ Ž by µ ◦ tx at the right hand side, we observe
that Ω ◦x ◦µ ◦ tx is symmetric. Let us choose an orthonormal base of E where b = x ◦µ ◦ tx,
which is the inertia tensor of the configuration, is diagonal with diagonal entries b1, . . . , bν . If
in this base Ω = (Ωij)1≤i,j≤ν , then Ωij(bj + bi) = 0. Then Ωij = 0 for any i < j, i.e. Ω = 0.
Finally x ◦ Ž = 0 and the configuration is central.

The dizzy configurations and the central configurations are the same thing, so the reader may
ask why we introduced a new funny name. It happens that central configurations are important
and defined in the same way in the problem of n Helmholtz’ vortices in the plane. But what
plays the role of the masses are the vorticities, and they can be negative. And there exist
dizzy configurations in the plane that are not central if the masses are allowed to be negative.
Taking again the argument above, we find a necessary restriction: b1 + b2 = 0. But b1 + b2 is
the trace of the inertia tensor, and is also the moment of inertia I with respect to the center of
mass. So we should have I = 0 for these configurations. Dizzy configurations give self-similar
motions in the n-vortex problem, while central configurations give relative equilibria.

Expanded equations. The mutual distances tensor β has standard coordinates sij . By this
assertion we mean simply that ξ ◦β ◦ ξ = −

∑
i<j sijξiξj for any (ξ1, . . . , ξn) ∈ D∗. To get the

sij explicitly from β, we make first e∗ij = (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) ∈ D∗, where the −1
is at the position i and the 1 at position j; then sij = e∗ij ◦β ◦ e∗ij . It is a good opportunity to
give the answer to an exercise left to the reader in Chapter 4. As β = tx ◦x and x ◦ e∗ij = qij ,
we get sij = 〈qij , qij〉.
To get expanded equations for tŽ ◦β + β ◦ Ž = 0, we could use representations of our tensors
by n×n matrices. But it is faster to compute as above. The n(n− 1)/2 standard coordinates
of tŽ ◦β + β ◦ Ž are the e∗ij ◦(

tŽ ◦β + β ◦ Ž) ◦ e∗ij = 2e∗ij ◦β ◦ Ž ◦ e∗ij . We write

e∗ij ◦β ◦ Ž ◦ e∗ij = (e∗ij ◦
tx) ◦(x ◦ Ž ◦ e∗ij) = −〈qij , q̈ij + λqij〉

It happens that we already computed 〈qij , q̈ij〉 in Chapter 1. We introduced

Σij = (mi +mj)Sij +
1
2

∑
k 6=i,j

mk(Sik + Sjk).
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and found
〈qij , q̈ij〉 = −Σijsij −

1
2

∑
k 6=i,j

mk(Sik − Sjk)(sik − skj).

The expanded equations for dizzy configurations with multiplier λ > 0 are finally

0 = (Σij − λ)sij +
1
2

∑
k 6=i,j

mk(Sik − Sjk)(sik − skj).

These equations, associated to some equations due to Dziobek, were recently used by Hamp-
ton and Moeckel to solve an outstanding conjecture: there exists a finite number of central
configurations of four particles with positive masses m1, m2, m3 and m4.

Some other configurations generalizing the central configurations. The balanced
configurations generalize the central configurations. Let us shortly describe other interesting
possibilities of generalization.

In a lecture at Herman’s seminar in 1986, Yoccoz introduced what can be called the “minimal
configurations”. Given a configuration x ∈ E ⊗ D, we look for a “minimal configuration” in
the class of x′ with same right image (or coimage) F ⊂ D as x. They are the configurations
of the form R ◦x, where R is some invertible linear transformation acting on E. The relative
configurations corresponding to the class are the β’s with image F . They form a connected
open set in some linear subspace of D ∨D.

The function which Yoccoz minimized on such a class is U + λI/M . As above

U =
∑
i<j

mimis
−1/2
ij , I =

1
M

∑
i<j

mimjsij , M =
∑

i

mi.

Using the property of convexity of the function U when expressed as the function of the mutual
distances tensor, it is easy to prove that there is at most one critical point of U + λI/M in a
class, that must be the minimum. Furthermore, a central configuration with multiplier λ is a
minimal configuration with multiplier λ.

More recently Straume introduced some special configurations, defined as the configurations
such that the Newtonian acceleration q̈i on the particle i is proportional to qi − qG, where qG
is the center of mass. In contrast with the central configurations, the proportionality factor
may depend on the index i. The problem of finding the masses for which a given geometrical
configuration is a Straume configuration is surprisingly interesting.
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Dimensionen entspricht, Mathematische Abhandlungen der Akademie der Wissenschaften zu
Berlin (1866) pp. 121–155, Werke pp. 201–232
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