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small singular set. Using this the following result on the differentiability of the
stable norm S was presented

Theorem 1 (F. Auer, V. Bangert). For h ∈ Hn−1(M,R) let V (h) denote the
smallest subspace of Hn−1(M,R) that contains h and is generated by integer clas-
ses. Then S|V (h) is differentiable at h.

In the recent thesis by H. Junginger-Gestrich (Freiburg) it is shown that for
M = Tn this result is optimal, in the sense that for a large open set of metrics on
Tn the stable norm is only differentiable in the directions given in the theorem.

Projective dynamics of a classical particle or a multiparticle system

Alain Albouy

(1) If two Riemannian metrics on a manifold have the same pre-geodesics (i.e.
unparametrized geodesics), then their geodesic flows are integrable. This state-
ment needs some more hypotheses but it is however quite striking. It was discussed
in 1998 by Matveev and Topalov [9], and independently by Tabachnikov (see [11]),
and applied to the geodesic flow on the n-dimensional ellipsoid. The discussion is
based on the paper [6] by Levi-Civita.

(2) If a Newton system, i.e. a system of the form q̈ = f(q), with q ∈ Ω ⊂ IRn,
f : Ω → IRn being a smooth function, possesses two quadratic first integrals then
it is integrable. Again the statement is astonishing, and it requires some technical
hypotheses (some seem generic but are not often satisfied in the examples while
others seem quite unlikely to happen but do happen). It is due to Lundmark’s
thesis in 1999 (see e.g. [7]).

(3) The geodesic flow on the ellipsoid is after a change of time the Neumann
problem on this ellipsoid seen as a sphere (i.e. choosing the Euclidean structure
that makes the ellipsoid a sphere). More precisely it is a energy level of Neumann’s
problem. This is due to Knoerrer [5].

(4) Appell’s central projection sends Neumann’s problem onto a Newton system,
if we define this projection as follows. The particle moves on a hypersphere under
a quadratic potential (Neumann). We choose a hyperplane not passing through
the center of the sphere, and project on it the particle motion using the central
projection from the center of the sphere. Finally we apply Appell’s change of time
[2].

Whatever be the hyperplane, the projected system possesses two quadratic first
integrals satisfying Lundmark’s hypotheses. Thus Statements (3) (4) and (2) give
an elegant way to reach the main example of Statement (1): the geodesic flow on
the ellipsoid.

(4’) If this hyperplane is parallel to a coordinate hyperplane for the coordinates
diagonalizing the quadratic potential, the projected system is naturally Hamilton-
ian. It is number −1 in the bi-infinite Jacobi family of separable potentials, defined
by Rauch-Wojciechowski [12]. This integrable Newton system was also noticed by
Appell [3].
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Levi-Civita was trying to extend Appell’s surprising transformation from the
projectively flat to the curved framework. Levi-Civita paper was used by dozens
of authors while Appell was being forgotten (we don’t know any mention of his
transformation in the period 1952–2002). If Appell’s transformation was quite
unpopular, it is maybe because it is not symplectic, it does not respect the time
parameter, and the function called Energy before transformation has nothing to
do with a possible energy after transformation. However, we developed in [1] very
elementary and concrete consequences of Appell’s remark. As an example, we give
the simplest way to find the Hamiltonian of the projected system (4’).

Neumann’s Hamiltonian on the sphere ‖q‖ = 1, where q ∈ IRn+1, with potential
U(q) = 〈aq, q〉/2 is

H =
1

2

(
‖q‖2‖p‖2 − 〈q, p〉2

)
+

1

2
〈aq, q〉.

In a base where the symmetric matrix a is diagonal with diagonal (a0, . . . , an) one
of the Uhlenbeck-Devaney first integrals is

F0 =

n∑

i=1

(q0pi − qip0)
2

a0 − ai

+ q20 .

Projective dynamics (a possible name for considerations around Appell’s central
projection) teaches us that there is a unique homogeneous form for each of these
first integrals. We find it using [1]:

H̃ =
1

2

(
‖q‖2‖p‖2 − 〈q, p〉2

)
+

1

2

〈aq, q〉
‖q‖2

. F̃0 =

n∑

i=1

(q0pi − qip0)
2

a0 − ai

+
q20

‖q‖2
.

Note that we did not need to change the velocity dependent term of these first
integrals. We were lucky: in general the homogeneization of this term requires
a computation. For example, if we had written above H in the simpler way
H = (‖p‖2 + 〈aq, q〉)/2, the deduction of H̃ would require a computation. We
took the expressions of H and F0 in Moser’s papers (e.g. [8]) but only readers who
are familiar with Moser’s constrained Hamiltonian systems can understand why
he expressed H in this complicated way. Moser happened to write the homoge-
neous form of the velocity dependent term, and his motivations seem unrelated to
projective dynamics.

The operation opposite to homogeneization is restriction. If we restrict H̃ and
F̃0 to the sphere ‖q‖ = 1 we find H and F0. If we restrict them to q0 = 1, together
with the associated tangent condition p0 = 0, we find:

H̄ =
1

2

(
(1 + q21 + · · ·+ q2n)(p2

1 + · · ·+ p2
n)− (q1p1 + · · · )2

)
+
a0 + a1q

2
1 + · · · + anq

2
n

2(1 + q21 + · · · + q2n)

F̄0 =

n∑

i=1

p2
i

a0 − ai

+
1

1 + q21 + · · · + q2n
.
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In these expressions we make pi = q̇i and they become the first integrals of some
Newton system. There is a unique Newton system having F̄0 as a first inte-
gral and this system is the Hamiltonian system associated with the Hamiltonian
F̄0/2 expressed in the momenta Pi = pi/(a0 − ai). This is Appell’s or Rauch-
Wojciechowski’s system. We see that H was the Hamiltonian, and F0 just a
quadratic first integral, and now H̄ is just a quadratic first integral while F̄0/2
is the Hamiltonian. In the terminology of Magri’s school the system is quasi-bi-
Hamiltonian (“quasi” because time is changed, see [10]).

I wish to thank A. Borisov, I. Mamaev (see [4]), G. Falqui, H. Lundmark and
S. Rauch-Wojciechowski for recent discussions contributing to this work.
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Global Fixed Points for Group Actions and Morita’s Theorem

John Franks

This talk concerned the existence of global fixed points for certain smooth group
actions on surfaces.

Theorem 1 (Franks, Handel, Parwani [1]). Let G be an abelian subgroup of
Diff1

0(R
2) with the property that there is a compact G invariant subset of R2. Then

there is a point x ∈ R2 such that g(x) = x for all g in G.


