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ABSTRACT: This is a first lecture in classical mechanics, with a basic study
of some classical mechanical systems, as tops or bodies rolling on a table, and
with emphasis on the integrable cases. We deduce the equations of motion
from the principle of virtual velocities and d’Alembert principle, which is the
standard way to treat together systems with holonomic or non-holonomic
constraints. Energy and angular momentum first integrals are treated in the
same way in the holonomic and the non-holonomic cases.

A Chaplygin ball is a spherical ball without spherically symmetric reparti-
tion of mass, but with center of mass at the geometric center of the ball.
This ball is rolling on a table. This system admits the first integrals of en-
ergy and angular momentum. On this and other examples we explain how
integrability may be predicted by simply counting the first integrals and the
symmetries.

1. Introduction. Statics is the science of equilibrium, Dynamics is the sci-
ence of motion. Mechanics is Statics and Dynamics together. D’Alembert is
said to have reduced Dynamics to Statics. This means that if we know how
to write the algebraic equations for equilibrium, we know how to write the
differential equations for motion. And the laws of equilibrium can be de-
duced from the principle of virtual velocities. We will explain this material
explaining the laws of Statics first, and only after, the laws of Dynamics.
Doing so we follow the presentation by Lagrange in his Mécanique analy-
tique, assuming the reader has some knowledge in linear algebra that was not
available at the time of Lagrange. We treat holonomic and non-holonomic
systems together, deducing the equations of motion and integrating them
using the same method. At the time of Euler or Lagrange the holonomic
and non-holonomic systems were not distinguished. At the end of the 19th
century, Hertz noticed that the Lagrangian and Hamiltonian dynamics fails
to describe non-holonomic systems. So d’Alembert principle confirmed its
position as more fundamental than the least action principle.

Our presentation is very elementary. We do not need the concept of La-
grangian or Hamiltonian. These concepts should be presented in a more
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Figure 1: Forces and parallelogram of forces

advanced lecture and related to d’Alembert principle. They were discovered
and used after the works of Lagrange, while classical mechanics was already
an old and successful science.

2. The laws of equilibrium in 5 examples

EXAMPLE 1 (figure 1). A particle subjected to forces f1, f2, f3 is moving
in a plane.

The law of equilibrium is f1 + f2 + f3 = 0. This law is expressed using
elementary vector calculus. Vector calculus was developed at the end of
19th century. Before this time, it was not possible to put a + sign between
anything else than numbers. The law of equilibrium above was known much
earlier1.

1From antiquity, the addition of vectors has been known through the geometrical con-
struction called parallelogram of velocities: “The idea of a parallelogram of velocities may
be found in various ancient Greek authors, and the concept of a parallelogram of forces
was not uncommon in the sixteenth and seventeenth centuries” (Crowe, History of vector
analysis, p. 2). Another keyword is “composition”. The motions and then the forces were
“composed”. It is striking to see how these old words disappeared when the + sign was
introduced. Much before vectors were added, Cauchy broke a taboo in 1812 by denoting
a substitution with a symbol and by “multiplying” substitutions. In 1843 Hamilton in-
vented the quaternions and one of the reasons he was proud of them is that he could use
them as we now use vectors, putting a + or a × sign between two of these “numbers”.
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Figure 3: Rigid body in space (source: Space news international)

This law is enough to treat free particles subjected to forces, but not to treat
problems with constraints. We present 4 problems with constraints.

EXAMPLE 2 (figure 2). A particle subjected to a force is moving on a fixed
surface.

The law of equilibrium is: the force is orthogonal to the surface.

EXAMPLE 3 (figure 3). A free rigid body moving in an n-dimensional
Euclidean space is subjected to a field of forces f .

The laws of equilibrium are (a)
∫

f |q dnq = 0, (b)
∫
(q − q0) ∧ f |q dnq = 0.

Remark 1. The integral is extended to the domain where the forces are
applied. The form dnq is the standard volume element on the Euclidean
space E. The vector f is a force by unit of volume. The standard example
is the force of gravity in a laboratory. To express it, we introduce the density
of the solid, which is a real function m. The gravity by unit of volume is
f = mg, where g is a constant vector directed downwards. The integral is
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Figure 4: Rigid body with a fixed point

extended to the solid body seen as a subset of E.

Remark 2. In the formulas q and q0 are points, and q−q0 is the vector from q0

to q. The symbol ∧ is the wedge product (or exterior product). It is not the
vector product. The quantity (q−q0)∧f is a bivector. The laws of dynamics
are consistent in dimension 6= 3. To apply the usual theories it is sufficient
to replace the vector product by the wedge product. Higher dimensional
mechanics has been studied since the 19th century. The motivation for this
abstract study is almost similar to the motivation for studying geometry in
dimension 6= 3.

Remark 3. In (a) and (b), q is the variable point in the integration process.
The point q0 in (b) is fixed in the integration process. According to (a), the
choice of q0 is indifferent. In dynamics it can be a particle, a fixed point or
a point moving arbitrarily. Of course there exists a more satisfying way to
write (a)+(b). One considers that the body moves on an affine hyperplane of
an n + 1-dimensional vector space (a hyperplane not passing through zero).
Then the system is simply

∫
q ∧ f |q dnq = 0. Now q is a vector with n + 1

coordinates.

EXAMPLE 4 (figure 4). A rigid body with a fixed particle qF is subjected
to a field of forces.
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Figure 5: Rolling ball (source: Sportibel)

The law of equilibrium is
∫
(q − qF ) ∧ f |q dnq = 0.

EXAMPLE 5 (figure 5). A smooth rigid body subjected to forces is rolling
without sliding on a fixed smooth surface. There is no friction except what is
required to avoid sliding. There is a unique contact particle qK . We assume
that the geometry allows rolling: at the contact point, the surface is “less
convex” than the body.

The law of equilibrium is
∫
(q − qK) ∧ f |q dnq = 0.

3. How to deduce these laws of equilibrium from a single principle?

The principle is called “principle of virtual velocities” and is due, in the
form we use here, to Johann Bernoulli. We assume the system is made of N
particles in the Euclidean space E, where N is possibly big. The particles are
possibly the “atoms” of a rigid body. Not all the motions of the particles are
allowed: there are constraints. A “virtual velocity” is a “first order motion”
which is allowed by the constraints. For the type of constraints we consider
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the space of virtual velocities of a given configuration is a linear subspace of
( ~E)N .

Principle of virtual velocities. A mechanical system with constraints,
made of N particles subjected to force vectors (f1, . . . , fN ) is at equilibrium
if and only if

∑N
i=1〈fi, q

′
i〉 = 0 for any virtual velocity (q′1, . . . , q

′
N ).

It is more convenient to think the rigid bodies as continuous repartitions
of mass, subjected to a field of force acting on small units of volume. In
this case the velocity is a vector field, and we replace the

∑
symbol by an

integration. The principle is
∫
〈f, q′〉dnq = 0.

EXAMPLE 1. There is no constraint. The virtual velocity is any vector q′

from the only particle q. The law of equilibrium is 〈f, q′〉 = 0 for any q′.
This is f = 0, i.e. the force applied to q is zero. It is the law we announced.

EXAMPLE 2. The virtual velocity q′ is tangent to the surface at the only
particle q. The law 〈f, q′〉 = 0 means that f is orthogonal to the surface, as
announced.

Important remark. One may also say: the particle is subjected to a reaction
force R which is orthogonal to the surface. The law of equilibrium is: there
is a vector R orthogonal to the surface (called the reaction) such that R +
f = 0. So we treat the constraint of staying on the surface introducing
a force. The equilibrium law looks the same as in Example 1. When we
explain Mechanics using the principle of virtual velocities, we do not need
to introduce a reaction force and to assume it is orthogonal to the surface.

EXAMPLE 3. The position of the rigid body is an isometric affine map
R : ~F → E. The space ~F is “the space where the particles are fixed” while
in E the particles are moving. A point in E can be called a “place”. So E
is “the space where the places are fixed”, while in ~F the places are moving.
What is moving is indeed the linear map R, which establishes a one-to-one
correspondence between particles and places.

The space ~F is a Euclidean vector space. The space E is a Euclidean space.
We mean: in the second space no origin is specified, while in ~F the point are
called vectors and there is a special origin, the zero vector. These choices
are just conventions. Sometimes we decide that this special origin is the
center of mass of the rigid body. Other times it is a geometric center.

We call ~E the Euclidean vector space intrinsically associated to E (it may be
seen as the space of translations of E, or as the tangent space at any point
of E). Then at any time t an R : ~F → ~E is associated to R. For any X ∈ ~F
we have q = RX = q0 + RX, where q0 = R(0). Then q̇ = q̇0 + ṘX. But R
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is an isometry, so Ṙ = ωR, where ω : ~E → ~E satisfies ω = −tω (we make
~E = ( ~E)∗ using the Euclidean structure). It is the classical “instantaneous
rotation”. Now q̇ = q̇0+ω(q−q0). A field of virtual velocities is given by any
pair (q′0, ω), through the formula q′ = q′0 +ω(q−q0). The principle of virtual
velocities is

∫
〈q′, f〉dnq = 0 for any (q′0, ω). It splits immediately into two

conditions:
∫
〈q′0, f〉dnq = 0 for any q′0 and

∫
〈ω(q − q0), f〉dnq = 0 for any

antisymmetric ω. The first condition gives
∫

f |q dnq = 0. To treat the second
condition, we write 〈ω(q−q0), f〉 = 〈ω, f⊗(q−q0)〉 = 〈ω−tω, f⊗(q−q0)〉/2 =
〈ω, f⊗(q−q0)−(q−q0)⊗f〉/2 = 〈ω, f ∧(q−q0)〉/2. So the second condition
is 〈ω,

∫
(q − q0) ∧ f |q dnq〉 = 0 for any ω. It is

∫
(q − q0) ∧ f |q dnq = 0. So we

get the equations we announced.

EXAMPLE 4. The position of the rigid body is an isometric linear map
R : ~F → ~E. The image space ~E is now a Euclidean vector space, because it
is convenient to decide that qF is the origin of ~E. Thus we set qF = 0 and
write q instead of q−qF . The deduction of the law of equilibrium is obtained
by simplifying the process in Example 3. We have q = RX, q̇ = ωq. We
obtain immediately the condition

∫
q ∧ f |q dnq = 0.

EXAMPLE 5. The virtual velocities are among the virtual velocities of a
rigid body. They are given by a pair (q′0, ω) ∈ ~E×

∧2 ~E through the formula
q′ = q′0 + ω(q − q0). The rolling without sliding condition is simply q̇K = 0,
where qK is the particle at the contact point. So 0 = q′0 + ω(qK − q0).
Subtracting from the previous equation gives q′ = ω(q − qK). A virtual
velocity is thus given by an ω ∈

∧2 ~E. For any such ω we have
∫
〈f, ω(q −

qK)′〉dnq = 0. By the same computation as in Example 3, it gives
∫
(q −

qK) ∧ f |q dnq = 0, as announced.

4. The laws of Dynamics from d’Alembert principle

Le Traité de Dynamique de d’Alembert, qui parut en 1743, mit fin à ces espèces de
défis, en offrant une méthode directe et générale pour résoudre, ou du moins pour
mettre en équations tous les problèmes de Dynamique que l’on peut imaginer. Cette
méthode réduit toutes les lois du mouvement des corps à celles de leur équilibre
et ramène ainsi la Dynamique à la Statique. (Lagrange, Mécanique analytique,
œuvres 11, p. 255)

D’Alembert principle. Consider the motion of a mechanical system. Sup-
pose the system is subjected at time t to a field of forces f . The field of
accelerations q̈ at time t is such that the system would be at equilibrium if
its velocity was zero and if it was subjected to the field of force f −mq̈.

If we consider an isolated particle, what we called “field of force” or “field
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of acceleration” is simply a vector. In the case of a continuum of particles,
it can be a field along a curve, on a surface or in a volume. The mass ratio
m is simply the mass of the isolated particle, or it is the density of mass
per standard unit of length, area or volume in the case of a continuum of
particles.

Now we have the principle of virtual velocities and d’Alembert principle. In
front of a statement called principle the reader should raise questions.

Question 1. To which class of mechanical systems do the principles apply?
They apply to the systems we give as examples, i.e. systems of rigid bodies
with holonomic or non-holonomic constraints, subjected to forces, and where
the only friction is the one required to have contact points that do not slip.
But they appear to apply to other systems. Lagrange discovered that they
give Euler’s equations in fluid dynamics. The reader can see P. Duhem,
Des principes fondamentaux de l’hydrostatique, Annales de la faculté des
sciences de Toulouse (1890) for a classical discussion. These principles were
challenged in many situations, and we were not able to find in the huge
literature a discussion of a case where they fail to give a correct description.
But most authors exclude systems where the constraint works, e.g. where
there is a friction related to the constraint. If we put a coin on a horizontal
table, and then incline slightly the table, the coin does not slide because
of the friction. A force which models the friction should be introduced
after some experimentation, and it appears that this force is related to the
reaction force. We spoke about the reaction force in the “important remark”
above. We present the dynamics in a way which avoids the introduction of
this reaction force. But dealing with friction we would have to introduce a
friction force and soon after discuss its relation with the reaction force. So
maybe d’Alembert principle is not an elegant way to present Dynamics as
soon as we discuss friction.

Question 2. Are they really “principles”, i.e. basic laws of physics, or are
they deduced from more basic laws, such as Newton’s law? Again, this
is a difficult question which would depend on a precise definition and a
model of the type of constraints we accept. We can introduce an interaction
between the particles of a rigid body which allows the rigid body motion.
If it consists in central forces satisfying the action=reaction axiom, it will
give a correct description. But concerning the laws of motion for a rolling
object this seems less easy. Many “proofs” of d’Alembert principle may be
found in the classical books, but sometimes the more basic principles from
which d’Alembert is deduced are not clearly stated.
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Question 3. Does d’Alembert principle determine uniquely the field of accel-
eration q̈? To answer this question and the previous one we should answer
Question 1 first. What we will do is less ambitious. We will deduce from
d’Alembert principle the value of the field q̈ for some systems in our class.

Let us repeat Question 3 more precisely. At any time t, is there a unique
field q̈ satisfying d’Alembert principle and compatible with: the constraints,
the position of the system at time t and the field of velocities at time t?

To answer the question for some class of systems we should be able to
write the equations of equilibrium for this class of system. For us it is
natural to use the principle of virtual velocity to write the equations of
equilibrium. Here both principle are clearly associated. We understand
why, from the beginning of the 20th century, some authors used the new
terminology “principle of virtual works” or “principle of virtual powers”
to associate them in a single principle. However we prefer not to use this
terminology and rather use Lagrange’s words.

A second difficulty raised by Question 3 is that in each particular system we
have to deduce what are the q̈ compatible with the position at time t and
the velocity at time t. Any new system requires a new deduction. In the
next section will make the deduction in some examples.

But anyway let us try to answer Question 3 with some generality. The
system has N particles, where N is possibly big. The particles are possibly
the “atoms” of a rigid body. A “velocity” is an element v = (v1, . . . , vN ) ∈
( ~E)N . To each particle is associated a velocity vector. We suppose we can
give the holonomic or non-holonomic constraints by an equation Lv = 0,
where L : ( ~E)N →W is a linear operator depending on time and W is some
vector space. Then v is a virtual velocity if and only if Lv = 0.

To obtain the constraint on q̈ we remark that Lq̇ = 0 at any time. Differ-
entiating we obtain L̇q̇ + Lq̈ = 0. So if some acceleration q̈ = γ0 is possible,
all the possible accelerations have the form q̈ = γ0 + w, where w ∈ ker L.

Now we write the condition given by d’Alembert principle associated to the
principle of virtual velocities: for any v ∈ ker L,

∑N
i=1〈fi − miq̈i, vi〉 = 0.

Substituting q̈ = γ0 + w, and setting (γ1)i = fi/mi − (γ0)i this condi-
tion is 〈〈γ1 − w, v〉〉 = 0 for all v ∈ ker L, where 〈〈v, w〉〉 is by definition∑N

i=1 mi〈vi, wi〉. Let γ2 be the orthogonal projection of γ1 on ker L. We
obtain the solution w = γ2 and q̈ = γ0 + γ2 solves the problem uniquely.

We will not use this uniqueness argument, but rather write down the equa-
tions of motion in each particular case. We will check that d’Alembert
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principle gives uniquely the value of the acceleration at time t as a function
of the position and the velocity at time t.

5. The laws of Dynamics in 5 examples

EXAMPLE 1. The law of equilibrium is f = 0. The law of dynamics is
f −mq̈ = 0. This is Newton’s law2.

EXAMPLE 2. The law of equilibrium is: f is orthogonal to the surface.
Thus the law of dynamics is: f − mq̈ is orthogonal to the surface. If the
equation of the surface is h(q) = 1, the velocity satisfies 〈dh, q̇〉 = 0 and
the acceleration 〈ḋh, q̇〉 + 〈dh, q̈〉 = 0. This constraint decides which is the
orthogonal component of q̈, while d’Alembert principle gives the tangential
component. Thus q̈ is uniquely determined.

FREE MOTION IN EXAMPLE 3. Applying d’Alembert principle, where
we assume there is no force, the equations of motion are (a)

∫
mq̈ dnq = 0,

(b)
∫

m(q − q0) ∧ q̈ dnq = 0. Now we shall find the possibilities for q̈ and
use (a) and (b) to choose among them. We know that q̇ = q̇0 + ω(q − q0).
Differentiating we get q̈ = q̈0 + ω̇(q− q0)+ω(q̇− q̇0) = q̈0 +(ω̇ +ω2)(q− q0).
The free parameters for the acceleration are q̈0 and ω̇. To determine them
we first express Condition (a). Let M =

∫
m dnq be the total mass of

the system. Condition (a) is 0 = Mq̈0 + (ω̇ + ω2)
∫

m(q − q0) dnq. But∫
m(q − q0) dnq = M(qG − q0) where qG is the center of mass.

A good convention is to take the center of mass as the origin of ~F , “the
space where the particles are fixed”. Then q0 = qG, and the first condition
is simply q̈G = 0. The center of mass has a rectilinear uniform motion. It
is a well-known trick in such cases to choose a Galilean frame in which qG

is fixed. Then the rigid body is moving around its center of mass, which
is fixed. We reduced the free motion in Example 3 to the free motion in
Example 4.

FREE MOTION IN EXAMPLE 4. INERTIA TENSOR. D’Alembert prin-
ciple gives the equation of motion

∫
mq ∧ q̈ dnq = 0. We have q̇ = ωq and

thus q̈ = (ω̇ + ω2)q. We use the equation of motion to choose the correct ω̇.
2Newton’s law appeared in 1687 but at that time people were not accustomed to vector

relations. Newton did not explain what is a vector. Of course he did not write the equation
in vector form. He did not present the relation decomposed by projecting onto three co-
ordinate axes: it was Maclaurin who first explained this decomposition in 1742 in his
Treatise of Fluxions. Before him Newton’s law was not clearly understood and mechanics
could not progress. The first theoretical step in classical mechanics after Newton’s law,
d’Alembert principle, appeared in 1743. Maupertuis and Euler published their principles
of least action in 1744.
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We write α = ω̇ + ω2 and put this operator out of the
∫

symbol as follows.

0 =
∫

mq ∧ αq dnq =
∫

m(q ⊗ αq − αq ⊗ q) dnq =

= (
∫

mq ⊗ q dnq) ◦ tα− α ◦ (
∫

mq ⊗ q dnq).

The ◦ is, as one prefers, the composition of the linear maps, the product of
matrices, or the contracted product of tensors. We will omit this symbol.
We set b =

∫
~E mq ⊗ q dnq. This is the inertia tensor, related to the so-

called moments of inertia. It is a kind of universal integration of quadratic
expressions in q according to the mass density. It is the integral of q ⊗ q
which is, if we write q = (x, y, z), the matrix

q ⊗ q =

 x2 xy xz
xy y2 yz
xz yz z2

 .

There is another inertia tensor, which appears implicitly in what follows
through the formula bω + ωb. It is the integral of the matrix y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2

 .

To define b we use the first matrix and not the second one. In dimension 4
the first matrix is a 4× 4 matrix, while the second is a 6× 6 matrix.

The equation of motion becomes b(−ω̇ + ω2) = (ω̇ + ω2)b. This equation
gives ω̇ as a function of ω and the position.

We can check this equation in the particular case of a body with spherical
symmetry around the fixed point. In this case b = λId for some λ ∈ IR.
The equation of motion is ω̇ = 0. The motion is a uniform rotation of the
spherical object.

In the general case, all the variables in the equation b(−ω̇ +ω2) = (ω̇ +ω2)b
are moving with t. The inertia tensor b moves with the configuration. It
is better to write the equation in the space ~F , where the particle are fixed.
There the tensor of inertia is constant.

We set B =
∫

~F mX⊗X dnX. Then B is the pull-back of b by the isometry R.
We set Ṙ = ωR = RΩ. Then Ω ∈

∧2 ~F is the pull-back by R of ω. Finally
R̈ = (ω̇ + ω2)R = R(Ω̇ + Ω2). Strangely Ω̇ is the pull-back by R of ω̇. We
obtained the so-called Euler-Poisson equations B(−Ω̇ + Ω2) = (Ω̇ + Ω2)B.
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The angular momentum is a = −R(BΩ + ΩB)tR. Its first derivative is
ȧ = −R(Ω(BΩ + ΩB) + BΩ̇ + Ω̇B − (BΩ + ΩB)Ω)tR. So the conservation
of angular momentum is exactly the equation of motion! Also the pull-back
of a is A = −BΩ − ΩB. We get Ȧ = −[B,Ω2] = [A,Ω], a famous form of
the Euler-Poisson equations.

EXAMPLE 5. If we want the possible accelerations we take the time deriva-
tive of the relation q̇ = ω(q− qK). Here we must be careful. At time t there
is a contact particle qK on the rolling object and a contact particle on the
table. They have the same velocity because they are in contact. The table
is fixed: this is why we wrote previously q̇K = 0. But these particles are not
in contact at other times. We will call K the contact point which moves on
the table. The relation above is indeed q̇ = ω(q−K). Differentiating we get
q̈ = ω̇(q −K) + ω(q̇ − K̇) = (ω̇ + ω2)(q −K)− ωK̇.

Assuming there is a constant gravitational attraction vector g, the equation
of dynamics is

∫
m(q −K) ∧ (g − (ω̇ + ω2)(q −K) + ωK̇) dnq = 0. The first

and third terms are linear in q. They give M(qG−K)∧ (g +ωK̇), where M
is the total mass, and qG the center of mass. The second term is computed
as above, introducing the inertia tensor bK with respect to the contact point
K. Finally, the equation of motion is:

M(qG −K) ∧ (g + ωK̇) + bK(ω̇ − ω2) + (ω̇ + ω2)bK = 0. (?)

It seems clear that K̇ is known as soon as ω is known, but the relation
depends on the geometry of the surface of the rolling object and the surface
of the table. We restrict us to the simplest possible geometry, a ball rolling
on a plane.

Rolling ball on the plane. The rigid ball has a perfectly spherical aspect
but the repartition of mass inside is arbitrary. We call qC the particle at
the center of the sphere. It is clear that q̇C = K̇. We also know that
q̇C = ω(qC −K). The equation is

M(qG −K) ∧ (g + ω2(qC −K)) + bK(ω̇ − ω2) + (ω̇ + ω2)bK = 0. (∗)

Usual ball. In order to check this equation we try the most common case
of a ball with spherical symmetry. We have qC = qG. The inertia tensor
bC with respect to qC is λId. We have bK =

∫
m(q − K) ⊗ (q − K) dnq =∫

m(q − qC) ⊗ (q − qC) dnq + M(qC − K) ⊗ (qC − K). The first term is
bC = λId. Setting k = qC −K the equation is Mk ∧ g + Mk ∧ ω2k + bK ω̇ +
ω̇bK −Mk⊗ω2k +Mω2k⊗ k = 0, which is Mk∧ g + bK ω̇ + ω̇bK = 0. If the
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plane is horizontal, k∧g = 0 and the equation possesses the unique solution
ω̇ = 0. The ball is rolling in a uniform way, with a constant ω. This is the
solution of the problem in a space E of any dimension.

The equation (∗) for a general rolling ball on a horizontal plane deserves
further studies. Note that we can pull-back it to ~F as we did for Example 4.
The pull-back BK of the inertia tensor bK with respect to the contact point
K is still not constant, because K, or more correctly R−1(K), is moving
in ~F . We should use BG or BC , which are fixed. However, it is better to
consider the angular momentum integral before considering the pull-back.

6. The first integrals of angular momentum and linear momentum

First integrals are also known as constants of motion. To study any me-
chanical system it is extremely useful to know its first integrals.

We begin with the linear momentum and the angular momentum. These are
the names for the main first integrals which are linear forms in the velocity
(for any given configuration). The linear momentum is also called impulsion
or quantity of motion. The angular momentum is also called constant of
areas. We will see in each example the precise formula.

EXAMPLE 1. A particle is subjected to a force f directed toward a fixed
point C (one also says a fixed “center”. The force is said “central”).

Newton equation of motion is mq̈ = f . The bivector a = (q − C) ∧ q̇ is
constant, because ȧ = (q − C) ∧ q̈ + q̇ ∧ q̇ = (q − C) ∧ f/m = 0.

Instead of the central force we may consider a force f which is always pro-
portional to given vector e1. Then e1 ∧ q̇ is a first integral which can be
called linear momentum. The force with constant direction may be seen
as a central force with center at infinity. Together with Remark 2.3, the
unification of central force and force with constant direction, of angular mo-
mentum and linear momentum, calls attention to the projective aspects in
dynamics.

EXAMPLE 2. A particle is moving on a surface which admits the vertical
axis (C, e3) as an axis of symmetry, and is subjected to a vertical force
vector.

The angular momentum trivector a = (q − C) ∧ q̇ ∧ e3 is constant (we can
replace C in this formula by any point on the axis of symmetry.) The first
integral a is usually called Clairaut first integral, but it was given before
Clairaut in Proposition 55 of Newton’s Principia.
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Proof. The equation of motion is mq̈ = λν + f , where ν is the normal
vector to the surface, and λ is real. By the symmetry around the e3 axis,
ν ∧ (q − C) ∧ e3 = 0. Then ȧ = 0.

Exercise. We used the ambiguous terminology “vertical force”. It could
mean parallel to e3 or tangent to the surface along a meridian. Is there any
trouble with this ambiguity?

Remark. Here the surface is symmetric but the force is not. We will discuss
the relation between the symmetry and a later. The central force explana-
tion of Example 1 may be extended into a “central axis” explanation and
then it applies to this case. Indeed if the normal ν remains in the (q−C, e3)
plane the surface has the symmetry of revolution.

EXAMPLE 3 (again with zero force). The first equation of motion is q̈G = 0.
The first integral of linear momentum is q̇G. The second equation of motion
and the first integral of angular momentum reduce to the next example.

EXAMPLE 4 (again the free motion, i.e. zero force). We already gave
without justification a formula for the angular momentum: a = −R(BΩ +
ΩB)tR. A more predictable formula is a =

∫
mq ∧ q̇ dnq. We use q̇ = ωq

and the same computation as in §5.4. This gives a = −bω − ωb. To check
again that this quantity is conserved, we can also compute in the physical
~E space. We have ḃ =

∫
m(q̇ ⊗ q + q ⊗ q̇) dnq = ωb − bω. So ȧ = −ωbω −

bω2− bω̇− ω̇b−ω2b+ωbω. The equation of motion b(−ω̇ +ω2) = (ω̇ +ω2)b
is exactly ȧ = 0.

EXAMPLE 5. We set a =
∫

m(q −K) ∧ q̇ dnq. We have ȧ =
∫

m(q −K) ∧
q̈ dnq−

∫
mK̇ ∧ q̇ dnq. The first term reminds clearly the equation of motion

as obtained directly from d’Alembert principle. The second is −MK̇ ∧ q̇G.
If the force is f = mg, the equation of motion is∫

m(q −K) ∧ g dnq =
∫

m(q −K) ∧ q̈ dnq = ȧ +
∫

mK̇ ∧ q̇ dnq.

With a constant g it simplifies in M(qG −K) ∧ g = ȧ + MK̇ ∧ q̇G. This is
equivalent to (?) but of somewhat simpler aspect.

Exercise. Deducing ḃK = ωbK − bKω −MK̇ ⊗ (qG −K)−M(qG −K)⊗ K̇
by using the symmetric part of

∫
m(q̇ − K̇) ⊗ (q − K) dnq, check that ȧ =

bKω2 − ω2bK −MK̇ ∧ q̇G −M(qG −K) ∧ ωK̇ − bK ω̇ − ω̇bK and use (?) to
obtain again the above formula.

EXAMPLE 5, CHAPLYGIN CASE. If the table is a horizontal plane, if
the rolling object is a ball, if the center of mass is the center of the sphere,
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we have K̇ = q̇G and the equation of motion reduces to ȧ = 0. Chaplygin
integrated these equations. The ball may have a strange non-uniform motion
but still the system is integrable, i.e. the motion is given by nice formulas.
We will see how the integrability may be predicted.

7. Why are the angular and linear momentum constant?

Given a mechanical system, how can we predict that first integrals exist?
There are two main answers, which both extend examples given by Newton
in his Principia. The angular and linear momentum are constant when the
system is made of particles which mutually attract each other by central
forces satisfying the action=reaction law. The second answer is: the linear
momentum is related to a symmetry of translation, while the angular mo-
mentum is related to a symmetry of rotation. Concerning the symmetries,
we need to discuss the energy integral first. So we postpone the discussion.

We discuss Example 3, where there is the constraint of rigidity but neither
the constraint of a fixed particle nor a particle in contact. We don’t need a
sophisticated model of constraint. We think the rigid body as a big number
N of atoms. Each atom is subjected to forces but the distance between
two atoms remains the same. We need to introduce a force in order to
maintain the rigidity. This force is a “reaction”. We already discussed
reaction forces in an important remark. We claim that there exist reaction
forces that maintain the rigidity and which are central forces satisfying the
action=reaction axiom. Here the terminology is confusing, the word reaction
being employed twice.

The law of action and reaction was stated by Newton. The tradition to
write laws in words rather than in formulas is not satisfying. In words,
the law is: if a particle acts on a second particle by a force, the second
particle acts on the first by the opposite force. But on a particle is applied
a unique force vector. We do not know which is the “part” of this force
vector which is “due” to a given particle rather than another. We can only
give a meaning to this law in situations where we have more information.
In formulas, when N particles with masses m1, . . . ,mN interact, a system
of force vectors f1, . . . , fN of the form

fi =
∑
j 6=i

σij(qj − qi)

where the σij ’s are real numbers, satisfies the action=reaction law if and
only if σij = σji. If the system of particle is subjected to such a system of
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force vectors, i.e. if the law of motion is

miq̈i = fi,

it is obvious that, for any reference point q0,

G =
∑

miqi∑
mi

and a =
∑

mi(qi − q0) ∧ q̇i

are such that G̈ = 0 and ȧ = 0. These are the conservation laws we are
discussing in this paragraph.

We want to prove that the rigidity of the system of particles may be the effect
of a system of “reaction forces” Ri =

∑
j 6=i σij(qj−qi), with σij = σji, which

compensate the arbitrary external forces. We just want a mathematical
result which is not supposed to be physically realistic. At each time t the
σij ’s will be functions of the external forces and the velocities.

We claim that the rigidity is still possible if we furthermore set σij = 0 for
any (i, j), 4 ≤ i < j ≤ N . Here we assume dim E = 3 to facilitate intuition.
The first three particles q1, q2 and q3 play a special role. They form a kind
of system of reference. We assume that they are not on the same line and
that none of the remaining particles is in the plane they define.

We call S the complementary set of (i, j)’s, 1 ≤ i < j ≤ N , those which
satisfy 1 ≤ i ≤ 3. We claim the linear map (σij)(i,j)∈S 7→ (αij)(i,j)∈S , where
αij = 〈ri − rj , qi − qj〉 and miri = Ri =

∑
k 6=i σik(qk − qi), is invertible.

Here is a “mechanical” proof of this statement. We interpret the ri as the
velocities of the particles instead of accelerations. Suppose that αij = 0
for all (i, j) ∈ S. This means that the distances ‖qi − qj‖, (i, j) ∈ S, are
not modified by the velocities ri. With our hypothesis on the first three
particles, this means that the motion is rigid at the first order. But the
identities

∑
miri = 0 and

∑
mi(qi − q0) ∧ ri = 0 show that there is neither

translation nor rotation. All the points are fixed, i.e. ri = 0 for all i. But
Rj , j ≥ 4, is sum of 3 independent vectors, one from each particle q1, q2

and q3. As rj = 0, they are all zero. Thus σ1j = σ2j = σ3j = 0. Then we
easily see that σ23 = σ13 = σ12 = 0. We supposed that the αij ’s are zero
and proved that the σij ’s are zero, so we proved the claimed invertibility.

Suppose the particle qi is subjected to the external force fi and the reaction
force Ri = miri. Is it always possible to choose the σkl’s, (k, l) ∈ S, such
that the ‖qi − qj‖ are constant? It is sufficient to consider the ‖qi − qj‖,
(i, j) ∈ S, since if these mutual distances are constant then the others are
also constant.
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First of all, we take the velocities such that 〈qi − qj , q̇i − q̇j〉 = 0. Then, the
accelerations should be such that 〈qi − qj , q̈i − q̈j〉 + ‖q̇i − q̇j‖2 = 0. This
equation is

〈qi − qj , ri − rj〉 = −‖q̇i − q̇j‖2 − 〈qi − qj , fi/mi − fj/mj〉.

We call the right hand side αij and use the invertibility of the linear map
above. We find that there exist σkl’s solving this equation at any time t.
These σkl’s maintain the rigidity of the system of particles.

We see that if there is no external forces, the angular momentum of the rigid
system of particles is constant. If several rigid bodies are subjected to clas-
sical gravitational forces (which are described as a system of central forces
between atoms), the total angular momentum is constant. So remembering
this simple fact, that the rigidity of a system of particles is obtained by a
system of central forces, we can predict the conservation of the linear and
the angular momentum in most natural situations.

8. The first integral of energy

Suppose the system is made of N particles, where N is possibly big. The
particles are possibly the “atoms” of a rigid body. By the two principles
the equation of motion is: for any virtual velocity (q′1, . . . , q

′
N ),

∑N
i=1〈fi −

miq̈i, q
′
i〉 = 0. In particular, the true velocity is a virtual velocity. So

N∑
i=1

〈fi −miq̈i, q̇i〉 = 0. (o)

Force function. We introduce the concept of force function. It is a function
of the configuration U : EN → IR such that dU = (f1, . . . , fN ). Note that
dU is naturally an element of ( ~E∗)N but when E is Euclidean we make the
conventional identification E = E∗.

We introduce the kinetic energy T =
∑N

i=1 mi〈q̇i, q̇i〉/2. Then Equation (o)
is U̇ − Ṫ = 0, and we have the first integral of energy H = T − U . So the
new thing we have to assume is the existence of a force function. When
the force is the gravity in the laboratory, the hypothesis is fulfilled. We
set U = g

∑N
i=1 mizi where zi is the height of particle i. Of course for the

treatment of a continuous repartition of mass we change the
∑

into a
∫

in
all this discussion.

The concept of a force function first appeared in hydrostatics. It was noticed
that the local condition of equilibrium of a liquid is that it is subjected to
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a force obtained from a force function (the reader should try to deduce
this law). It was then remarked, at the end on the 18th century, that the
gravitational forces between a system of bodies problem are obtained from
a force function, and that this remark is useful when studying the stability
of the solar system.

EXAMPLE 1. The equation is mq̈ = f . If f = dU we make T = m‖q̇‖2/2
and H = T − U is constant.

EXAMPLE 2. The law is: mq̈ − dU is orthogonal to the surface (it is
remarkable that we don’t need to say if this dU is the gradient of U in E
or of U restricted to the surface.) We write for any velocity tangent to the
surface m〈q̈, q̇〉+ 〈dU, q̇〉 = 0 and deduce that H = T − U is constant.

EXAMPLE 3. As we decided to set f = 0 the energy is simply the kinetic
energy. We have 2T =

∫
m〈q̇, q̇〉dnq where q̇ = q̇G + ω(q − qG). With the

usual computations we get 2T = M〈q̇G, q̇G〉+ trace(ωbtω).

EXAMPLE 4. It is like Example 3 but qG = 0 is the fixed point. Then
2T = −trace(ωbω). In order to check our Euler-Poisson equation Ȧ = [A,Ω]
we write T using the pull-back to the space where the particles are fixed:
2T = −trace(ΩBΩ) or using A = −BΩ − ΩB, 4T = trace(ΩA). Then
4Ṫ = trace(Ω̇A) + trace(ΩȦ) where we check that the two terms are equal,
and, according to Euler-Poisson equation, equal to trace(ΩAΩ− Ω2A) = 0.

EXAMPLE 5. We have 2T =
∫

m〈q̇, q̇〉dnq = −trace(ωbKω), or, using the
usual formula a = −bKω − ωbK , 4T = trace(ωa). We have U = M〈g, qG〉
if the gravitation vector g is constant. To check our formulas, we compute
4Ṫ = trace(ω̇a) + trace(ωȧ). Both terms are different, only the second
involves the derivative of bK . If we don’t want to compute this derivative,
we can use both versions of Equation (?). By the first,

trace(ω̇a) = −trace(ω̇bKω + ω̇ωbK) =

= −trace
(
ω(bKω2 − ω2bK −M(qG −K) ∧ (g + ωK̇))

)
.

The first two terms give opposite traces. By the second

trace(ωȧ) = trace
(
ω(M(qG −K) ∧ g −MK̇ ∧ q̇G)

)
.

The sum is

4Ṫ = Mtrace
(
ω(2(qG −K) ∧ g + (qG −K) ∧ ωK̇ − K̇ ∧ q̇G)

)
.
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As ω is antisymmetric we can replace the ∧’s by ⊗’s and double the expres-
sion.

2Ṫ = Mtrace(2q̇G ⊗ g + q̇G ⊗ ωK̇ − ωK̇ ⊗ q̇G) = 2M〈q̇G, g〉.

So Ṫ = U̇ and the energy H = T − U is constant, as expected.

9. Symmetry and first integrals. This is chronologically the second way
to “explain” the first integrals of linear and angular momentum. They are
associated to the translational or the rotational symmetry of the system.
This explanation is widely known as Emmy Noether’s theorem. It is a
subject, as we said, which began with Newton (see §6.2) and that Lagrange
developed theoretically (œuvres v.4 p. 401) and put into practice (see the
examples in his Mécanique Analytique).

At the level of differential geometry, a vector field on the phase space which
commutes with the vector field defining the dynamics defines a symmetry.
There is another object, which is also preserved by the latter vector field,
called the symplectic form. Contracting the symmetry vector field with
the symplectic form may give the differential of a first integral. Thus the
symplectic form may associate a symmetry with a first integral.

But the symplectic form does not always exist. First, the energy should
exist. There should be a force function. Then, the constraints should be
holonomic. All this is satisfied, for example, in the case of a system of rigid
bodies in gravitational interaction. In §7, we could already “explain” the
first integrals in this case and now we have a second explanation, which
is completely different! It is easy to show artificial situations where one
explanation works and the other don’t work. But in true mechanical systems
where the first integrals exist, both explanation work, or, as we will see, they
both fail to explain anything.

Noether’s theorem should be presented in the more advanced parts of me-
chanics which would be the natural continuation of these lectures. The
reader may consult Arnold’s book. The main goal of these lectures is to
recall that one should learn the concepts from the simplest to the most ad-
vanced, and not skip intermediate steps. We can distinguish three levels
which correspond to the historical developments.

1) Newton’s laws
2) Virtual velocities and d’Alembert principles

3) Lagrange and Hamilton equations

Our presentation does not follow the order. We did not explain the first
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level at first. We considered the second level and sometimes compared it
with the first level, mentioning the reaction forces in several remarks. Our
first explanation for the linear and angular momentum clearly pertains to
the first level, while Noether’s theorem is at the third level.

Both explanation fail when we consider the Chaplygin ball. The angular
momentum is there but there is no corresponding symmetry. Anyway we
don’t know a priori a symplectic form that could associate symmetries and
first integrals, as the system is non-holonomic.

We did not develop our explanation about central forces controlling the
rigidity. At the moment we cannot treat the contact point. Anyway, what
is constant in Chaplygin ball is not the angular momentum with respect to
a fixed point, but with respect to the moving contact point.

One can always develop explanations but if they become too specific they
do not present any predictive value. The physical reality is a permanent
source of surprises for the scientist who believes in a universal explanation of
everything... The computation in §6.5 proving that the angular momentum
is constant in the case of the Chaplygin ball is quite simple and may be
adapted to many cases. It belongs to the second level, which is also the one
which better describes the rolling phenomenon.

9. Predicting integrability. Consider Example 4, the free motion of
Euler’s top. The configuration space has dimension 3: it is the space of
isometries from ~F → ~E respecting orientation. If by a convention we call
an element of this space “identity”, the space becomes a group SO(3). The
phase space is the space whose points are “configuration+velocity”. Its di-
mension is 6. On this space are defined the energy first integral and the 3
components of the angular momentum vector. They are independent func-
tions. Fixing them we obtain submanifolds or subvarieties of the phase space
of dimension 6 − 4 = 2. Now consider a rotation around the angular mo-
mentum “vector”. It sends points of the phase space to points of the phase
space keeping the same value for the energy and the angular momentum
vector. So the rotation group SO(2) acts on the above subvarieties, and we
can define a quotient space. This quotient space is one dimensional. Our
reduction equation is:

6− 1− 3− 1 = 1 −→ 3D Euler’s top is integrable.

We say that the system is reduced to dimension 1. After quotient we have a
one-dimensional autonomous ordinary differential equation. Such equations
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are integrable. The reader may consult my Lectures on the two-body prob-
lem for an example of the classical process of integration when the reduction
succeeds.

Consider now Euler’s top in dimension 4. The reduction equation is:

12− 1− 6− 2 = 3 −→ not enough reduced.

The last 2 corresponds to the SO(2)×SO(2) group which preserves a generic
angular momentum bivector in dimension 4. It happens that there is another
first integral, that was discovered by Schottky in 1891, by using a short
computation due to Frahm. We predicted the integrability of Euler’s top
in dimension 3 without considering the symplectic form. Here we can use
Schottky’s first integral to decrease our dimension by one, but we also need
to associate to it a symmetry vector field by using the symplectic form.
Then we decrease by two and our reduction equation becomes

12− 1− 6− 2− 1− 1 = 1 −→ 4D Euler’s top is integrable.

Still this is not quite correct because we don’t know if the Hamiltonian
flow associated to Schottky’s integral generates an SO(2) symmetry or if its
orbits are only quasi-periodic, which is more likely to happen. We should
rather deduce that there is an integrable 2-dimensional torus action.

Now we should consider the n-dimensional Euler top. Even if our reduction
equation becomes quite bad, the system is still integrable, as discovered by
Manakov in 1976. There are many first integrals. Here, for the first time,
one should consult 20th century literature to try to understand what is
happening. The Lax pair point of view is usually considered as illuminating.

Chaplygin ball. The configuration space is five dimensional: we choose a
contact point on the table and an orientation of the ball. There is a three
dimensional choice for the velocity, as the contact point does not slide. So
the phase space has dimension 8. We can fix energy and angular momentum.
Then, we can pass to the quotient by the translations. We cannot rotate the
system without changing the angular momentum (except if this “vector” is
vertical). So our reduction equation is:

8− 1− 3− 2 = 2 −→ quite good.

We arrive at an autonomous ordinary differential equation on a two dimen-
sional manifold. A classical non-integrable example is Van der Pol equation.
The qualitative behavior cannot be very complicated, because the orbits
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cannot “cross” each other on the two-dimensional manifold. This explains
our “quite good”. But it is even better than that, because Chaplygin dis-
covered a volume form (or measure) which is invariant by the dynamics.
Then, according to remarks due to Jacobi, and called by him theory of the
last multiplier, the invariant measure resists to the process of reduction, and
gives an invariant measure for the two-dimensional dynamics. The measure
can be counted in the reduction equation.

8− 1− 3− 2− 1 = 1 −→ 3D Chaplygin top is integrable.

About 4D Chaplygin top, the question is not solved. The reduction equation
is

15− 1− 6− 3− 1 = 3 −→ not enough reduced.

The reader should consult Y.N. Fedorov, V.V. Kozlov, Various aspects of
n-dimensional rigid body dynamics, AMS Translations 168 (1995) pp. 141–
171, A.V. Borisov, I.S. Mamaev, Rolling of a rigid body on plane and sphere.
Hierarchy of dynamics, Regular and Chaotic Dynamics 7 (2002) pp. 177–200
and other texts by these authors.

10. Holonomic or not? We spoke a lot about non-holonomic systems
without never explaining what they are. At our level of exposition, their
distinction from holonomic systems is not important. But let us try to
explain this briefly. In a holonomic system there is a configuration space
M and the velocity space at a configuration x is the tangent space TxM .
The dimension of the phase space TM is twice the dimension of M . In the
rolling ball case the configuration space is 5-dimensional and the velocity
space only 3-dimensional. So the system is non-holonomic.

But the presentation above is ambiguous. We should say what is the config-
uration space. We consider the 2D rolling ball, i.e. the rolling disk on a line.
One could say, the configuration space is 2-dimensional, because as above
we can choose the contact point and the orientation of the disk. Then the
velocity choice is only 1-dimensional and the system is non-holonomic. This
conclusion is wrong. Indeed we can restrict the study to a 1-dimensional
configuration space, and we shall do it. If a point A of the border of the
disk is in contact with a point B of the line, it is obvious from the non-sliding
hypothesis that during a motion controlled by any force field the point B
will never be in contact with another point than A (and the corresponding
3D affirmation is wrong). So the configuration is completely determined by
the contact point. It is 1-dimensional. The constraint is holonomic.
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Figure 6: 2D rolling ball

To decide what is the true dimension of the configuration space, there is
a nice test from differential geometry, related to Frobenius theorem. The
interested reader will easily find references.

11. Note. It is obviously of first importance to know how to deduce the
equations of motion of a given mechanical system. Curiously d’Alembert
principle tends to disappear from mathematical textbooks in classical me-
chanics, and to be replaced by an exposition of less general principles, which
involve more sophisticated mathematical concepts. We have nothing to say
against the wonderful book “Mathematical Methods in Classical Mechanics”
by V. Arnold. The author decided not to consider perfect non-holonomic
constraints, but only holonomic constraints. He constructs the Lagrangian
and deduces from it, at §19D, the laws of motion for this kind of systems.
He explains clearly that this excludes the rolling ball in Remark 6, §21.
Nevertheless he presents d’Alembert principle in several ways.

Another famous book of the 70’s is R. Abraham and J. Marsden’s “Foun-
dations of Mechanics”. Here the idea that one can deduce the equation of
motion from a principle is absent. When concrete mechanical systems are
presented their equation of motion or their Lagrangian are written without
explanation. The book presents the mechanics as a chapter of symplectic
geometry. Consequently the counter-example of non-holonomic constraints,
which is well-known after the remarks of Hertz, is hidden.

Another result of similar ideologies is the modern presentation of the con-
cept of integrability of a mechanical system. A definition is given from a set
of first integrals in involution, in such a way that integrability is possible
only for Hamiltonian systems. Nothing is said on the fact that integrability
happens and may be described exactly in the same way when the notion
of involution is not even defined, e.g. in the case of the usual rolling ball
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on a plane or for a generic ordinary linear differential system with constant
coefficients. “What is a non-holonomic integrable system?” became a possi-
ble question, while it would be incomprehensible for Jacobi and other 19th
century mathematicians. Again, Arnold was more reasonable. He presented
the first integrals in involution as a sufficient condition for the integrability
by quadratures. However, a more elementary and general point of view on
integrability is presented and discussed in A concept of Integrability of Dy-
namical Systems, O. Bogoyavlenskij, C. R. Math. Rep. Acad. Sci. Canada
18 (1996) pp. 163–168.

For other such discussions see Sternberg’s review of Abraham Marsden’s
book in Bulletin AMS, 2 (1980) or Borisov and Mamaev, “On the history
of the development of nonholonomic dynamics”, Regular and Chaotic Dy-
namics 7 (2001).
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