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Introduction

The integral manifolds of a differential system are the invariant manifolds
obtained by fixing the value of the known first integrals. In the Newtonian
problem of n bodies moving in a 3-dimensional space with their center of
mass fixed at the origin, these integrals are the three components of angular
momentum and energy.

Part D of this paper (which should be read after Parts A and B) gives
a description of the integral manifold of the 3-body problem indicating that
there are exactly 8 values of the energy for which its topology changes, as-
suming one fixes the angular momentum at an arbitrary nonzero value and
decreases the energy from +oo (the first value encountered is zero, and the
three masses are assumed distinct). But this description does not constitute
a rigorous proof.

Part C (whose only prerequisite is the beginning of B) proves that there are
at most 8 values. Two distinct phenomena are responsible for these changes
in topology: the critical points of the energy function restricted to the chosen
level manifold of angular momentum, and the critical points at infinity of the
same function. The former are responsible for the last 4 values encountered as
the energy decreases from 4o00. The critical points are the relative equilibria
of Lagrange. Part C is devoted to the study of the latter phenomenon in the
general setting of the spatial n-body problem. We show that this phenomenon
is associated with a division of the system of particles into clusters, and that
each cluster is a relative equilibrium. The critical points at infinity produce
at most 26 changes of topology in the 4-body problem (counting zero), and
it is only ignorance of the relative equilibria of more than three bodies that
prevents an enumeration for five bodies.

Part B studies the level manifolds of angular momentum of a system of n
bodies, and treats in a global way the question of reduction or elimination of
the node. In Part B4 we sketch the explicit description of the manifolds for
an ambient space of dimension greater than three.

The problem of the topology of integral manifolds is raised in Birkhoff
[1], page 287, where the author ignores the phenomenon of critical points
at infinity. Wintner [1] (§438 and p. 433) and Alexeyev [1] emphasize the
importance of the problem. Smale [2], p. 50, points out the shortcomings of
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Birkhoff’s analysis, and proves that in the planar n-body problem, all changes
in topology are due to critical points (except at zero energy). Smale also
suggested to Cabral that he investigate the topology of integral manifolds
in the spatial n-body problem. (Cabral [1] will be cited several times in
this thesis; cf. his commentary on p. 61 of that reference.) Simé was the
first to give the three additional values for the three-body problem, but his
description, based on a projection onto the space of triangular configurations,
has a singularity when the bodies are aligned, and it artificially introduces a
ninth value which corresponds to a vertical triangle whose orthocenter is its
(weighted) center of gravity (it is called “critical” or “singular” in Saari [1],
who also raises questions about it). Finally, the existence of critical points at
infinity is affirmed without explanation in Arnold, Kozlov, and Neishtadt [1],
p- 104.

This article is the translation by H.S. Dumas of my “these de doctorat de
I’Université Paris 7”7, directed by A. Chenciner, and defended on April 3, 1992.
The contributions of A. Bahri, H. Cabral, M. Herman, J. Laskar, S. Lopez de
Medrano, R. Moeckel, J. Moser, C. Sim6, and J.C. Yoccoz are acknowledged
there.

A. Integral Manifolds of the Planar Problem
A1) Reduction of the Center of Mass and the Space of Dispositions

Consider n point-masses mq, ..., m, situated on the real line at x4, ..., x,.
The moment of inertia I = I | m;z? with respect to the origin defines a
quadratic form which gives R"™ the structure of a Euclidean vector space*.

We will denote by D the hyperplane in R" defined by > "  m;z; = 0. A
point of D, called a “disposition,” represents the projection onto an axis of
a configuration of n bodies with center of gravity fixed at the origin, or the
projection of their n velocities or accelerations. We will usually denote an
element of D by a capital letter, or by its n coordinates (which include an
“excess” coordinate). The symbol (X,Y) will denote the scalar product of
the dispositions X and Y, and || X|| will denote the norm of X.

A2) First Integrals of the Planar Problem

We now select a system (O, z,y) of orthonormal axes in the plane. By
placing the origin at the barycenter of the n bodies, we may describe the
state of the system with 4 dispositions:

X =(x1,...,2p) Y =(y1,--,Yn)

* We ignore the canonical structure here; in particular, I=1 defines a sphere, not an

“ellipsoid.”



P:(pl,,,,,pn) Q:(q1,-~-7qn)

where the i** body has position coordinates z;,1y; and velocity coordinates
Pi,q;- The energy h and the angular momentum C' are then:

(¢ SUPIP+ Q%) - U, ¥) =,
(m) (X,Q) - (V. P)=C,

where U(X,Y') designates the potential
U= Zir..] with r?j = (z; — ;)% + (yi — y;)°.
i<j Y

A3) The Geometry of the Integral Manifolds (C nonzero)

The submanifolds of D* defined by the system of equations (e), (m) are
called the integral manifolds of the problem.

It is worth noting that the energy is a simple function of the velocities, but
not of the positions. Since Smale’s work [1], an integral manifold is described
by first fixing the positions up to homothety (since U is homogeneous), then
finding the compatible size and velocities.

To see this, note that if C is strictly positive, equations (e) and (m) are
equivalent to (en) and (m), where (en) is given by

1, 5 U
(en) h=5UPIP+1QI°) = 5 (X, Q) = (V. P)),

which may also be written

U_. 2 U 2 U?
P+ 6YH + @ - 6XH = (|| x> + HYHQ)@ + 2h.

When X and Y are fixed, this equation defines a 2n — 3-dimensional sphere
in velocity space (P, Q), of radius p and center A = (=Y U/C, XU/C), such
that
,  1U? 2 2
= + 2h, where I=|X|*+|Y]*.
But (en) is homogeneous of degree zero in (X,Y).
Therefore, having chosen a nonzero couple (X,Y’), we will interpret the

intersection of the “sphere” (en) and the half-space

{(P.Q)/(X,Q)—(Y,P) >0}

as the set of velocities (P, Q) compatible with the existence of a strictly
positive real number A such that the state (AX, \Y, P, Q) solves the system

(), (m).



The following remark clarifies the position of the sphere (en). The Lagrange-
Jacobi equation (derived in a remark in Part C2) may be written

I=|PI”+ Q| + 2h.

The condition I = 0 defines a second sphere of codimension one in velocity
space, centered at the origin and of radius /—2h. This sphere is perpendic-
ular to the sphere (en). To see this, let M be a point of their intersection.
Then ||OA||? = ||OM|? + |[MA||?, so that the two tangents MO and MA are
orthogonal. M exists whenever the two spheres exist, in other words whenever
h <0 and p > 0. The sphere defined by I = 0 will be called the virial sphere,
since the virial theorem of statistical mechanics assures that the relation I = 0
is satisfied on average by a stationary cluster of n bodies.

Figure 1 represents these spheres in the case n =2, h < 0.

(P, Q) space (=Y, X)

sphere (en)

M (P,Q) = (X,Y)

virial sphere

Figure 1
A4) The Topology of the Integral Manifolds (C nonzero, h negative)

If h is strictly negative, the sphere (en) is not truncated upon intersection
with the half-space considered above. To describe an integral manifold, it
suffices to study the condition p > 0, or

VIU >/ —2hC2.
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We use the following terminology taken from the restricted problem. Given
h and C,

— a connected component of (X, Y)-space, with the origin deleted, such
that 0 < p < 400 is called a Hill’s region,

— the manifolds defined by the condition p = 0 are called the zero velocity
surfaces (a slightly abusive terminology).

These objects, like the function p, are invariant under the group action of

similarity transformations on configurations
(X,Y) = (aX +bY,—bX + aY'), with (a,b) # (0,0).

The study of the Hill’s regions is now classical. It consists in studying
the function vIU on D? with the origin deleted (or on the sphere I = 1,
or on the quotient of D? by the group of similarity transformations, which
is P,_2(C), the complex projective space), and also with the collision set
(z; = x; and y; = y; for at least one pair 4, j) deleted. The critical points are
the unidimensional and bidimensional central configurations. One may also
say that they are the configurations of the relative equilibria of the planar
problem.

If V—2hC? < minxy \/fU, the Hill’s region covers the whole space D?
with the collision set deleted.

The integral manifold is then “swept” as follows:

i) on the 2n — 3-dimensional sphere described by || X||? + ||Y]|? = 1, we
choose a point in Hill’s region, which represents a position up to homothety,

ii) “above” this point, there is a 2n — 3-dimensional velocity sphere (en),
unless the point belongs to a zero velocity surface, in which case the sphere
degenerates to a point.

From this description we infer that the integral manifold cannot change
topology upon variation of h and C, unless v/ —2hC? passes through a critical
point of the function v/ IU. Theorem E of Smale [2] makes this inference
rigorous. Alternately, we could show that there are no critical points at infinity
(which we shall do in part C3), then make use of the diffeomorphism from the
introduction to part C.

The integral manifold is described in the simplest possible way in the case
where v —2h(C? < minx y VIU. Tt is a sphere bundle above a sphere which is
restricted to the complement, in the base, of a family of spheres of codimension
2 (the collisions). The quotient by the group SO(2) of rotations about the
origin is a sphere bundle above the complex projective space mentioned before,
which is again restricted to the complement of a family of complex projective
hyperplanes (collisions). In order to be more precise, one must characterize the
sphere bundles considered. For this purpose it is useful to study separately the
level manifolds of angular momentum, which are much more “geometric,” and
to consider the energy h as a function on these manifolds. Above the sphere, or
above complex projective space, the angular momentum defines vector bundles
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whose associated unit sphere bundles are the bundles described above. We
will see in Part B that the bundle above the sphere (before reduction) is
trivial, but that the bundle above complex projective space (after reduction),
previously described in Proposition 9.4 of Smale [1], is not, except in the 3-
body case. The bundle restricted to the complement of the collisions is trivial
even after reduction: by removing a projective hyperplane corresponding to
the collision of two particles, the base is made contractible, and so one obtains
a trivialization.

B. Angular Momentum

We are interested here in the submanifolds of the state space of a system
of n bodies evolving in R?, obtained by fixing the angular momentum.

B1) Abstract Study

The space R? is equipped with a system of orthonormal axes (O, z?, ..., zP).
We again place the origin at the barycenter of the n bodies, and we describe
the state of the system with 2p dispositions X1, ..., X, P1,..., P,. The first
p are the projections of the configuration onto the axes, the second p are
the projections of the velocities. We next choose an orthonormal basis for
the space D of dispositions. The state of the system is then described by a
matrix M of p rows and 2n — 2 columns. The i*? row is made up of the n — 1
coordinates of X, followed by the n — 1 coordinates of P;. Symbolically, we
write

X1 B
M=1:
X, B

Let O be a matrix of the group O(p) of isometries of R’: 'O0 = I, where
I is the identity matrix. The transformation M +— OM describes the natural
action of isometries on the system.

To each pair (i, j), we first associate the vector field:
X, =X;, P,=P;, X;=-X;, Pij=-P, X,=P =0
for k different from ¢ and j. We also associate to (7, j) the first integral:
Cij = (Xj, Pi) — (X3, Pj).

These fields generate the action of the group SO(p) of rotations on RP, and
the C;; are the entries of the antisymmetric matrix

_ ‘ ) (0 =1
C=MJM with J_<I R
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We call the image of M the motion space, and denote it ImM . This space
(and therefore its dimension rkM, the rank of the matrix M) is invariant
with time. It is the vector subspace of RP generated by the columns of M, or
equivalently, by the n positions and n velocities of the bodies. We call the
image of C the fixed space, thus generalizing the notion of the fixed plane of
the spatial problem. It is immediate that ImC C ImM.

Let us find the critical points of the map M +— C. They are the points
where a linear combination of the %(p — 1)p differentials of the functions Cjj,
1 < j < i < p vanish (we assume for simplicity that 2(n — 1)p > %(p —1)p).
The same relation again exists among the vector fields associated above to the
various pairs (i,7), which are the Hamiltonian fields associated to the fields
C;;. This linear combination generates the action of a one-parameter subgroup
of SO(p), and this action necessarily leaves fixed the state represented by M.

Proposition 1*. The point of the state space represented by the matrix M
is a critical point of the angular momentum map if and only if kM < p — 2,
in other words if the motion space is contained in a space of codimension 2 in
RP.

Proof. The action of the one-parameter subgroup must leave the columns of
M fixed: they all belong to the subspace of RP invariant under the action, of

codimension at least 2. Conversely, if the columns lie in a space of codimension
2, the group SO(2) of rotations around this “axis” fixes M.

The angular momentum may be “reduced” by defining a “reduced” man-
ifold, obtained from the level manifold of C' by taking the quotient by the
action of the subgroup of SO(p) or of O(p) which preserves the angular mo-
mentum (OC'O = (). The quotient by SO(p) is nonsingular (i.e., has no
fixed points) when restricted to the intersection of the inverse image of the
matrix C' and the open set defined by rkM > p— 1. For the quotient by O(p),
we must impose tkM = p.

But fixing the value of the angular momentum already imposes restrictions
on the rank of M. For example, in a collinear motion of n bodies, the angular
momentum vanishes. There is also Dziobek’s Theorem (Wintner [1], p. 427):
if the angular momentum vanishes, the 3-body problem is planar (rkM is at
most 2). More generally, we have

Proposition 2. In a level manifold of the angular momentum corresponding
to a matrix C' of rank 2k, the rank of M satisfies the double inequality 2k <
rkM <k-+n-—1.

Proof. The formula C' = M J!M shows that, on R?, C defines a skew bilinear

form which is the inverse image of the canonical symplectic form of the space
D? of pairs (X, P) of dispositions associated to the matrix J. The quotient

* Cf. Cabral [1], p. 63 and p. 69, for an example of a situation where the critical level set

is not a differentiable manifold.



R? /Ker'M is bijectively related to Im*'M: the rank of C is also the rank of the
restriction to this latter space, generated by the rows of M, of the 2-form J.
In R?"~2, once the rank 2k of the symplectic form restricted to a subspace is
given, the dimension of this subspace may take on all values between 2k and
k 4+ mn — 1: the argument is a classical use of symplectic orthogonality.

Example of an Application. A level manifold of the angular momentum
in the vector space of matrices with p rows and 2n — 2 columns is regular (i.e.,
contains no critical points) if p = 2k or p = 2k + 1. The manifold reduced by
the action of SO(p), in other words the quotient of the level manifold by the
action of the subgroup of SO(p) which preserves the angular momentum, is
also regular.

B2) The Normal Form

We have seen that an isometry O transforms M into OM, and consequently
changes C = M J'M into OC*O. Tt is well known that in this way the anti-
symmetric matrix C' may be reduced to the normal form

0 -D 0
(%) D 0 0],
0 0 0

where D designates a diagonal matrix with £ strictly positive diagonal entries.
To see this, one diagonalizes the symmetric matrix C? with respect to an
orthonormal basis, then notices that if v is an eigenvector of this matrix, Cv
is also an eigenvector corresponding to the same eigenvalue. In the degenerate
case, one begins by decomposing RP into the direct orthogonal sum of the
kernel of C' and its image, the fixed space.

Proposition 3. There exists a decomposition of the fixed space into the
direct sum of m orthogonal subspaces o1,...,0,, of respective dimensions
2k1,...,2ky, and there exist m positive numbers ¢; < --- < ¢, such that the
map v — C%_C’v is a rotation by % in the space o; (multiplication by 7 of a
complex structure). The subgroup G of O(p) consisting of isometries which
leave angular momentum invariant is isomorphic to U(ky) X - -+ x U(ky,) X
O(p — 2k).
Proof. The o; are the eigenspaces of C?, and the —c? are the associated
eigenvalues. An element O of G necessarily leaves invariant the decomposition
of R? into m + 1 orthogonal subspaces: OC?'O = C?. It belongs to O(2k;) x
- x O(2ky,) x O(p — 2k). But now OC'O = C means that O commutes
with rotation by 7 in each of the spaces o;. The complex structure is thus
preserved by O: it is an element of the unitary group.

We note that the fixed space is equipped with a Hermitian structure induced
by the Euclidean structure of R” and the rotation by % of the preceding propo-
sition. We also point out that simple homotheties show that the topology of
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the level manifolds does not depend on the matrix D, whereas the dimension
of the reduced manifold changes whenever two entries D;; are equal.

We now choose a coordinate frame (O,z', ..., 2%y, ... y¥, 2t ..., 2P~2F)
in R? in which C takes the form (x), so that

X P
M=1Y @Q|],
Z R

where X, Y, P and ) now designate block submatrices with k rows and
n — 1 columns, and Z and R designate (p — 2k,n — 1)-blocks. The equation
M J!M = C may now be written

w0 DE D7)
(dm) (¥ o) ()~

(mz) R'Z — Z'R = 0.

The equation (m) defines a regular real algebraic variety (hereafter referred
to as a “manifold”; see B1). To show that it is nonempty, we consider its
intersection with the subspace defined by the equations X = Q and Y = —P.
It is easy to see that it is a compact submanifold isomorphic to a complex
Stiefel manifold. The blocks X and P, which suffice to determine the solution,
satisfy PIX — X'P = 0 and X'X 4 P'P = D, in other words they describe a
family of k vectors in D?, orthogonal with respect to the Hermitian structure
(the k vectors in question are the first k rows of M). This compact submani-
fold is invariant under the action of the reducing group. In part B4, we will
clarify its role in the topology of the manifold (m).

According to (m), the first 2k rows of M generate a 2k-dimensional sym-
plectic subspace of D? (the restricted symplectic form is nondegenerate). The
equation (dm) expresses the fact that each of the last p—2k rows of M belongs
to the orthogonal complement (with respect to the symplectic form) of this
space, which is a 2(n — 1 — k)-dimensional symplectic subspace. These rows
generate an isotropic subspace according to (mz), but they are not always
independent. These considerations allow us to clarify Proposition 2: the dou-
ble inequality established there is optimal. A level manifold of the angular
momentum map contains points corresponding to all the dimensions attained
by the motion space, the largest dimension being achieved when the isotropic
subspace under consideration is Lagrangian (i.e., of dimension n — 1 — k).

10



B3) The Plane and Space

We assume the angular momentum to be nonzero (k =1, p =2 or 3), and
we represent the state by 6 dispositions, or rather by the matrix M:

X P
Y Q
Z R

The three coordinates of angular momentum may be written

Y,R)—(Z,Q) =0,

) (2,P) — (X, R) =0,

(m) (X,Q) - (Y, P) = C.

We denote the coordinates of X in a chosen orthonormal basis of D by
Z1,...,%p—1; those of Y, Z, etc. by 95, 2;, etc: these real numbers are the
entries of the matrix M.

We then set 2§; = (&; + ;) +i(§; — b)), 2n; = (&; — ¢;) +i(J; + p;) and
¢; = Z; +i7;, in order to diagonalize the quadratic form (m) and represent
(dm) in the form of a single complex equation:

(m) SMIGP=Y Il =c,
(dm) D &G =D m¢ =0.

Proposition 4*. If equation (m) is satisfied, equation (dm) defines a sub-
space of real codimension 2 in the (-space C"~! ~ D2, which means that in the
spatial problem, a level manifold of the angular momentum map is a vector
bundle over the hyperboloid (m), the level manifold of angular momentum in
the planar problem. Moreover, equation (dm) is invariant under the action of
the “reduction group” SO(2): (&;,7;) + (€?¢;,en;). The reduced manifold
(i.e., the quotient of the level manifold by the action of the reduction group)
in the spatial problem is again a vector bundle over the reduced manifold of
the planar problem.

Proof. The two real equations (dm) are independent: this was demonstrated
in Part B2, where the presentation in matrix form makes clear the more
general result that (m) prohibits the degeneracy of the matrix used to write
(dm). The remainder of the proof is clear.

* Cabral [1], p. 70.
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Proposition 5. We consider the new system

(m/) Y IGlP=c,
(dm’) > &6 =0,

defined on (£, 7, ()-space and the reduction group of Proposition 4 (which
introduces 7). There exists a vector bundle isomorphism between (m), (dm)
and (m'), (dm'), before and after reduction (i.e., the morphism commutes
with the action of the reduction group).

Proof. First, note that the map (£, n) — (A&, n) transforms the hyperboloid
into a cylinder if A satisfies A2(C + Y |n;|?) = C. It remains to establish
an isomorphism between the fibers above the two points of the bases we
have just shown to be in correspondence, which amounts to establishing a
bijection between the subspaces of (-space defined by (dm) and (dm'). This
is easily accomplished by orthogonally projecting (either) subspace onto the
other. Using the complex parameter «, we parametrize the plane normal to
(dm): a — (aéy — ami,...,af,—1 — ann_1), or the plane normal to (dm’):
a (afl, . ..,afn_l). Substituting these parametrizations into (dm) and
(dm') respectively, we obtain in either case the same endomorphism C ~ R:
a = (3115 a — (O°¢m;)a. It remains to check that its determinant is
nonzero. An endomorphism of C of the form ¢ — a( + B¢ has determinant
|a|? — |B|?, as may be seen by calculating the image of d¢ A d(, or (ad( +
BdC) A (adC + BdC) or (Jal®> — |B]?)d¢ A dC. In the present case this yields
(> 1€1%)? — | >°&m;]%. This determinant is positive if (m) is satisfied: the
Cauchy-Schwarz inequality may be written | > &n; 12 < (3016120 Inil?).

Proposition 6. The manifold defined by the equations (m) and (dm') is iso-
morphic to the direct product of C"~! with the cylinder given by Z;:ll 11?2 =
C in the space C2"~3 coordinatized by &1,...,&,—1, D2, - .., Mn—1. The isomor-
phism commutes with the action of the reduction group whose action on the

cylinder just mentioned is defined by the formulas §; — ewﬁj, n; > ewnj.

Proof. When restricted to &1,...,&,-1, M2,...,Mn—1, the isomorphism we
wish to construct is the identity. Now, given 7; and a point of the sub-
space (dm') of complex codimension 1, we associate to them first the point
(mé&i,...,mé&n_1) of the plane normal to (dm’), then the point of C*~! which
projects orthogonally onto (dm’) and its normal plane at these two points.

Results

We may now describe the topology of the manifolds under study. For the
planar n-body problem, a level manifold of the angular momentum map is
isomorphic to the product of the sphere S?"~3 with R?”~2: this is the cylinder
(m') of Proposition 5. For the spatial problem, this manifold may be identified
with S27=3 x R¥"~6, according to Proposition 6, which “stabilizes” stably
trivial bundles above $2773,

12



We now consider the manifolds obtained by passing to the quotient by the
action of the reduction group S'. The basic “object” is the quotient W} of
the cylinder given by E?Zl laj|? = 1 in C!, coordinatized by a1, ..., a;, under
the canonical action of the circle on C': aj 67’904] We see that Wlk
the projective space P,_1(C) with a projective subspace P;_;_1(C) removed.
Moreover, W/} 11, Projective space with a point deleted, may be identified with
the tautological line bundle above P,_1(C). Similarly, W} is the Whitney sum
of [ — k tautological bundles W}" 1

In the planar problem, the reduced manifold is WQn 5 according to Propo-
sition 5. The latter manifold appears in Proposition (9.4) of Smale [1]. Tt is
known (e.g., Doubrovine, Novikov, Fomenko [1], p. 114) that this vector bun-
dle is the Whitney sum of the tangent bundle of the projective space P,,_5(C)
and the trivial complex line bundle. This identification is interesting, and
appears directly (and with more geometry) if one notices that the reduced
manifold of configurations of n bodies in the plane is the product of R} with
P, _5(C), and the phase space is its tangent bundle (or cotangent bundle; cf.
Arnold [1] Appendix 10, and Doubrovine, Novikov, Fomenko [1], p. 288).

For the spatial problem, Proposition 6 shows that the reduced manifold is
Wi x R?"~2. The elementary calculation (cf. Milnor, Stasheff [1], p. 46)

of the Stiefel-Whitney classes shows that for all n > 3 the bundle W " 3
possesses no real section which is everywhere nonvanishing. For the planar
problem, Pontryagin classes are required to establish the following weaker
result (Milnor, Stasheff [1], p. 178): the bundle Wy 1, is (stably) nontrivial
for n > 4. If there are only three bodies, the reduced manifold is the product
of the tangent bundle of the Riemann sphere with R?, which is also S? xR* (the
tangent bundle of a sphere is stably trivial). The same result may be obtained
by noticing that the tautological bundle above P;(C) may be identified with
its normal bundle through the quaternionic multiplication by j.

Before reduction, the level manifold of the spatial (but non-planar) motion
space appears in Proposition 5 as the product of R} X ¢! with the Stiefel
manifold of pairs of vectors &, in C"~! which are orthogonal with respect
to the Hermitian structure: ¢ = 0 has been excluded. This is S x (S x
R’ ) x R* in the case of three bodies, since the bundle (dm’) may be trivialized
with quarternions. The reduction group acts in the standard way on the
component S': the fibration is trivial and the base is given by the hypersurface
of section obtained by fixing a point on this component. This is S® x R®, or
R® with an R*-subspace removed. But the same result may be found with
Proposition 5, which describes this manifold as the normal bundle of the
tautological bundle (of Euler class 1), with the null section corresponding to
planar motions removed, multiplied by R* (triviality obtained as in the planar
problem). Now the circle bundle on S? of Euler class 1 is S3. A completely
different approach would have led to the same result (only in this case): to
carry out the reduction, rather than fix the three components of angular
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momentum and pass to the quotient by SO(2), one could first fix the norm
of C, then pass to the quotient by SO(3).

B4) Remarks and Extensions

i) The matrix M introduced in Part Bl actually represents an intrinsic
linear map. Let F be a p-dimensional vector space in which the n bodies
r; and their velocities v; reside. To each linear form on E we associate first
the list of its values on the n bodies, then the list of its values on the n
velocities; these two lists are elements of D. The matrix ‘M is then associated
to this map from E* to D?. The canonical symplectic form on D x D* is
transported by this map, since the moment of inertia identifies D with its
dual. The result is a bivector belonging to /\2 FE, the angular momentum,
which may be expressed as Z?:l m;r; A v;. How can its invariance express
a rotation symmetry when we have not yet introduced a quadratic form on
E? Because, it is only when there exist simultaneously a quadratic form on
E and a potential function U on the space of maps from E to D such that
the accelerations ~; are given by the gradient VU for the induced metric, that
the vanishing of the time derivative of the angular momentum is equivalent
to the invariance of U under isometries for the quadratic form. More general
“non-conservative” n-body problems also possess the first integral of angular
momentum.

ii) We construct all the generalizations of isosceles problems of three bodies
by means of a finite subgroup of the group G of Proposition 3. It is enough
to set up an arbitrary number of equivalence classes of bodies, the bodies of
each class all having the same mass and forming an “object” (positions and
velocities) invariant under the chosen finite group.

iii) Let us examine the particular case C' = 0. In Part B2, we saw that the
rows of the matrix M generate an isotropic subspace. We posit the simple
hypothesis tkM = p, so that the level manifold is regular, and so that we
may choose between the reduction groups SO(p) and O(p). We could show
that in this case the reduced manifold may be identified with the Grassmann
manifold of isotropic subspaces (oriented or not) equipped with a positive
definite quadratic form.

iv) In order to study the topology in a case where C is degenerate, and
where we have imposed rkM = p, we orthogonally project (with respect
to the Euclidean structure) the x- and y-rows of the matrix M onto D2,
in the direction of the isotropic subspace generated by the z-rows. In this
process, C' remains unchanged, and the z- and y-rows end up in the orthogonal
complement (with respect to the Hermitian structure) of the z-columns. If
p = 2k + 1, the matrix M possesses only one z-row, and we use instead an
analog of Proposition 5, which has the advantage of allowing rkM = p — 1.
We cannot, however, hope to obtain the analog of Proposition 6 for k£ > 1.

v) We must extend the study of the planar problem carried out in Part
B3 to other even dimensions p = 2k. In this case the level manifold retracts
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onto the Stiefel manifold of Part B2. The method which ensures that this
retraction takes place equivariantly with respect to the action of the rota-
tion group generalizes what follows. We consider the particular case where
M is a square matrix and C' = J. The corresponding level manifold may be
identified with the symplectic group (note that the configuration generates
a Lagrangian subspace). We set M = A+ B, and call A = %(M — JMJ)
the complex part and B = %(M + JMJ) the anticomplex part. We have
AJ = JA and BJ = —JB, I = A'A — B'B according to (m), which also
ensures that S = A'B is symmetric. If H is the matrix (AA)~!, K = H2 A is
unitary, and M — K commutes with the (unitary) rotation group M — OM.
We parametrize the level manifold by choosing an anticomplex matrix S and
a unitary matrix K: H then satisfies I = H~! — SHS, which ensures that H
and S commute (multiply on the left by SH, on the right by HS), and deter-
mines H as the unique positive definite root of the latter equation. In this way
we recover the well known topological identification of the symplectic group
with U (k) x R¥(*+1) Moreover, thanks to the equivariance with respect to the
action of the rotation group, we also obtain the reduced manifold RF(*+1 In
this way, three bodies in four-dimensional space may be described by means
of a point in R, when the angular momentum is chosen as prescribed. In the
case of rectangular matrices, with the same particular angular momentum,
one obtains reduced manifolds analogous to the tangent bundles of complex
Grassmann manifolds. Before reduction, whatever the value of angular mo-
mentum, and once one imposes rkM = p, the level manifold may be identified
with the product of a complex Stiefel manifold with a contractible space.

C. Energy

In both the planar and spatial problem of n bodies, the study of the integral
manifolds reduces to the study of the energy function h restricted to a level
manifold of the angular momentum. In general, we begin with a real function
f defined on a Riemannian manifold, and we denote its gradient vector field
with respect to the metric by Vf. The flow of the field % furnishes a
diffeomorphism between the two level manifolds of f, say f = y; and f =
Y2, whenever ﬁ is bounded on the closed set f~1[y1, 2], assumed to be
complete. This so-called Palais-Smale condition [1] prohibits the “blow up”
of orbits in finite time. When it is not satisfied, there exist sequences of
points in f71[y;,ys] such that |V f]| tends to zero and f tends to a limit
belonging to the interval [y, y2]. Their limit points are critical points, and we
say that there is a critical point at infinity when one of these sequences is not
contained in a compact set. But f~!(y;) may be diffeomorphic to f~1(y2),
and there may even exist a diffeomorphism of f~1[y;, y2] onto f~1(y1) x[y1, y2]
which sends f~1(y) onto f~1(y1) x {y} without satisfying the Palais-Smale
condition. In this case, it is sometimes possible to make the critical points at
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infinity disappear by choosing another Riemannian metric in such a way that
f~Yy1, y2] remains complete, but such that the new norm of Vf is bounded
from below. The function 5 fg‘c?, defined on R2, provides an example where
the natural norm is not the appropriate one.

We will begin by working with the natural state space metric, then we
will show that it is necessary to define another metric which brings the level
manifolds of h “closer together” at infinity.

C1) Further Results on the Space of Dispositions. Clusters.

We recall that we defined the hyperplane D,, of n-tuples in R"™ such that
Z?Zl m;x; = 0, where the masses m; also define the “moment of inertia” form
S mz?, which establishes a Euclidean structure on D,,.

Let k be an integer, 1 < k < n. To the partition of the set {1,...,n}
into two subsets {1,...,k} and {k + 1,...,n}, we associate the orthogonal
decomposition of the space D,, into the direct sum of the subspace of ele-
ments of the form (x1,...,2,0,...,0), the subspace of elements of the form
(0,...,0,xk41,...,%,), and the subspace of elements (x1,...,x,) such that
xry = ... =z and T4 = --- = x,. These three subspaces, whose or-
thogonality is easily verified, may be identified respectively with Dy, (masses
mi,...,mg), Dp_r (masses mgi1,...,my,) and Dy (masses my + -+ + my
and mgy1 + -+ + my). This construction immediately generalizes: to any
partition of {1,...,n} into [ clusters of respective cardinality k1, ..., k;, with
k14 ---+k; = n, we associate a decomposition of the space D,, into the direct
sum of [ 4+ 1 orthogonal subspaces naturally identified with Dy, ..., Dy, and
D;. The last component is called the disposition of the centers of gravity.

This decomposition may be iterated each time there remain subspaces iden-
tified with Dy, with k£ > 3. Continuing as far as possible, we obtain a decom-
position of D,, into n — 1 subspaces identified with Dy, thus of dimension 1.
By choosing from each Dy a vector (z1, z2) such that o — 27 = 1, we obtain a
Jacobi basis of D,,, which defines the classical Jacobi variables (one ordinarily
chooses the decomposition associated to a partition into two subsets, one of
which has cardinality 1, then iterates). The Jacobi basis is orthogonal, but
not orthonormal, which has the effect of introducing disagreeable coefficients
into subsequent formulas. We now consider an n-body problem on the line:
states are represented by pairs of dispositions (X, P). The canonical sym-
plectic form associates the real number (X", P') — (X', P"”) to (X', P’) and
(X", P"). If we want variables in which this form appears canonical, and if
we use Jacobi variables to represent X, we must choose different variables to
represent P, as is usually done. We rather choose an orthonormal basis for
D, so that the moment of inertia, the angular momentum, and the symplectic
form may be written as simply as possible.

Consider now the n-body problem in p-dimensional space. A partition of
the set of bodies into [ clusters defines a decomposition of the state space into
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the direct sum of [ + 1 orthogonal subspaces, each describing either the state
of a cluster relative to its center of gravity, or the state of the set of centers of
gravity (the decomposition is carried out for the configuration projected onto
the axes, and for the velocities projected onto the same axes). The functions
on state space representing the moment of inertia, kinetic energy, and angular
momentum may be written as the sum of these same functions defined on a
component of the decomposition. The potential U does not have this property.

We may however obtain something close to it.

Lemma 1. Given a sequence of configurations of n bodies in a space of
dimension p, it is possible to extract a subsequence such that there exists a
partition of the system into [ clusters, and thus a decomposition of the space
of configurations into [ + 1 components having the following properties:

i) the configuration projected onto the component describing a cluster with
respect to its center of gravity tends to a limit,

ii) the configuration projected onto the component describing the configu-
ration of the centers of gravity is such that the distance between two arbitrary
points tends to infinity.

Proof. We proceed by induction. Assume that a subsequence has been
extracted such that there exists a partition of the first n — 1 bodies satisfying
the above property. We consider the limit inferior of the distance of the n®
body from the center of gravity of the first cluster. If this limit is infinite,
we proceed to the next cluster. Otherwise, we extract a subsequence such
that this limit inferior is the limit. The sequence of positions of the body
relative to the center of gravity remains in a compact set. From it we extract
a convergent subsequence. If the limit inferior is infinite for all clusters, we
create a cluster for the n'® body alone. The result follows. It is also possible
to replace the limit inferior by the limit superior.

Lemma 2. Consider a sequence having the properties of the sequence ex-
tracted in Lemma 1. Let the function U be defined as the sum of the potentials

U; of each cluster, 1 < i < I. Then U — U tends to zero and |VU — VU||
tends to zero.

Proof. The function U — U may be written as Y ™™ where the sum takes
ij

place only over pairs (7, ) such that the distance r;; tends to infinity. It is
easily verified that the norm of the gradient of this function also tends to zero
(the components of the gradient are “forces,” which tend to zero as 1/r?).

We have implicitly assumed that the function U is well defined, in other
words that the configurations of the sequence are not collisional. We will,
however, have to treat the case where there are collisions in the limit.

Lemma 3. Consider a sequence having the properties of the sequence ex-
tracted in Lemma 1. We consider the ;' cluster, with potential Uj, and we
iterate the process of decomposition into clusters, regrouping into subclusters
those bodies having the same limiting position. The function Uj, defined as
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the sum of the potentials of each subcluster and of the potential of the config-
uration of the centers of gravity, is such that U; — U; and ||VU; — VU;,|| tend
to zero. The function U defined as the sum of the Uj has the same property
as U from Lemma 2.

Proof. The function U; — Uj and its derivatives are continuous in a neigh-
borhood of the collision limit. It suffices to find their values for the collisional
configuration. For the function and its first derivatives, we find zero (the
potential of the configuration of the centers of gravity is the potential of the
projection onto the corresponding component: we have implicitly attributed
the total masses of the clusters to their centers of gravity).

The Conley Matrix. We may write the gradient of the potential in a simple
way by introducing the following positive definite symmetric bilinear form on
the space of dispositions (cf. Pacella [1]):

mim; . Pij = Pi — D
(PA,P)y=>" —pypy; with 7 "0
i< T DPij = Pi — Dj-

The right side of the first equation represents the value of the bilinear form
on the two dispositions P = (p1,...,p,) and P’ = (p},...,p),), and depends,
through the mutual distances, on a configuration of n bodies in a space of
arbitrary dimension. The left side of the equation represents this bilinear
form by means of the self-adjoint operator A, the “Conley matrix,” on the
space of dispositions.

In a space of arbitrary dimension, with a preferred axis (O, x), we consider
a one-parameter family of configurations of n bodies whose orthogonal projec-
tion in the (O, z)-direction is fixed. Direct calculation gives U = —(X A, X),
which means that

V.U = —X A,

where V, designates the projection of the gradient onto x-space. Newton’s
equations for the problem in R? with coordinate frame (O, x, v, z) are then

X =_—XA,
Y = YA,
Z =—ZA.

C2) Critical Sequences with Lagrange Multipliers

We describe the state of a system of n bodies in Euclidean space R® with
the matrix M

X P
v oQ
Z R
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as in Part B1. The three components of angular momentum are then:

<Y7 R> - <Z7 Q) = Cw7
(Z,P)—(X,R)=C,,
<X7Q> - <Y7P> =C..

We write
I=|X|P+IY|?+1Z]? and K =|P|*+[Q|*+|R|?

so that the energy appears in the form

1
h = §K - U.

We know (cf. Part B1) that a level set corresponding to a nonzero value of
the angular momentum map is a smooth manifold, complete with respect to
the natural metric, in the planar as well as the spatial problem. The vanishing
of angular momentum does not give rise to a smooth level manifold: collinear
motions (or motions confined to the origin in the planar problem) are critical
points. This level set becomes smooth when one excludes motions contained
in a space of codimension two, but it is not complete, so that the study of the
restriction of the function h requires notions other than those of critical points
and critical points at infinity discussed in the introduction to the present part.
It can easily be seen that there is nothing “critical” at the “boundary” in the
case of vanishing angular momentum, but simple homogeneity considerations
(cf. Cabral [1]) show that h = 0 is then the only value corresponding to a
change of topology.

Let us define the general notions to be used in our study of the function A
restricted to a level set of C.

Consider a state of the system such that rkA/ > 2 (the motion is not
collinear). According to Part B1, the three components of angular momen-
tum are independent. The ordered triple (A\?, )\2, M) such that Vh—\2VC, —
AgVC’y — A0V (., denoted ¢, is orthogonal to the gradient of angular momen-
tum will be called an optimal multiplier. If ey vanishes, then the state is a
critical point for the function h restricted to the (locally regular) level mani-
fold of C' passing through the point.

Consider a sequence of states of the system. A sequence of triples (Az, Ay, A)
such that Vh — A\, VC, — \,VC, — A\, V., denoted ¢, tends to zero in norm
will be called a compatible sequence (of multipliers). A sequence of states pos-
sessing a compatible sequence of multipliers will be called a critical sequence.
If the states of such a sequence satisfy rkM > 2, then the sequence of optimal
multipliers furnishes another compatible sequence. In fact, ¢4 = € —¢g is a
linear combination of the gradients of C. Therefore ||¢||* = ||eo]|* +||€1]|?, and
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||l€o]| tends to zero. A critical sequence such that h approaches a finite limit
and C' remains constant will be called a horizontal critical sequence. If it has
no limit point, a horizontal critical sequence on a non-critical level manifold
of C' denotes the existence of a critical point at infinity for the function h re-
stricted to this manifold: €g is the gradient of this function. The limit points
of such a critical sequence are evidently critical points (we note that since the
energy is bounded from below, the limiting configuration is non-collisional).

We now undertake the study of the critical points and sequences.
First Tool: The Lagrange-Jacobi Derivative

A critical sequence is such that

(K -U)

— 0.
I+ K

(LJ)

Proof. The scalar product of € with the following vector field, tangent to the
level manifold of C,
X =X, P=-P

Y:Ya Q:_Qv
Z=2, R=—R,

is the derivative of h along the vector field, or U — K, because of homogeneities.
This quantity, divided by the norm /K + I of the vector field, therefore tends
to zero.

Remark. The above vector field is associated with the Hamiltonian (X, P) +
(Y, Q) + (Z, R), which is also the value of %I The expression U — K is thus
the value of the Poisson bracket %{I ,h}, which also equals —%f . This is the
Lagrange-Jacobi formula, previously cited in Part A3.

Exercise. Using the identity K — U = %K + h, show that a horizontal
critical sequence such that the sequence of configurations remains bounded is
bounded, and thus possesses a limit point. Thus the critical points at infinity
have configurations of “infinite” size.

Second Tool: Multiplier Frames

In a multidimensional problem, a multiplier may be identified with an anti-
symmetric matrix A of the same size as C': we associate it with the vector field
—1V(trAC). An orthonormal change of coordinates M — OM transforms A
to OA'O. An orthonormal frame associated to a system of coordinates which
brings the matrix A into normal form, as C' was brought into normal form in
Part B2, will be called a multiplier frame.

In the three-dimensional case, a multiplier frame is simply an orthonormal
frame in R® such that A\, = A, = 0. In this case only the two following
gradients are important (A is defined in Part C1):
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VC, Vh

X/ Q XA
Y| -P YA
Z| 0 zA
Pl -y P
Q| x «Q
R\ 0 R

Proposition 1. The rank of M equals 2 for a critical point of h in the spatial
n-body problem: the positions and velocities are situated in the same plane.
Conversely, any critical point for the planar problem, located in an arbitrary
plane in R3, is a critical point for the spatial problem. These critical points
are called relative equilibria.

Proof. Once an optimal multiplier frame has been chosen (we defined the
notion of a critical point of h only in the case where this multiplier exists), it
is clear that R = 0 and ZA = 0, which imposes Z = 0 (the projection of the
“forces” onto the vertical axis vanishes). The remaining equations are those
which define a critical point in the plane*.

Geometric Estimates. Consider a critical sequence equipped with a com-
patible sequence. We define the following quantities, associated to each point
of the sequence, which are independent of the choice of multiplier frame, but
which, contrary to the quantities appearing in (LJ), depend on the choice of
multiplier:

L=|XI*+IYI?,  K.=[PI*+lQ]*

We have the following estimates, called “geometric” because they do not in-
volve the potential:

(E1) [1R]| = o(1),
(E2) VE. = [V +o(1),
(E3) K, = % + o(1).

The first estimate is clear. The last two follow from the projection of the
two gradients VC, and Vh onto (P, Q)-space. The norm ~ of the projection of

* Another argument leads to the same conclusion assuming that the angular momentum
is nonzero. The symplectic gradient of the energy must be a linear combination of the
symplectic gradients of the components of angular momentum. But if we choose an angular
momentum frame (“C lies along the vertical coordinate axis”), only the symplectic gradient
of the vertical component is tangent to the level manifold of the angular momentum. The

argument is concluded in the same way.
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Vh—A,VC, tends to zero, from which (E2) follows by the triangle inequality.
To obtain (E3), we project the vector (P, @), whose norm squared is K, first
onto the vector (=Y, X), and then onto its orthogonal complement in D?-
space. The norm of the second projection is bounded by ~, which gives the
o(1).

Proposition 2. From a critical sequence with configurations that tend to a
non-collisional limiting configuration, we may extract a subsequence converg-
ing to a relative equilibrium. The sequences of multipliers compatible with
this subsequence are characterized by their limit, which is the value of the
(nonzero) optimal multiplier of the limiting equilibrium.

Proof. We deduce from (L.J) that the sequence of K's tends to the same limit
as the sequence of Us. The compactness of the critical sequence implies the
existence of a limit point. We must verify that rkM > 2 at this limit point, by
using for example the estimates above. First, (E1) shows that K, has the same
limit as U. Thus if I, tends to zero, rkM is not 1. Otherwise, (E3) shows that
C, is bounded from below, so we know that the problem is also not collinear.
The limit point is clearly a relative equilibrium (there are only two possible
choices for the velocities, once a planar central configuration is given, and
a circle of choices, given an aligned Moulton configuration). The conclusion
pertaining to the multiplier is easily deduced from the independence of the
gradients of the three components of angular momentum.

An Application to Small Critical Sequences
A small critical sequence is a critical sequence such that I tends to zero.

Proposition 3. Consider a small critical sequence and a corresponding com-
patible sequence. Then h tends to —oo (the sequence is not horizontal) and
the norm of the multiplier tends to infinity.

Proof. It follows from (L.J) that K is equivalent to U, which tends to infinity.
Therefore h is equivalent to —1U. Estimates (E1) and (E2) then show that
|A.| tends to infinity.
Application to Kinetic Energy

We now study the critical sequences of the function h = %K . We first show

that the horizontal critical sequences are the sequences such that the value of
this function approaches zero.

Proposition 4. A critical sequence of the kinetic energy such that K is
bounded from below by a strictly positive number is such that the norm of
the angular momentum tends to infinity.

Proof. We may use the estimates (F1), (E2) and (EF3), constructed by
looking at the lower half of the table of gradients preceding Proposition 1,
which remains unchanged. Since h does not depend on the positions, the
upper half gives:

(E4) AIVE: = of1).
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Eliminating |A,| from this equation and (E2), we obtain

K. = o(VE.) + o(VT.).

From (E1) and the hypothesis of the proposition, we deduce that I, tends to
infinity. Equation (£3) then suffices to finish the proof.

Proposition 5. Consider a critical sequence of the kinetic energy and a
compatible multiplier. If the norm of the multiplier is bounded from below
by a strictly positive number, then K and I, tend to zero.

Proof. For the velocities, it suffices to read (E'1) and (E4). For the positions,
we eliminate K, from (E2) and (F4):

XTI, = o(1) + o(A)

and I, tends to zero.

C3) Results
We now study the most general critical sequences of h.
Principle of the Proofs

Each time we are able to replace the potential U by a modified potential
U introduced in Part C1, we will be interested in a map M + (C,, Cy,C, h)
having a particular form: it is defined on a product manifold, each factor of
which describes a certain k-body problem, and it is the sum of its analogs on
each factor of the decomposition. A sequence of multipliers compatible with a
critical sequence of h is compatible with the sequences projected onto each of
the factors, because the € defined in C2 is transformed, by the projection onto
one of the factors, into a vector of smaller norm. The projected sequences are
thus critical. Conversely, if a sequence is such that its projection onto each
of the factors is critical, then it is critical, provided there exists a multiplier
simultaneously compatible with all the projected sequences.

Proposition 6. We consider a critical sequence of h such that the config-
uration approaches a limit. There are two possibilities: either it is a small
critical sequence (I — 0), or we may extract a subsequence converging to a
relative equilibrium®*.

Proof. Such a sequence satisfies the hypotheses of Lemma 3 (with a single
cluster in the first “decomposition”). We carry out the decomposition into
subclusters, then replace h by h = %K — U. To say that the sequence is
critical for h is equivalent to saying that it is critical for  and the compatible
multipliers are the same: the norm of the difference of the gradients of the
two functions tends to zero. We may apply the principle. The projection onto

* Shub’s lemma [1] is very similar to this proposition. It may be deduced very simply by
applying the “principle” to the function U restricted to the sphere I=1.
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a component describing a subcluster is a small critical sequence. The norm
of all compatible multipliers tends to infinity according to Proposition 3. The
projection onto a component describing the centers of gravity is not collisional
in the limit: it is possible to extract from it a subsequence converging to a
relative equilibrium, according to Proposition 2. A compatible multiplier
approaches a finite limit. Therefore, there is no multiplier compatible with
the two projections, except in the cases described in the proposition.

Theorem. From every horizontal critical sequence (cf. C2), it is possible
to extract a subsequence such that there is a partition of the system into [
clusters having the following properties:

i) each cluster, translated to its center of gravity, approaches a relative
equilibrium,

ii) the distance between two arbitrary clusters tends to infinity.

Proof. We begin by carrying out the extraction and the double decomposi-
tion into clusters of Lemma 3. Using the argument from the preceding proof
concerning the incompatibility of multipliers, we deduce the following alter-
natives: either all the clusters (obtained after the first decomposition) behave
as small critical sequences, or it is possible to extract a subsequence such that
all the clusters translated to their centers of gravity approach a relative equi-
librium. The first case is not compatible with the fact that the energy has a
finite limit. In fact, Proposition 3 shows that the contribution of the clusters
to the energy tends negatively to infinity, and Proposition 5 shows that if the
multipliers are compatible, the overall contribution of the centers of gravity
must approach zero. The result follows.

Model of an Unbounded Horizontal Critical Sequence

We recall that there exists a one-parameter family of relative equilibria
whose configuration is, up to homothety, a given central configuration. We
may parametrize such a family with the multiplier \., and if its weight g, by
definition equal to the homothetic invariant IU?, is given, we obtain, using
for example the estimates from Part C2,

I=¢/%, —2h=K=U={Ng, C=3

z

from which it follows that g = —2hC?.

For a given value of )., we choose [ relative equilibria with multiplier A,
(they all “turn” in the same direction and with the same speed) and we place
them in [ distinct horizontal planes in the space R?, in such a way that their
centers of gravity are all situated on the vertical axis (O, z) with zero velocity.
Once we have chosen an arbitrary sequence of positive numbers o approaching
infinity, we obtain a model of a horizontal critical sequence by starting with the
constructed configuration and by applying a sequence of “homotheties” of the
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z-axis with respect to «, in other words by multiplying the vertical coordinates
of the bodies by a while leaving the horizontal coordinates unchanged.

This model sequence is in fact a sequence of critical points of the function h
(it is easy to see that the Vh — A,V C, corresponding to the centers of gravity
is zero), with the same critical value, and thus a fortiori a horizontal critical
sequence of h. The calculation of the critical value as a function of A, takes
place as follows: to a sequence of the theorem where, for example, the system
separates into two clusters of respective weights ¢g; and go, we ascribe the
weight (/g1 + /92)°. We then deduce the limits of the (additive) quantities
I,, —2h, K, U and C with the help of the formulas above for the relative
equilibria.

Other Sequences

The most general horizontal critical sequences may differ considerably from
the model sequences. However, we require a multiplier compatible with all the
clusters, and simultaneously compatible with the component of the centers of
gravity. If there are no clusters, Proposition 4 shows that A and thus h tend
to zero. If there is at least one cluster, we place ourselves once and for all in
a limiting multiplier frame: according to Proposition 2, the limiting cluster is
situated in the horizontal plane of this frame. All the other limiting clusters
are horizontal relative equilibria, with the same multiplier. Proposition 5
tells us in particular that the orthogonal projection of the configuration of
the centers of gravity along the vertical axis of a compatible multiplier frame
tends to the origin. But the same projection along the vertical axis of the
limiting multiplier (limit of the previous axis) does not necessarily tend to the
origin, as the cluster may “escape” very quickly along the vertical axis. What
is much worse, the velocities of the centers of gravity of the clusters, forced
by the conclusions of the same proposition to tend to zero, may nevertheless
contribute to the horizontal component of the limiting angular momentum,
for the same reason. The planar case is less problematic:

Corollary 1. The critical points at infinity of the planar n-body problem are
such that the energy tends to zero.

Proof. If there is a cluster, the configuration of the centers of gravity must
approach the multiple collision at the origin (cf. Proposition 5), which con-
tradicts property ii) of the theorem.

Very Critical Sequences

We equip the tangent bundle of the state space with the metric which is a
multiple of the preceding metric and which defines the norm

_1
s = (A + D)7z L]

and we call a sequence critical with respect to this new metric a very critical
. 1 . .
sequence. This means that (14 1)z ||| tends to zero, using the notation from
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Part C2, since we must also change the gradient. A very critical sequence is
therefore critical, but we also have the following properties.

i) The state space is complete in the new metric. In fact, the usual norm
of the velocity on a new geodesic is of order (1 + I)%. It is thus possible to
bound the distance from the point to the origin as a function of the time ¢ by
a function such as e’, which shows that the geodesic flow is complete, so that
the space is complete by the Hopf-Rinow theorem.

ii) We may replace the conclusion of Proposition 5 by: (14+1)K and (1+1)I,
approach zero, by noticing that the o(1) of (E1), (E2) and (F4) becomes
o(1/+/1+ I). We must note that here I designates the total size of the system,
whereas I, and K describe only the component of the centers of gravity.
But the clusters contribute only a finite amount to I. Since I K bounds the
components of the angular momentum, the flaw just described is corrected:
in a very critical sequence, the contribution of the centers of gravity to the
angular momentum tends to zero. We note that the minor defect mentioned
just before this one is also corrected, because I, tends to zero.

iii) The model sequences are very critical. Since they are composed of criti-
cal points of h, to see this it suffices to estimate | V,U — V,U||s. This quantity
does tend to zero, as shown for example by the estimate sketched in the proof
of Lemma 2, or, more simply, by the homogeneity of U and its derivatives,
which allows the calculation to be carried out on a bounded sequence of con-
figurations, similar to those of Lemma 3. Sequences more general than those
of the model, where one simply requires the distance between two clusters to
diverge to infinity, may be not very critical.

Characterization of the Singular Values

We call the possible limits of A on a very critical horizontal sequence the
singular values. If hy and ho are two values of the energy such that there is no
singular value between them, and if the value chosen for C' is nonzero, then
there exists a diffeomorphism between the two corresponding level manifolds:
namely, the one constructed in the introduction to this part.

Corollary 2. Assume that the total angular momentum C' of the system
is nonzero. The singular values hs of the energy may be deduced from the
singular weights —2h,C?. The cube roots of the singular weights are obtained
by calculating the cube roots of the weights of each central configuration
obtained from an arbitrary subset of bodies, and by adding them in all possible
ways corresponding to a partition of the system into such subsets.

Proof. This is the calculation carried out on the model sequences.

There are three singular values in the three-body problem which correspond
to critical points at infinity of nonzero energy. They are obtained by separating
the system into a cluster of one body (of weight zero) and a cluster of two
bodies. The details will be presented in Part D.
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D. Description in the Spatial Problem

We propose here to “sweep” a level manifold of the energy function defined
on a non-critical level manifold of the angular momentum map (C' # 0) by
following the strategy suggested by Easton [1] (an error unfortunately found
its way into that article). We will use the description given in Part A for the
planar problem, and we will quickly restrict ourselves to the 3-body problem
with negative energy and nonzero angular momentum.

As usual, we describe the state of the system with 6 dispositions:

X P
Y Q
Z R
The equations
(Y,R) - (2,Q) =0,
) (Z.P)~ (X.R) =0,
(m) (X,Q) (Y, P)=C.

define a level manifold of the angular momentum as a vector bundle above
the level hyperboloid (m) of the angular momentum in the planar problem:
(dm) is the equation of a codimension 2 subspace of (Z, R)-space (cf. B3,
Proposition 4). The “sweeping” process will be carried out as follows: given
four dispositions X, Y, P, @ satisfying (m), and Zy and Ry, two dispositions
belonging to the subspace (dm) of (Z, R)-space such that || Zy||? + ||Rol|? =
1, we describe the straight line contained in the level manifold of angular
momentum

X P
(Dr) yooQ |,
Ay AR

by allowing A to vary from —oo to +oo.

It is easy to see that the energy
1
(e) h=S(IPIP+lQI°+IIRIP) —U
increases with |A|. In fact, || R|| increases and U decreases, since all distances

increase. We choose a strictly negative value of the energy hy. We say that
the straight line (Dr) is exceptional if h remains less than hg for all A.
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Proposition. If the straight line (Dr) is exceptional, then either the con-
figuration (X,Y, Zp) is collisional, or Zj is a collisional disposition and Ry
vanishes.

Proof. In the first case, U is infinite and the straight line is exceptional.
We therefore suppose that U is finite, at least for nonzero \; Ry must then
vanish so that the limit of h along the radius will remain negative, and Z
must be collisional so that this limit will be strictly negative (otherwise all
mutual distances tend to infinity).

The Exceptional Lines in the 3-Body Problem

We first remark that Z vanishes whenever a configuration of n bodies is
in alignment. In fact, in this case there exists a coordinate frame such that
Y =0: (m) becomes (X, Q) = C, and (dm) gives (Z, Q) = 0, which is absurd
if Z is a nonzero multiple of X.

Remark. This interesting property has analogs when we consider spatial
dimensions greater than 3. These analogs are obtained by writing the matrix
M from Part Bl as (X P), where X and P are block submatrices: C' is then
X'P — P'X, and one argues using the image of this matrix.

The only straight lines such that U remains equal to —oo are therefore the
lines above the collision states of the planar problem such that Z; = 0 and
thus (X, R) = (Y, R) = 0. This last condition means that the vertical velocity
of the isolated body vanishes.

There remains the case where Z; is collisional and R vanishes. We fix a
configuration (X,Y’), up to homothety, and use the representation from Part
A. The half-space

{(P.Q)/(X,Q)— (Y, P) >0}

contains the sphere (en). The ball thus delimited contains in general three
“exceptional” closed disks, in other words, disks with exceptional lines above
their points. Each of these is associated with a choice of a “collisional” Zj; it
is situated in the plane (P, Zy) = (Q, Zy) = 0, according to equations (dm);
its radius, if Zy corresponds to the collision of the pair {i,j}, is given by the
formula

o 1 (mymy)?

= ————=" 4 2hg.
Y szi—ij—i_ 0

In fact, the exceptional disk {4, j} is the set of points such that the limit of h
on the line parametrized by (Zp,0) is less than hy. The fact that h increases
along the straight line implies that (P, Q) is in the ball (en). Calculation
of the radius p;; may be carried out as follows. To deduce equation (en)
from (e) in Part A, we multiplied U by C71((X,Q) — (Y, P)). But if we
wish to restrict ourselves to velocities such that (P, Zy) = (Q, Zy) = 0, we
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may replace this expression with the quotient by C' of the expression for the
angular momentum of the pair {i, j}: this quotient equals 1 for the velocities
in question, and has the same homogeneity properties as the previous one.
We thus obtain a variant of equation (en) which yields

IU?

2
Pii = oz + 2hyg,
where I designates %r?j, the moment of inertia of the pair. We must
vt . .
replace U by its limit U = =2 to obtain the desired expression. It is

ij
instructive to compare this with the method from Part A for the problem of
two bodies of masses m; and m;.

But the p;; do not always have positive squares, and it is precisely this
condition that determines the appearance of the exceptional disks, which very
likely change the topology of the level manifolds.

We now proceed to the negative values of energy, starting from zero. To
start with, for every non-collisional planar configuration, there exist three dis-
joint exceptional disks, above which there is an exceptional straight line. For
a collisional planar configuration, we have the exceptional direction Zy = 0
above all the velocities of the half-space, and only two exceptional disks (the
third is sent to the boundary). Next, an exceptional disk disappears each time

(mimy)®
2(m;+m;)C?"
sages, there is a sphere S° above all the non-collisional planar configurations
up to homothety, and two disks D® above the collisional configurations. Next
_ (mamz+mazmy +mims)®

2(mi+ma+m3)C2
figuration, which changes the Hill’s regions, and the three values due to the

collinear equilibria of Euler.

the energy passes through a singular value h = — After three pas-

comes the critical value h = due to Lagrange’s con-

Remark on an Isosceles Problem

We consider the spatial isosceles problem of three bodies symmetric under
rotation by m around the vertical axis. It is clear that it possesses one of
the three critical points at infinity described above, along with one of Euler’s
critical points. It is therefore the simplest case where a change of topology
takes place for one of our singular values. It is easy to see, for example by
applying the method of Part A, that the reduced manifold is S? x R for h
greater than or equal to the singular value, and S3 for h between the singular
value and the critical value.
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