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The symmetric central configurations of four equal masses

Alain Albouy

Abstract. In a relative equilibrium motion in the planar n-body problem, the
configuration is called collinear central or planar central according to its dimension.
We prove, by using a formal calculus program, that there are exactly three types
of planar central configurations of four equal masses.

1. Introduction

We proved in [1] that every planar central configuration of four equal masses
has at least one axis of symmetry. This conclusion was earlier conjectured by R.
Moeckel; indeed, Moeckel even made a bet about this result based on his numer-
ical experiments and even though the statement contradicted an earlier, opposing
statement published by J. Palmore. This last statement has been contested later
in [5].

Once the symmetry has been established, the next problem is to describe the set
of symmetric configurations. There exist three types of such central configurations:

1) the four masses positioned at the vertices of a square,

2) three of the masses placed at the vertices of an equilateral triangle and the fourth
one is located at the center of the triangle,

3) three of the masses are at the vertices of a particular isosceles triangle and the
fourth one is located somewhere on the axis, inside the triangle.

It is clear that the configurations of the first two types are central. The only
difficulty left is to prove that there is one and only one (type of) central configuration
having just one axis of symmetry. The method that we present here is rigorous,
but unfortunately much less satisfactory than the method used in [1] because it
requires the use of a formal calculus program.

2. Preliminary remark on convex configurations

We can improve a result of [1] and prove that the only planar convex central
configuration of four equal masses is the square. Let us recall that a configuration
is called convex if none of the bodies is situated in the interior of the convex hull of
the others. To prove our claim, it is sufficient to examine carefully the arguments
of [1].

The key of that work is, without any doubt, the use of a certain system de-
noted (7). (See [1].) One can a posteriori notice that this system could be deduced
very naturally from the equations of central configurations by forcing a certain in-
variance. Instead, we obtained it after [2], as the definition of the configurations
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équilibrées of four equal masses. These are the configurations of the motions of rel-
ative equilibrium in dimension six. There exist also motions of relative equilibrium
in dimension four and of course two. In every case the configuration is “équilibrée”.

The first proposition of [1] claims that every planar convex central configuration
of four equal masses is symmetric. We obtained this result proving that the signs
of the three terms of equation (71) are not compatible with the equation, when
the configuration is not symmetrical. We make this argument more precise: (71)
is only possible if its two members are zero, that is if d = e and b = c, which also
means ∆3 = ∆4. Now equation (74) cannot be realized neither, as one can check,
when the configuration is not symmetrical, and not even if we set ∆3 = ∆4: we
need b = d and e = c, which also means ∆1 = ∆2. Equation (1) proves then, that
∆1 = −∆4, and (6) leads to the conclusion: the configuration is a square.

3. Equations of central configurations

We consider n bodies in a Euclidean space of dimension n − 2, given by the
vectors ~r1, . . . , ~rn. We express the constraint on the dimension of the affine space
generated by the bodies by saying that there exist real numbers ∆1, . . . ,∆n, not
all zero, such that

n∑
i=1

∆i = 0,(1)

n∑
i=1

∆i~ri = 0.(2)

These equations define the ∆i up to a factor as soon as the ~ri generate the space of
dimension n− 2. There exists a compatible definition of ∆i as the oriented volume
of the simplex generated by the points 1, . . . , i−1, i+ 1, . . . , n, multiplied by (−1)i.
But this fixes an inadequate value of the free factor.

Let us use the squares of the mutual distances sij = ‖~ri − ~rj‖2 and the ∆i

variables to write down the equations of central configurations. The geometrical
relations between the sij and the ∆i are:

(3)
n∑

i=1

∆isik =
n∑

i=1

∆isil, for all k and l.

A configuration of n equal masses of dimension n − 2 is central if and only if the
sij and the ∆i, which verify (1) and (3), also satisfy

(4) s
−3/2
ij = γ + ν∆i∆j .

for some real numbers γ and ν.

4. The case of a configuration of four equal masses

We know that such a configuration, if central, possesses an axis of symmetry
which includes two of the bodies, for example 1 and 2. This symmetry is equivalent
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to the simple equality ∆3 = ∆4, as shown by equation (4). We denote

a = s12, f = s34, b = s13 = s14, d = s23 = s24.

Equation (1) then becomes ∆1 + ∆2 + 2∆3 = 0. We introduce, instead of the ∆i,
only one parameter t by writing

∆1 = −t− 1, ∆2 = t− 1, ∆3 = 1.

System (3) then becomes

4b = f + (1− t)2a, 4d = f + (1 + t)2a,

and (4) becomes

a−3/2 = γ + ν(1− t2),

f−3/2 = γ + ν,

b−3/2 = γ − ν(1 + t),

d−3/2 = γ − ν(1− t).

We put a = 1, which is a choice on the scaling of the configuration. We also put
f = z2, and we express γ and ν using both equations on the left side of the system
above. We obtain

ν =
z−3 − 1

t2
and γ = z−3

(
1− 1

t2

)
+

1

t2
.

We put

P (z, t) = z3t2b−3/2 = (t− 2)(t+ 1) + (2 + t)z3,

Q(z, t) = 4b = z2 + (1− t)2.

We must have

R(z, t) = P 2Q3 − 64z6t4 = 0.

An analogous manipulation with d shows that R(z,−t) = 0, so that the complete
system is now written as

R(z, t) = R(z,−t) = 0,

or, forgetting the trivial solution with t = 0 (the square),

Ri(z, t) = Rp(z, t) = 0,

the polynomials Ri and Rp being defined by

Ri(z, t) =
1

2t

(
R(z, t)−R(z,−t)

)
, Rp(z, t) =

1

2

(
R(z, t) +R(z,−t)

)
.
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These two polynomials are, putting u = t2,

Ri =2(z3 − 4)u4 − 2(z6 − 3z5 − 5z3 + 9z2 + 14)u3

+ 2(3z7 + 8z6 − 6z5 − 6z4 − 41z3 + 30)u2

+ 2(z3 − 1)(3z7 + z6 + 6z5 − 12z4 − 13z3 − 27z2 + 2)u

+ 4(z2 − 5)(z3 − 1)2(z2 + 1)2,

Rp =u5 + (z6 − 10z3 + 3z2 + 24)u4

+ (3z8 − 5z6 − 18z5 + 3z4 + 30z3 + 33z2 − 10)u3

+ (3z10 − 18z8 − 6z7 − 68z6 + 84z5 + 6z4 + 58z3 − 63z2 − 52)u2

+ (z3 − 1)(z2 + 1)(z7 − 10z5 + 3z4 + 37z3 + 18z2 − 33)u

+ 4(z3 − 1)2(z2 + 1)3.

We give now the decomposition as a product of irreducible factors of the resultant
S(z) in u of the two polynomials. We did not decompose z3 − 1, to abbreviate.

S =− 262144z12(z3 − 1)4(z2 − 3)(z2 + 1)3(z37 − 61z34 + 336z33 − 240z32

+ 2052z31 − 12120z30 + 8400z29 − 30456z28 + 175113z27 − 88548z26

+ 241040z25 − 1364385z24 + 338994z23 − 1081984z22 + 6241506z21

+ 642162z20 + 2319507z19 − 15790278z18 − 12287376z17

+ 1386909z16 + 11212992z15 + 55894536z14 − 19889496z13

+ 53738964z12 − 128353329z11 + 44215308z10 − 172452240z9

+ 160917273z8 − 42764598z7 + 217615248z6 − 115440795z5

+ 17124210z4 − 139060395z3 + 39858075z2 + 39858075).

The factor z2 − 3 corresponds to the equilateral triangle solution. Ilias Kotsireas
noticed that only the factor (z2 + 1)3 disappears when we consider the analogous
problem of 5 bodies in space. The last factor, of degree 37, gives the non-trivial
solution, the one with only one axis of symmetry. Sturm algorithm proves that this
factor has exactly three real roots, whose approximated values are:

z1 = −1.41423178... z2 = 1.04689938... z3 = 1.71400032...

We exclude z1, which is negative, and z2, which gives as a common root u2 of Ri

and Rp the approximated value −4.18466433 which does not correspond to a real
value of the t variable. Only z3 remains, giving a value of t at about 2.11474891
and values of the sides

√
a = 1√
f = 1.71400032...

√
b = 1.02230893...
√
d = 1.77760076...

Remark. Let us justify the order of elimination of the variables. The factor
of degree 37 is intrinsically associated to the square root of the ratio f/a for the
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unique solution having just one axis of symmetry. The choice of this particular
variable is not immaterial: all the other variables that we tried (u, f/a, γ...) are
associated with polynomials of degree 37 or 74 with much bigger coefficients. More-
over, the choice of eliminating u rather than another variable at the last step of the
computation seems to optimize the total degree of the resultant.

5. The problem of four equal vortices

The first studies of relative equilibria in the idealized problem of vortices are
probably due to W. Thomson. Reference [6] discusses an astonishing method to
obtain them, that we see at work in [3]. These relative equilibria are also (see [4])
the planar central configurations for the logarithmic potential: to define them, it is
enough to replace by −1 the exponent −3/2 in the equations (4). The symmetry
result [1] is still valid, and the research of configurations of four equal masses with
just one symmetry is much simpler, becoming accessible to calculus by hand. One
shows that such configuration does not exist. As a matter of fact, as the exponent
moves along the interval (−3/2,−1), the continuation of the non-trivial planar
central configuration goes to the equilateral triangle, which becomes a “double
root”. The same phenomenon also appears with the −1/2 exponent. For the
exponent −1, we get

Ri = (f − 3)(f − 1 + u),

Rp = (2f − u− 2)(f − u+ 1),

S = 6(f − 3)2(f − 1)f.

We conjecture, with Carles Simó, that there is only one solution with just one axis
of symmetry, for any negative value of the exponent, except for the two cases of
degeneracy just mentioned.

I wish to acknowledge Robert Conte, for the precious information he gave me
about the problem of vortices and Alain Chenciner for his participation on this
work as well as on [1].
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