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1st lecture. Calculus of variations in the convex case (local struc-
tures).

From Euler-Lagrange equations to the Poincaré-Cartan integral invariant,
the Legendre transform and Hamilton’s equations.
Exercices. Flows, differential forms, symplectic structures
2nd lecture. The Hamilton-Jacobi equation.

The solutions of Hamilton’s equations as characteristics. Lagrangian sub-
manifolds and geometric solutions of the Hamilton-Jacobi equation. Caus-
tics as an obstruction to the existence of global solutions to the Cauchy
problem.
Exercices. The geodesic flow on a torus of revolution as an example of a
completely integrable system
3rd lecture. Minimizers.

Weierstrass theory of minimizers. Minimizing KAM tori, Existence of min-
imizers (Tonelli’s theorem) and the Lax-Oleinik semi-group.
Exercices. Examples around the pendulum
4th lecture. Global solutions of the Hamilton-Jacobi equation

Weak KAM solutions as fixed points of the Lax-Oleinik semi-group; con-
vergence of the semi-group in the autonomous case. Conjugate weak KAM
solutions.
Exercices. Burger’s equation and viscosity solutions.
5th lecture. Mather’s theory. Class A geodesics and minimizing mea-
sures. The α and β functions as a kind of integrable skeleton
Exercices. The time-periodic case as a generalization of Aubry-Mather the-
ory, Birkhoff billiards, Hedlund’s example in higher dimension.
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1st lecture. Calculus of variations in the convex case (local struc-
tures).

General convexity hypotheses. M = ITI n = IRn/ZZn is the n-dimen-
sional torus (the theory works with an arbitrary compact manifold but the
torus will allow us to work with global coordinates). The C∞ (C3 would
be enough) Lagrangian L(q, q̇, t)

L : T ITI n × IR = ITI n × IRn × IR → IR

will be assumed to satisfy the “Mather” hypotheses (the third one will be
explained later : it is only in case L depends effectively on the time variable
t that it is not automatically satisfied) :

1) L is strictly convex in q̇, that is (in the sense of quadratic forms) :

∀q, q̇, t,
∂2L

∂q̇2
(q, q̇, t) > 0;

2) L is superlinear in q̇ :

∀C ∈ IR,∃D ∈ IR, ∀q, q̇, t, L(q, q̇, t) ≥ C||q̇|| − D,

that is lim||q̇||→∞
L(q,q̇,t)
||q̇|| = +∞ uniformly in (q, t).

3) the Euler-Lagrange flow associated to L is complete.

Path. A C0 and piecewise C1 mapping γ : [a, b] → ITI n. When only minima
of the action are concerned, it is more natural to work with absolutely
continuous paths.
Action. To a path γ, one associates its action

AL(γ) =
∫ b

a

L(γ(t), γ̇(t), t) dt.

Variation. A variation of γ is a mapping from ] − ε, ε[×[a, b] to ITI n,

(u, t) �→ Γ(u, t) = γu(t), such that

1) γ0 = γ;
2) ∀u, γu is a path;
3) ∂Γ/∂u is continuous;
4) there exists a subdivision of [a, b] into subintervals [τi, τi+1] such that
∂2Γ/∂u∂t and ∂2Γ/∂t∂u are continuous (and hence equal) on the rectangles
] − ε, ε[×[τi, τi+1].

Infinitesimal variation. It is the vector-field on ITI n along γ defined by

X(t) =
∂Γ
∂u

(0, t).
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Figure 1

It is C0 and piecewise C1, and vanishes at a and b. The set of all these
infinitesimal variations plays the rôle of the tangent space to the “manifold
of paths”.
Computing the derivative of the function u �→ AL(γu) via an integration
by parts, one gets

dAL(γ)X =
∫ b

a

[
∂L

∂q̇

(
γ(t), γ̇(t), t

)
−

∫ t

a

∂L

∂q

(
γ(s), γ̇(s), s

)
ds

]
· Ẋ(t) dt.

The following lemma is classical :

Lemma (Erdmann). Let ϕ : [a, b] → R be continuous except possibly at

a finite set of points. If
∫ b

a
ϕ(t)ψ̇(t)dt = 0 for every C0 and piecewise C1

function ψ : [a, b] → IR, which vanishes at a and b, the function ϕ coincides

with the constant 1
b − a

∫ b

a
ϕ(t)dt at each point of continuity.

Extremals. The paths γ such that dAL(γ)X = 0 for any infinitesimal
variation X.
Euler-Lagrange equations (integral form). One deduces from the
Erdmann lemma that a path γ is an extremal iff there exist constants
Ci , i = 1, 2 · · ·n, such that, for i = 1, 2 · · ·n,

∂L

∂q̇i

(
γ(t), γ̇(t), t

)
=

∫ t

a

∂L

∂qi

(
γ(s), γ̇(s), s

)
ds + Ci . (E′)

Legendre mapping. The “general hypotheses” we made on L imply that
the Legendre mapping

Λ : T ITI n × IR = ITI n × IRn × IR → (IRn)∗ × ITI n × IR = T ∗ITI n × IR

defined by

Λ(q, q̇, t) = (p, q, t), p =
∂L

∂q̇
(q, q̇, t),

is a global diffeomorphism ( strict convexity for all p of q̇ �→ L(q, q̇, t)−p · q̇
implies the injectivity of Λ and surlinearity implies that it is proper, hence
surjective). One says that L is globally regular. Using equations (E′), this
implies immediately the
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Regularity lemma. Any extremal is as regular as L,

and the following form of equations (E′) :
Euler-Lagrange equations (differential form).

d

dt

(
∂L

∂q̇i

(
γ(t), γ̇(t), t

))
=

∂L

∂qi

(
γ(t), γ̇(t), t

)
, i = 1, · · · , n. (E)

This amounts to computing dAL(γ)·X by the “other” integration by parts,
which is permitted because γ is regular.
Intrinsic character of equations (E) : the Euler-Lagrange flow. It
follows from the fact that Λ is a diffeomorphism that these equations define
(time-dependant if L is) vector-fields XL in T ITI n and X∗

H in T ∗ITI n (the
notation X∗

H will be explained below). These vector-fields are intrinsically
defined (i.e. they do not depend on the choice of local or global coordinates
on ITI n). Their flows will both be called the Euler-Lagrange flow.
Indeed, their variational origin implies that the Euler-Lagrange equations
(E) take exactly the same form in any local or global coordinate system.
In other words, the mapping [L]γ : [a, b] → T ∗ITI n defined by

[L]γ(t) =
∂L

∂q

(
γ(t), γ̇(t), t

)
− d

dt

(
∂L

∂q̇

(
γ(t), γ̇(t), t

))
∈ T ∗

γ(t)ITI
n

is an intrinsically defined field of covectors tangent to ITI n “along γ” and
the derivative of the action can be written

dAL(γ) · X =
∫ b

a

[L]γ(t) · X(t) dt.

Unconstrained variations and the Poincaré-Cartan integral in-
variant. The main structures of classical mechanics can be deduced from
a single computation : the variations of the action when no constraints are
imposed on the extremities of the paths γu or on their intervals of definition
[a(u), b(u)]. We note Xu(t) = ∂q

∂u
= ∂Γ

∂u
(u, t) the infinitesimal variations.

d

du

(
AL

(
γu

))
=

d

du

∫ b(u)

a(u)

L (γu(t), γ̇u(t), t) dt

=
∫ b(u)

a(u)

[(
∂L

∂q
− d

dt

∂L

∂q̇

) (
γu(t), γ̇u(t), t

)]
· Xu(t) dt

+
∂L

∂q̇

(
γu(t), γ̇u(t), t

)
· Xu(t)

∣∣∣
t=b(u)

− ∂L

∂q̇

(
γu(t), γ̇u(t), t

)
· Xu(t)

∣∣∣
t=a(u)

+ L
(
γu(t), γ̇u(t), t

) db

du
(u)

∣∣∣
t=b(u)

− L
(
γu(t), γ̇u(t), t

)da

du
(u)

∣∣∣
t=a(u)

,

a formula that we shall abreviate in

dAL

du
=

∫ b

a

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· ∂q

∂u
dt +

[
∂L

∂q̇
· ∂q

∂u
+ L

dt

du

]b

a

.
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If, in particular, γu is a family of extremals of
∫

L dt, we get

dAL

du
=

[
∂L

∂q̇
· ∂q

∂u
+ L

dt

du

]b

a

.

We replace now the partial derivative ∂q
∂u (that is ∂Γ

∂u ), deprived of geometric
meaning, by the “effective variation”

d

du

(
Γ
(
u, t(u)

))
=

dq

du
=

∂q

∂u
+

∂q

∂t

dt

du
=

∂q

∂u
+ q̇

dt

du
, t(u) = a(u) or b(u),

of the extremities of the path γu as a fonction of u. (figure 2.1). This
transforms the expression of d

du (AL(γu)) for a family of extremals into an
identity between differential 1-forms on the interval U of definition of the
parameter u :

Figure 2

dAL = δ∗b 
L − δ∗a
L,

where δa, δb : U → T ∗ITI n × IR denote the mappings

δt(u) =
(

Γ
(
u, t(u)

)
,
∂Γ
∂t

(
u, t(u)

)
, t(u)

)
, t(u) = a(u) or b(u),

and 
L is the differential 1-form on T ITI n × IR defined by


L =
∂L

∂q̇
(q, q̇, t) · dq −

(
∂L

∂q̇
(q, q̇, t) · q̇ − L(q, q̇, t)

)
dt.

Finally, we can simplify the formulas by transporting everything on the
cotangent side with the Legendre diffeomorphism Λ. The function on
T ∗ITI n × IR defined by

H(p, q, t) = p · q̇ − L(q, q̇, t),
where q̇ is expressed in terms of p, q, t via Λ is called the Legendre transform
of L, or the Hamiltonian associated to the Lagrangian L. If 
H denotes
the 1-form on T ∗ITI n × IR defined by


H = p · dq − H(p, q, t)dt,

the formula for the unconstrained variations of extremals becomes
dAL = (Λ ◦ δb)∗
H − (Λ ◦ δa)∗
H .

The 1-form 
H is the Poincaré-Cartan integral invariant (tenseur impul-
sion-énergie in Cartan’s terminology).
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Rewriting the action. The action istself can now be written as the
integral of 
H = p · dq −Hdt on the lift Γ∗(t) =

(
∂L
∂q̇

(γ(t), γ̇(t), t), γ(t), t
)

to T ∗ITI n × IR of the path γ(t) in ITI n :

AL(γ) =
∫

Γ∗

H .

This expression is the basis of Hamilton’s least action principle.

From the integral invariant to the symplectic structure.
A paraphrase of equations (E) is that a path t �→ γ(t) in ITI n is an extremal
if and only if the parametrized curve in T ∗ITI n × IR

t �→
(

∂L

∂q̇

(
γ(t), γ̇(t), t

)
, γ(t), t

)
= Λ

(
γ(t), γ̇(t), t

)
is an integral curve of the (time-dependant) vector-field

Ξ∗
H = (X∗

H , 1) = Λ∗(XL, 1)

on T ∗ITI n × IR. The last formula of the preceding section then implies that,
if Ca and Cb are two oriented loops in T ∗ITI n × IR, such that Cb −Ca is the
oriented boundary of a cylinder C generated by pieces of of integral curves
of Ξ∗

H = (X∗
H , 1), one has∫

Ca

p · dq − H(p, q)dt =
∫

Cb

p · dq − H(p, q)dt .

Figure 3

In Cartan’s terminology, 
H = p · dq − Hdt is a relative and complete
integral invariant : relative because its invariance holds only if the integral
is taken on loops Ci, complete because Ca and Cb are not supposed to be
contained in slices where t is constant (i.e. Cb is not supposed to be the
image of Ca under the element ϕb

a of the flow of Ξ∗
H .

Applying Stokes formula to small disks Da et Db contained respectively in
the time slices T ∗ITI n × {a} and T ∗ITI n × {b} and such that Db = ϕb

a(Da) is
the image of Da under the flow of Ξ∗

H , one gets the
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Theorem. The time-dependant vector-field X∗
H defined on T ∗ITI n, pre-

serves the standard symplectic 2-form ω =
∑n

i=1 dpi ∧ dqi.

A corollary of the preservation of the symplectic structure is

Liouville theorem. The flow of the time-dependant vector-field X∗
H pre-

serves the 2n-form ωn, hence the Lebesgue measure (volume).

The Hamilton equations. We deduce now the structure of the vector-
field X∗

H (i.e. the structure of the Euler-Lagrange equations (E) seen from
the cotangent side) from the following characterization of integral invari-
ants :
(K) The 1-form 
H is an integral invariant of the vector-field Ξ∗

H if and
only if, at each point (p, q, t) ∈ T ∗ITI n × IR, the vector Ξ∗

H(p, q, t) belongs to
the kernel of the bilinear form d
H(p, q, t), i.e. if iΞ∗

H
d
H = 0.

The proof is a consequence of Stokes formula applied to oriented cylinders.
This determines the direction of Ξ∗

H , hence X∗
H , because the kernel of

d(p · dq − Hdt) =
n∑

i=1

[(
dpi +

∂H

∂qi
dt

)
∧

(
dqi −

∂H

∂pi
dt

)]
,

is easily seen to be 1-dimensional and generated at each point (p, q, t) by
the vector

(
−∂H

∂q
(p, q, t), ∂H

∂p
(p, q, t), 1

)
.

Finally, we get

X∗
H =

(
−∂H

∂q1
, · · · − ∂H

∂qn
,
∂H

∂p1
, · · · ∂H

∂pn

)
.

Hence, when transported in T ∗ITI n by the Legendre diffeomorphism, the
Euler-Lagrange equations (E) take the particularly symmetric form of the
Hamilton’s equations (or canonical equations) :

dpi
dt

= −∂H
∂qi

, i = 1 · · ·n,

dqi
dt

= ∂H
∂pi

, i = 1 · · ·n .

As the equations depend only on H, this justifies the notation X∗
H .

Symplectic changes of coordinates. If Φ(p, q) = (a, b) is symplectic,
that is if dp∧dq = da∧db (or more correctly Φ∗(ω) = ω), the direct image
of the Hamiltonian vector-field X∗

H is the Hamiltonian vector-field X∗
H◦Φ−1 .

The Legendre transform in the convex case. It follows from Hamil-
ton’s equations that the Legendre transform L �→ H is involutive :

H(p, q, t) = p · q̇ − L(q, q̇, t), p = ∂L
∂q̇

(q, q̇, t),

L(q, q̇, t) = p · q̇ − H(p, q, t), q̇ = ∂H
∂p

(p, q, t).
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This symmetry makes it natural to write it in the following form, where
the variables (q, t) play the role of mere parameters :

p · q̇ = L(q, q̇, t) + H(p, q, t).

The convexity of q̇ �→ L(q, q̇, t) is equivalent to that of p �→ H(p, q, t) and if
a function satisfies the general convexity hypotheses, so does its transform.

Young-Fenchel inequality. For all q, t, q̇, p, the following holds :

p · q̇ ≤ L(q, q̇, t) + H(p, q, t),

with equality if and only if p =
∂L

∂q̇
(q, q̇, t).

Figure 4 illustrates in dimension 1 this variational definition of the Legendre
transform. One also reads on this figure the interpretation of the transform
as the passage from a punctual to a tangential equation.

Figure 4

Autonomous Lagrangians. These are the Lagrangians L(q, q̇) which do
not depend explicitely on the time. It follows from Hamilton’s equations
that the (autonomous) vector-field X∗

H preserves the Hamiltonian H. In
mechanics, this is the preservation of the total energy.
An elegant way of proving this property is to notice that the property (K),
that is iΞ∗

H
d(p · dq − Hdt) = 0, is equivalent to

iX∗
H

ω = −dH,

where ω is the symplectic form (in the time-dependant case, one must
replace dH by ∂H = dH− ∂H

∂t ). Hence X∗
H is characterized by the property

that, for any vector field Y on T ∗ITI n, one has

ω(X∗
H , Y ) = −dH · Y.

By analogy with the gradient of a Riemannian metric, one calls X∗
H the

symplectic gradient of H. The conservation of energy amounts now to the
identity

LX∗
H

H = dH(X∗
H) = −ω(X∗

H , X∗
H) = 0.
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An important feature of autonomous Hamiltonian systems is that up to
the parametrization, integral curves of the flow of X∗

H are completely de-
termined by the sole geometry of the level hypersurfaces of H : this is clear
on figure 5 : the direction of gradωH depends only on the direction of
gradH and not on its length or orientation.

Figure 5 (H and K are regular equations of H−1(h) = K−1(k) at x)

From time-dependant to time-independant. A time-dependant sys-
tem can always be embedded into a time-independant one at the expense of
adding dimensions and loosing track of time origin : indeed, the vector-field
X∗

K on T ∗(ITI n × IR) corresponding to the extended Hamiltonian

K(p, E, q, τ) = E + H(p, q, τ)

restricts to Ξ∗
H = (X∗

H , 1) when one identifies the energy hypersurface
K−1(0) with T ∗ITI n × IR. This extension may be useful even if H does not
depend on time : because of the last component equal to 1, the geometry
of the energy hypersurface K ≡ E + H(p, q, t) = 0 determines completely
the vector-field Ξ∗

H , hence X∗
H .

The example of classical mechanics. The Lagrangian is the difference

L(q, q̇) =
1
2

q̇ · G(q)q̇ − V (q) =
1
2
g(q)(q̇, q̇) − V (q)

between kinetic and potential energy. The kinetic energy is defined by a
Riemannian metric g on M = ITI n, that is for each q a positive definite
quadratic form g(q), represented by a symmetric matrix G(q). When there
is no potential V , the extremals are the geodesics of the metric. The Legen-
dre transform p = G(q)q̇ defines the conjugate momenta (the impulsions) pi

of the configuration variables qi, the
∂L

∂qi
are the forces and the Hamiltonian

is total energy, i.e. the sum of kinetic and potential energy

H(p, q) =
1
2

q̇ · G(q)q̇ + V (q) =
1
2
p · G(q)−1p + V (q).
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2nd lecture. The Hamilton-Jacobi equation.

A very simple completely integrable system : the geodesic flow
of a flat torus. The Lagangian L : T ∗ITI 2 = IR2/(2πZZ )2 × IR2 → IR is
L(q, q̇) = 1

2 ||q̇||2. We shall write the coordinates q = (ϕ, ψ) and q̇ = (ϕ̇, ψ̇)
(figure 6).

Figure 6

The Euler-Lagrange equation (E) is q̈ = 0 and the extremals, the geodesics
of ITI 2, are the images by the canonical projection of the straight lines of IR2

with an affine parametrization. The Legendre diffeomorphism is defined by
p = q and fixing the energy H(p, q) = 1

2 ||p||2 amounts to fixing the norm
of the velocity. If the energy is different from 0, the energy hypersurface is
diffeomorphic to ITI 3 = (IR/2πZZ )3. The flow is depicted on figure 7.

Figure 7

The whole phase space T ITI 2 (or T ∗ITI 2) is foliated by the 2-dimensional tori
q̇ = constant (or p = constant) which are invariant under the flow of XL

(or X∗
H). On these tori, the vector-field is constant (the flow is a flow of

tranlations) and, depending on the rationality or irrationality of ψ̇/ϕ̇, the
integral curves on the torus are all periodic or all dense.
Notice that the tori on which the integral curves are dense have a dynamical
definition, as the closure of any of the integral curves they contain. This is
not the case of the “periodic” tori which are a mere union of closed integral
curves.
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Opening of a resonance : the geodesic flow of a torus of revolution.
We embed the 2-torus ITI 2 = IR2/(2πZZ )2 in IR3 by the mapping (r < 1)

(ϕ, ψ) �→
(
(1 + r cos ψ) cos ϕ, (1 + r cos ψ) sinϕ, r sinψ

)
.

The image is invariant under rotation around the z axis. The extremals of
the Lagrangian

L(ϕ, ψ, ϕ̇, ψ̇) =
1
2

(
(1 + r cos ψ)2ϕ̇2 + r2ψ̇2

)
are the geodesics of the induced metric, parametrized proportionnally to
arc length.
The Euler-Lagrange equations are d

dt

(
1 + r cos ψ)2ϕ̇

)
= 0 ,

d
dt

(
r2ψ̇

)
= −r sinψ(1 + r cos ψ)ϕ̇2.

The first expresses the invariance under rotation around Oz and can be
interpreted as the conservation of angular momentum around Oz. It is
the analogue of the conservation of the angle θ in the flat case. Fixing the
energy is fixing the velocity and the non-zero energy levels are diffeomorphic
to the unit tangent bundle T 1ITI 2 ≡ ITI 3 with global angular coordinates
(ϕ, ψ, θ) defined by choosing as third coordinate the riemannian angle θ : ϕ̇ = cos θ

1 + r cos ψ
,

ψ̇ = sin θ
r .

The first Euler-Lagrange equation becomes the constancy of the Clairaut
integral :

(1 + r cos ψ) cos θ = constant.

Figures 9 represents the level curves of this function in the plane (ψ, θ).
Figure 8 represents the level curves of the function θ, which plays for the
flat torus the role of the Clairaut integral.

Figure 8 figure9
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In the coordinates (ϕ, ψ, θ), the equations become
dϕ
dt

= cos θ
1 + r cos ψ

,

dψ
dt

= sin θ
r ,

dθ
dt

= − cos θ sinψ
1 + r cos ψ

.

Because of the invariance under rotation, they are independant of ϕ, hence
they admit a direct image in the torus (ψ, θ) which consists in forgetting
the first equation. The same is of course true for the flat metric. The
integral curves of this direct image are contained in the level curves of the
Clairaut integral, which explains the arrows of figures 8 and 9.
In each open band θ ∈ ] − π

2 + kπ, π
2 + kπ[ , k ∈ ZZ , the flow looks qual-

itatively like the flow of a conservative pendulum. The rotations of the
pendulum correspond to integral curves belonging to invariant tori which,
as in the flat case, project biunivocally onto the configuration torus (ϕ, θ)
(figure 10),

Figure 10

while oscillations correspond to integral curves belonging to invariant tori
which project neither injectively nor surjectively but on an annulus whose
boundary is a caustic (figure 11). These tori fill the resonance zone.

Figure 11

As in the flat case, in each of these invariant tori, integral curves are either
all periodic or all dense.
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A new feature is the existence in each non-zero energy level of 4 isolated
periodic solutions, which correspond to the 2 geodesics defined by the in-
tersection of the torus with the plane z = 0, each one with two possible
directions of velocity. The inner one (ψ = π, θ = 0 or ψ = π, θ = π) is
hyperbolic hence unstable. The set of integral curves with the same energy
which are positively (negatively) asymptotic to it define the stable (unsta-
ble) manifold of this periodic orbit. These sets happen to coincide here. A
corresponding geodesic is represented on figure 12. Their union is a surface
which makes the transition between the two kinds of invariant tori oustside
and inside the resonance zone.

Figure 12

The outer one (ψ = 0, θ = 0 or ψ = 0, θ = π) is elliptic, hence stable. In
its energy level, it is “surrounded” by invariant tori.
We have now two kinds of invariant sets dynamically defined : the invariant
tori with dense integral curves and the stable = unstable manifolds of the
hyperbolic periodic solutions.

Lagrangian submanifolds of T ∗ITI n. In both exemples above, most of
the phase space T ∗ITI 2 is foliated by invariant tori on which the flow of X∗

H

can be shown to be a flow of translations in well chosen coordinates. This
is obvious for the flat torus and a consequence of the invariance under
rotation for the torus of revolution. The existence of such a foliation is
a characteristic feature of the so-called completely integrable autonomous
Hamiltonian systems. The following lemma shows that these tori are very
special :

Lemma. If the restriction of the flow of X∗
H to an invariant torus T is a

flow of translations with dense orbits, T is isotropic, i.e. if j is its canonical
injection in T ∗ITI n, the pull-back j∗ω of the canonical symplectic form is
identically zero.

The proof is a consequence of the fact that ω = dλ, where λ =
∑n

i=1 pidqi

is the Liouville form on T ∗ITI n. If j∗ω =
∑

i<j aij(u1, · · · , uk)dui ∧ duj in
coordinates u1, · · · , uk on T such that the flow of X∗

H becomes a flow of
translations Φt(u) = u+tv, the fact that Φ∗ω = ω implies that the functions
aij are constant along the integral curves contained in T (this would not
be the case if dΦt(u) was not the Identity). As these integral curves are
dense, the aij are constant, hence equal to 0 because j∗ω = d(j∗λ) is a
coboundary.
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Notice that in the completely integrable cases that we studied above, an
easy argument of continuity implies that all invariant tori (and not only the
ones with dense integral curves), and also the stable = unstable invariant
manifolds of the hyperbolic periodic solutions, share the property j∗ω = 0.
This property will play a fundamental role in the sequel :

Definition-Proposition. A submanifold V of T ∗ITI n is called isotropic if
j∗ω = 0, where j : V → T ∗ITI n is the canonical inclusion. The dimension of
an isotropic submanifold is at most n. If it is equal to n, the submanifold
is called Lagrangian.

The bound on the dimension is an exercise in symplectic algebra : at each
point (p, q), the bilinear form ω(p, q) is non degenerate, hence an isotropic
subspace (i.e. a linear subspace contained in its orthogonal) is at most of
dimension 2n/2 = n.

Each invariant Lagrangian submanifold that we found in the integrable
examples is contained in a single energy level. This is a consequence of
the conservation of energy when the submanifold is the closure of a single
solution and the others follow by continuity. This property has a very
important converse :

Proposition. let H : T ∗ITI n be an autonomous Hamiltonian. Every La-
grangian submanifold V of T ∗ITI n contained in a regular energy level H−1(h)
is invariant under the flow of X∗

H .

The proof is again an exercise in symplectic algebra : because of the maxi-
mality of the dimension of V among isotropic submanifolds, it is enough
to show that at each point m ∈ H−1(h), the vector X∗

H(m) belongs to (in
fact generates) the kernel of i∗hω(m) = d(i∗hλ)(m), where ih is the canonical
injection of H−1(h) in T ∗ITI n and λ = p · dq is the Liouville form. Indeed, if
X∗

H(m) was not contained in TmV , the linear subspace genrated by X∗
H(m)

and TmV would be isotropic of dimension n + 1, a contradiction.
We have already proved this when X∗

H |H−1(h) is replaced by Ξ∗
H , H−1(h)

is replaced by K−1(0) ≡ T ∗ITI n × IR ⊂ T ∗(ITI n × IR), and the 1-form i∗hλ is
replaced by the Poincaré-Cartan integral invariant p · dq − Hdt. As this is
the only case that we need, we leave the general assertion as an exercise.

Remark. A Hamiltonian flow is a very particular one as it preserves the
symplectic 2-form ω, hence in particular the volume. Its restriction to a
Lagrangian submanifold V , on the contrary, does not satisfy any a priori
constraint : every vector-field X on V is the restriction of a Hamiltonian
flow defined on a neighborhood of V . The simplest example is obtained
when V ≡ ITI n is the zero-section p = 0 of T ∗ITI n : if X(q) is vector-field on
V , the Hamiltonian H(p, q) = p · X(q) is such that the restriction of X∗

H

to V coincides with X (but it is not convex in p !).
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Lagrangian graphs and the Hamilton-Jacobi equations. All invari-
ant tori of the geodesic flow of a flat torus are graphs of a mapping q �→ p(q),
that is sections of the projection (p, q, ) �→ q. For the torus of revolution,
only those not contained in the resonance zone are graphs in the same way.
The invariant manifolds of the hyperbolic periodic solutions are the union
of two pieces, each of which is a graph.

Lemma. If the Lagrangian submanifold V of T ∗ITI n = (IRn)∗ × ITI n is a
graph, it is the graph of a mapping of the form p = a + ds(q), where
a = (a1, · · · , an) ∈ (IRn)∗ and s : ITI n → IR.

The proof is an easy calculation : the graph V of the mapping q �→ p(q) is

Lagrangian if and only if the 2-form
∑n

i=1 dp(q)∧dq =
∑

i,j
∂pi
∂qj

(q)dqj ∧dqi

on ITI n is identically 0. But this means that ∂pi
∂qj

(q) = ∂pj

∂qi
(q) for all i, j.

This implies that there exists a function σ : IRn → IR such that for all i,
pi(q) = ∂σ

∂qi
(q). Hence there exist constants ai (the periods of σ) and a

function s : ITI n → IR such that for all i, pi(q) = ai + ∂s
∂qi

(q).

Corollary. A Lagrangian graph V contained in the energy level H−1(h)
of an autonomous Hamiltonian is of the form {(p, q), p = a + ds}, where s
is a solution of the partial differential equation H(a + ds(q), q) = h.

Definition. The time-independant Hamilton-Jacobi equations associated
to the Hamiltonian H(p, q) are the equations of the form H(ds(q), q) = h.
The time-dependant Hamilton-Jacobi equation associated to the Hamilto-

nian H(p, q, t) is the equation ∂S
∂t

(q, t) + H(∂S
∂q

(q, t), q, t) = 0. After iden-

tification of K−1(0) with T ∗ITI n×IR, it is nothing but the time-independant
Hamilton-Jacobi equation K(dS(q, t), q, t) = 0, where K is defined by
K(p, E, q, τ) = E + H(p, q, τ).

The modified Hamiltonian and Lagrangian. According to the above
Corollary, each Lagrangian graph contained in an energy level of an au-
tonomous Hamiltonian is the graph of the derivative of a solution of the
Hamilton-Jacobi equation associated to a Hamiltonian

Ha(p, q) = H(a + p, q)

where a ∈ (IRn)∗ should indeed be thought of as a cohomology class in
H1(ITI n, IR). Such a Hamiltonian is easily seen to be the Legendre transform
of the Lagrangian

La(q, q̇) = L(q, q̇) − a · q̇ = L(q, q̇) −
n∑

i=1

aiq̇i,

which satisfies the same hypotheses as the original one.
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Solving geometrically the Cauchy problem for the Hamilton-Jaco-
bi equation. We shall be mostly interested in the time-dependant equa-
tion. The solution is contained in the figure 13 which explains how singu-
larities (caustics) do occur which prevent the existence of a global solution
as a function but allow for the existence of a “multiform” solution whose
graph is a Lagrangian submanifold of K−1(0) ≡ T ∗Tn × IR ⊂ T ∗(Tn × IR).
The initial condition at time t0 being a function u : ITI n → IR, the graph
of this multiform solution is the union of the images of the graph of du(q)
under the flow of Ξ∗

H .

Figure 13

Figure 14 illustrates the resolution of the Cauchy problem for the time-
independant Hamilton-Jacobi equation associated to the geodesic flow of
the standard flat metric on IR2 (or ITI 2). The Cauchy data is chosen to be
constant on a hypersurface F . The rays, projections of the integral curves
contained in the graph of the multiform solution, are the straight lines
(geodesics) orthogonal to F . They form what is classically called a field
of extremals. The level hypersurfaces of the solution are the wave fronts.
They are equidistant and everywhere orthogonal to the rays. This is the
classical duality between waves and rays. In this case, the caustic is the
envelope of the rays, that is the envelope of the normals to F (evolute).

Figure 14
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KAM and weak KAM. Finally, finding invariant tori under X∗
H which

are Lagrangian graphs in the energy level H−1(h) of an autonomous Hamil-
tonian is the same as finding GLOBAL solutions of the Hamilton-Jacobi
equations associated to the Hamiltonians Ha.
Such solutions do not exist in general but the K.A.M. theory asserts that a
Cantor set of global solutions exists when H is a small Ck-perturbation of
a completely integrable Hamiltonian (k not too small). The weak K.A.M.
theorem of Fathi asserts that such solutions exist in a weak sense (a priori
the funtion u is only Lipshitz and it is a viscosity solution of the equation
in the sense of Lions, Papanicolaou, Varadhan, who had already proved the
theorem in the case of the torus) as long as the convexity hypotheses on H
(or L) are satisfied. These weak solutions define semi-invariant sets which
contain as invariant subsets the so-called Mather sets, which generalize to
any dimension the Hedlund-Aubry-Mather theory.

Characteristics. Coming back to the time-dependant Hamilton-Jacobi
equation, i.e. to figure 13, we shall call characteristics associated to a
geometrical (i.e. a priori multivalued) solution S(q, t), the projections on
space-time ITI n × IR of the integral curves of Ξ∗

H contained in the “graph”
GS ⊂ T ∗ITI n × IR of the space derivative (q, t) �→ ∂S

∂q
(q, t). If we iden-

tify T ∗ITI n × IR with K−1(0), where K is the extended Hamiltonian on
T ∗(ITI n × IR), GS becomes a Lagrangian submanifold of T ∗(ITI n × IR). The
characteristics are the graphs of the solutions t �→ q(t) of the multivalued
differential equation

dq

dt
=

∂H

∂p

(
∂S

∂q
(q, t), q, t

)
= gradLSt(q). (C)

To explain the notation gradLSt, recall that, by the Legendre diffeomor-

phism, the above equation is equivalent to ∂S
∂q

(q, t) = ∂L
∂q̇

(q, dq
dt

). Defining

St by the formula St(q) = S(q, t), we write it

dSt(q) =
∂L

∂q̇
(q,

dq

dt
). (C′)

Recalling that, for each (q, t), the mapping q̇ �→ ∂L
∂q̇

(q, q̇, t) is a linear

isomorphism from IRn to (IRn)∗, it becomes natural to denote by gradLSt

the right-hand side of the (multivalued) differential equation (C) : this
notation is reminiscent of the transformation of the derivative of a function
into its gradient via the linear isomorphism between tangent and cotangent
vectors given by a Riemannian metric.
The multivaluedness of the time-dependant vector field gradLSt is a reflec-
tion of the fact that beyond the caustic, several characteristics pass through
a given point (q, t) of space-time.
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3rd lecture. Minimizers.

Weierstrass theory. We consider now a (true, univalued) solution S(q, t),
defined on a certain interval of time [t0, t1], of the time-dependant Hamil-
ton-Jacobi equation ∂S

∂t
+H

(
∂S
∂q

, q, t
)

= 0. The vector-field gradLSt that
we just defined is now univalued and the graphs of its integral curves, i.e.
the characteristics associated to S, form a field of extremals.
Let c : [t0, t1] → ITI n be a segment of extremal whose lift to T ∗ITI n × IR,
C∗(t) =

(
∂L
∂q̇

(
c(t), ċ(t), t

)
, c(t), t

)
, is contained in the Lagrangian graph

GS defined by the equation p = ∂S
∂q

(q, t)

Proposition. The segment of extremal c does minimize the action among
absolutely continuous paths γ : [t0, t1] → ITI n with the same extremities,
whose graph remains in the domain of definition of S.

The idea of the proof is to lift to Γ∗(t) =
(

∂S
∂q

(γ(t), t), γ(t), t
)
⊂ GS any

curve γ(t) that we want to compare to c(t) (figure 15) and to use the fact
that GS is exact Lagrangian, to get

AL(c) =
∫

Γ∗
(p · dq − H(p, q, t)dt).

Indeed, on GS , we have p · dq −H(p, q, t)dt = dS(q, t) because p = ∂S
∂q

(q, t)

and H(p, q, t) = −∂S
∂t

(q, t). This implies that

AL(c) =
∫

C∗
(p · dq − H(p, q, t)dt) =

∫ t1

t0

d
(
S(q(t), t)

)
=

[
S

(
q(t), t

)]t1

t0

does not depend on the path on which one integrates as long as this path
is contained in GS .

Figure 15 (in T ∗ITI n × IR ≡ K−1(0))
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The Young-Fenchel inequality then implies that the difference of the actions

AL(c) −AL(γ) =
∫ t1

t0

[
π(t) · γ̇(t) − H

(
π(t), γ(t), t

)
− L

(
γ(t), γ̇(t), t

)]
dt,

where π(t) = ∂S
∂q

(
γ(t), t

)
, is the integral of an everywhere ≤ 0 function.

Corollary. The solution S(q, t) of the time-dependant Hamilton-Jacobi
equation defined on the (small enough) interval [t0, t] with initial condition
S(q, t0) = u(q) is given by :

S(q, t) = min
γ,γ(t)=q

[
u(γ(t0)) +

∫ t

t0

L
(
γ(s), γ̇(s), s

)
ds

]
,

where the min is taken over all absolutely continuous paths γ : [t0, t] → ITI n

such that γ(t) = q.

The proof is the same as for the Proposition : c is replaced by the unique
extremal whose graph is the characteristic associated to S such that c(t) = q
and γ by a path defined on the interval [t0, t] and such that γ(t) = q. Then,
as above,

AL(c) =
∫

C∗
(p · dq − Hdt) =

∫
∆∗

(p · dq − Hdt),

where ∆∗ is composed of the lift to GS of a path in ITI n × {t0} joining c(t0)
to γ(t0), followed by the lift Γ∗ of γ (figure 16). One concludes because the
part of GS above t = t0 coincides with the graph of du.

Figure 16

The Lax-Oleinik semi-group (autonomous case). The solution of the
Cauchy problem defined above is in general only local in time : caustics
appear as soon as the extremals in the corresponding field start intersecting
each other. We now globalize it at the expense of regularity by taking in
the global situation the same formula as in the local one : this amounts
to cutting the swallowtails of the graph of the multiform function S. By
keeping only for each (q, t) the lowest of the values of S(q, t), one obtains
the (discontinuous) graph of a Lipcshitz solution of the Hamilton-Jacobi
equation (figure 17) .

19



Figure 17

An astonishing feature of the result is that we get a global (weak) solution of
the Cauchy problem even when the initial condition u(q) is only continuous.
If we approach u by C1 functions un, the behaviour of the derivatives
dun may become wild as n tends to infinity but still the truncated global
solutions corresponding to initial conditions un have a nice limit. The
complete statement is the following :
Theorem (Existence of the Lax-Oleinik semi-group in the au-
tonomous case). 1) The formula (for t ≥ 0)(

T−
t u

)
(q) = inf

γ

[
u
(
γ(0)

)
+

∫ t

0

L
(
γ(s), γ̇(s)

)
ds

]
,

where the inf is taken over all absolutely continuous paths γ : [0, t] → ITI n

such that γ(t) = q, defines a semi-group {T−
t }t≥0 of mappings from the

space of continuous functions C0(ITI n, IR) to itself;
2) For all q, t, there exists a minimizing extremal γ : [0, t] → ITI n such that
γ(t) = q and

(T−
t u)(q) = u(γ(0)) +

∫ t

0

L
(
γ(s), γ̇(s)

)
ds; (∗)u,q,t

3)||T−
t u − T−

t v||0 ≤ ||u − v||0;
4) T−

t (u + c) = (T−
t u) + c;

5) At each point where S(q, t) = (T−
t u)(q) has a derivative, it is a true

solution of the time-dependant Hamilton-Jacobi equation;

6) The same is true for the semi-group {T+
t }t≥0 defined by

(T+
t u)(q) = sup

γ

[
u
(
γ(0)

)
−

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds

]
,

where the sup is taken over absolutely continuous paths [−t, 0] → ITI n such
that γ(−t) = q.
The main tools in the proof are
1) the existence of minimizing extremals (Tonelli’s theorem);
2) the regularity of minimizing extremals (Weierstrass local theory);
3) an easy but fundamental lemma of a priori compactness
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Tonelli existence theorem. Let M be any compact manifold and L :
TM × IR → IR a Lagrangian which is strictly convex and superlinear. For
any two points q′, q′′ ∈ M and any interval [t′, t′′], there exists an absolutely
continuous path γ : M → IR such that γ(t′) = q′, γ(t′′) = q′′ and for any
absolutely continuous path γ1 : [t′, t′′] → M with the same extremities, one

has
∫ t′′

t′ L
(
γ1(s), γ̇1(s), s

)
≥

∫ t′′

t′ L
(
γ(s), γ̇(s), s

)
.

This classical is result is based on the following key fact : the topologies on
the space of absolutely continuous paths which insure the continuity of the
action functional AL, for instance the norm topology of the Sobolev space
H1, are too strong to allow for enough compact sets to handle minimizing
sequences. For weaker topologies which have plenty of compact sets, as the
C0 one, AL is only lower semi-continuous (it is well known that the length
of a uniformly convergent sequence of curves can drop down at the limit)
but this is enough to deal with the minimization problem. In fact, one can
prove that the set of absolutely continuous paths γ : [a, b] → M with a
bounded action is compact in the C0 topology !

Weierstrass regularity theorem. If moreover the Euler-Lagrange flow
is complete, i.e. if L satisfies the general convexity hypotheses, the min-
imizing curves are minimizing extremals and hence as regular as the La-
grangian.

The proof is done in three steps :
1) That small enough extremals are minimizing among absolutely continu-
ous curves with the same end-points results from a local application of the
Weierstrass theory (Proposition at the beginning of the section) : indeed,
any sufficiently small piece of extremal is contained in a piece of exact
Lagrangian graph.
2) One then shows that between points sufficiently close together, there
exists a small extremal. More precisely, given any positive constant C,
there exists a positive ε such that if (qt, q̇t) = ϕt(q, q̇) is the image of (q, q̇)
under the Euler-Lagrange flow in T ITI n and |t| < ε, the mapping q̇ �→ qt

(initial velocity to final position) is a diffeomorphism of the ball ||q̇|| ≤ C
onto a subset of ITI n containing the ball of center q and radius C|t|/2 (the
problem is local and we can use any metric in IRn).
3) This last property implies immediately that a minimizing curve γ(t)
coincides with an extremal in the neighborhood of any t0 at which it is
differentiable. As an absolutely continuous function is differentiable almost
everywhere, this proves Tonelli’s partial regularity theorem. To conclude,
one uses the completeness of the Euler-Lagrange flow. In the autonomous
case, this completeness is a consequence of the compactness of the energy
levels, itself a consequence of the superlinearity of the Hamiltonian.

Lemma of a priori compactness. Let M be a compact manifold. If t >0
is given, there exists a compact subset Kt of TM such that, for any mimiz-
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ing extremal γ : [a, b] → M with b − a ≥ t and any s ∈ [a, b],
(
γ(s), γ̇(s)

)
belongs to Kt. In other words, there is an a priori bound on the velocities
of a minimizing extremal, which depends only on the length of its interval
of definition.

The proof of this lemma is an elementary estimation of the action of a small
geodesic (in any Riemannian metric) joining two nearby points at constant
velocity in time t.

Sketch of proof of the theorem. The theorems of Tonelli and Weier-
strass imply the existence, for each t > 0, and each q0, q ∈ ITI n, of a mini-
mizing extremal γq0 : [0, t] → ITI n such that γq0(0) = q0, γq0(t) = q. Then,
for each u ∈ C0(ITI n, IR),

(T−
t u)(q) = inf

q0∈T n

{
u(q0) +

∫ t

0

L
(
γq0(s), γ̇q0(s)

)
ds

}
.

But (γq0(s), γ̇q0(s)) = ϕs(q0, γ̇q0(0)) is the image of (q0, γ̇q0(0)) under the
Euler-Lagrange flow ϕs and the lemma of a priori compactness implies that
(q0, γ̇q0(0)) ∈ Kt. Hence we can find a sequence of initial points qj ∈ ITI n

such that (qj , γ̇qj (0)) converges, which implies the convergence of the γqj

to a minimizing extremal γ verifying the equation (∗)u,q,t of part 2) of the
Theorem. Note that, by Weierstrass’ theorem, all minimizing extremals
are regular curves. Assertions 1), 3), 4) follow from the existence of γ.
An important (and classical) property of T−

t is decribed in the following
lemma, whose proof is typical of the techniques involved :

Lemma 1. For all t > 0 and all u ∈ C0(ITI n, IR), the function T−
t u is

Lipschitzian with Lipschitz constant independant of u (but dependant of t).

The proof can be read on figure 18 :

Figure 18

To compare (T−
t u)(q) and (T−

t u)(q′), one uses a minimizing extremal γ
ending in q at time t and verifying the equality in part 2) of the Theorem;
one builds from it a curve γ′(s) = γ(s) + s

t (q
′ − q) joining γ(0) to q′ (as

everything is local, one can work in IRn). It remains to use the minimizing
property of T−

t and the fact that γ′(0) = γ(0) to get

(T−
t u)(q′) − (T−

t u)(q) ≤
∫ t

0

L
(
γ′(s), γ̇′(s)

)
ds −

∫ t

0

L
(
γ(s), γ̇(s)

)
ds.
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Using the explicit definition of γ′ and the fact that the derivative of L is
bounded on the compact Kt, one bounds the right-hand side by k(t)||q−q′||.
To prove the lemma, it only remains to exchange the roles of q and q′.
The proof of 5) is based on a refinement (to next order) of the above lemma,
whose proof is similar :

Lemma 2. If t0 > 0, there is a constant K = K(t0) > 0 such that for any
u ∈ C0(ITI n, IR) and any minimizing extremal γ satisfying (∗)u,q,t, one has

(T−
t u)(q′) − (T−

t u)(q) ≤ ∂L

∂q̇

(
q, γ̇(t)

)
(q′ − q) + K||q′ − q||2.

Coroallary. If T−
t u is differentiable at q and if γ satisfies (∗)u,q,t, one has

d(T−
t u)(q) =

∂L

∂q̇

(
q, γ̇(t)

)
. (C′)

In particular, γ is unique and its graph is a characteristic associated to the
function S(q, t) = (T−

t u)(q).

Now 5) is a consequence of the following (intuitive) fact :

Differentiability along the characteristics. By restricting to a smaller
interval [0, t′], t′ < t, a minimizing extremal γ : [0, t] → ITI n with γ(t) = q
which satisfies (∗)u,q,t, one gets a curve with the same property, i.e. satis-
fying (∗)u,γ(t′),t′ . In other words, the restriction of a characteristic is still
a characteristic !

As a consequence, the function s �→ (T−
s u)(γ(s)) is given by the formula

(∗)u,γ(s),s with the same γ for all s, hence it is differentiable on the whole
interval [0, t] and its derivative is L

(
γ(s), γ̇(s)

)
.

Let us set S(q, t) = (T−
t u)(q). At a point (q, t) of differentiability of S, the

above property becomes

d

ds
(S(q, t)) =

∂S

∂q
(q, t) · γ̇(t) +

∂S

∂t
(q, t) = L

(
q, γ̇(t)

)
.

It implies that, at a point (q, t) of differentiability, S satisfies the equation
∂S
∂t

(q, t) + H
(

∂S
∂q

(q, t), q
)

= 0 if and only if

−∂S

∂q
(q, t) · γ̇(t) + L

(
q, γ̇(t)

)
+ H

(
∂S

∂q
(q, t), q

)
= 0,

which is equivalent to ∂S
∂q

(q, t) = ∂L
∂q̇

(q, γ̇(t)) (equality in Young-Fenchel

inequality). But this is the equation of characteristics (C′) that we already
know to be satisfied.
Finally, we quote without proof the following converse of the unicity of γ
in the corollary of Lemma 2 :
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Differentiability of T−
t u and the unicity of characteristics. The

point (q, t) is a point of differentiability of S(q, t) = (T−
t u)(q) if and only

if it is the extremity of a unique characteristic.

Figure 19 illustrates this :

Figure 19
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4th lecture. Fathi’s weak KAM theorem (autonomous case). Fol-
lowing Fathi, we deduce from the existence of the Lax-Oleinik semi-group
the existence of weak KAM solutions (in fact viscosity solutions) of the
time-independant Hamilton-Jacobi equation H(du(q), q) = c for a well-
chosen c (equal to α(0) in Mather’s notation).
First one notices that the following properties are equivalent to one another:

(1) ∃c, H(du(q), q) = c;

(2) ∃c,
∂S

∂t
+ H

(∂S

∂q
, q

)
= 0, where S(q, t) = u(q) − ct;

(3) u is a fixed point of the semi-group u �→ T−
t u + ct;

(4) u represents a fixed point of T−
t u in C0(ITI n, IR)/IR.

One then proves the existence of a fixed point by a Leray-Shauder type
fixed point argument. To conveniently state the theorem, we introduce the
following definitions :

Domination. Given a real number c, we say that the function u : ITI n → IR
is dominated by L+c (and we write u ≺ L+c) if for any interval [a, b], a ≤ b
and any absolutely continuous curve γ : [a, b] → ITI n we have

u
(
γ(b)

)
− u

(
γ(a)

)
≤

∫ b

a

L
(
γ(s), γ̇(s)

)
ds + c(b − a).

Proposition. u ≺ L + c if and only if u is locally Lipschitzian and
H(du(q), q) ≤ c at each point q where u has a derivative.

Calibration. We suppose that u ≺ L+ c. The curve γ : [a, b] → ITI n is said
to be (u, L, c)-calibrated if

u
(
γ(b)

)
− u

(
γ(a)

)
=

∫ b

a

L
(
γ(s), γ̇(s)

)
ds + c(b − a).

Weak KAM theorem. Let L(q, q̇) be a time-independant Lagrangian on
T ITI n of class at least C3, which satisfies the general convexity hypotheses.
There exist Lipschitz functions u−, u+ : ITI n → IR and a constant c ∈ IR
(the Mañé’s critical energy) such that
1) u−, u+ ≺ L + c,
2) ∀q ∈ ITI n, there exists γq

− :] − ∞, 0] → ITI n and γq
+ :]0,+∞] → ITI n with

γq
−(0) = γq

+(0) = q, such that, for all t ≥ 0,

u−(q) − u−(γq
−(−t)) = ct +

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds,

u+(γq
+(t)) − u+(q) = ct +

∫ t

0

L
(
γ(s), γ̇(s)

)
ds,

3) u± satisfies H(du±(q), q) = c at each point q where it has a derivative.
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Properties of weak KAM solutions. u± are not necessarily unique
(doubly periodic pendulum).
The following property is the analogue of the one that we discussed for
T−

t u : the discontinuities of the derivative of a weak KAM solution are the
intersection points of at least two rays (characteristics).

Proposition (differentiability and unicity of calibration). A weak
KAM solution u− has a derivative at q if and only if there exists a UNIQUE
(L, c, u−)-calibrated path γq

− :]−∞, 0] → ITI n such that γq
−(0) = q (in other

words, there is a unique characteristic which arrives at q).

A consequence is that u− is differentiable at every point of a characteristic
except possibly at its extremity. This comes from the fact that, because
they are necessarily regular, two characteristics cannot meet except at a
common end-point.

Invariant measures and unicity of Mañé’s critical energy. Let ML

be the set of all Borel probability measures µ on TM which are invariant
under the flow of XL. If (qs, q̇s) = ϕs(q0, q̇0) ∈ T ITI n is an extremal, i.e.
an integral curve of XL, integrating the domination inequality against an
invariant measure µ ∈ ML, we get∫

TT n

(
u−(qt) − u−(q0)

)
dµ ≤

∫
TT n

dµ

[∫ t

0

L(ϕs(q0, q̇0))ds + ct

]
.

Dividing both sides by t and using the invariance of µ we get, when t → ∞,

c = − inf
µ∈ML

∫
Ldµ.

Minimizing measures can indeed be constructed which are supported in the
α-limit sets of the minimizing extremals γq

− (figure 20) or the ω-limit sets
of the γq

+ : let tn be a sequence of times tending to +∞, µn be defined by

µn(f) =
1
tn

∫ 0

−tn

f
(
γq
−(s), γ̇q

−(s)
)
ds

and µ be the weak limit of a subsequence of the µn’s. One easily checks
that

∫
Ldµ = −c.

Figure 20
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Mañé’s critical energy and Hill’s region for classical systems.
When L(q, q̇) = 1

2 ||q̇||2 − V (q), one checks that c = maxq V (q), i.e. the
value of the energy under which the Hill’s region (projection on ITI n of an
energy level) is not the whole configuration space ITI n.

The fundamental Lipschitz estimates. We now address the regularity
problem of weak KAM solutions. Let S− (resp. S+) denote the set of all
weak KAM solutions u− (resp. u+).
Proposition. The following assertions are equivalent :
1) u : ITI n → IR is of class C1 and belongs to S−;
2) u : ITI n → IR is of class C1 and belongs to S+;
3) u : ITI n → IR belongs to S− ∩ S+;
4) u : ITI n → IR is of class C1 and ∃c ∈ IR such that H(du(q), q) = c.
IN ALL CASES, du(q) IS LOCALLY LIPSCHITZ (i.e., u is not only C1

but C1,1).

The main tool for the proof of the Lipschitz estimates is Lemma 2 of the
third lecture. As u− = T−

t u− + ct and u+ = T+
t u+ − ct, it implies that, if

u belongs to S− ∩ S+, it satisfies∣∣∣∣u(q′) − u(q) − ∂L

∂q̇

(
q, γ̇q(0)

)
(q′ − q)

∣∣∣∣ ≤ k||q′ − q||2.

Here γq is the concatenation of γq
− and γq

+, which is easily proved to be
a minimizing extremal, hence regular. One concludes with the following
lemma, whose proof is elementary but tricky :
Characterization of C1,1 functions. The following assertions are equi-
valent :
1) ∃k > 0 such that, ∀q, ∃lq, a linear form, with

|u(q + h) − u(q) − lq(h)| ≤ k||h||2;

2) The function u is of class C1,1, du(q) = lq and ∃C > 0 such that

|du(q′)(h) − du(q)(h)| ≤ C||q − q′|| × ||h||.

These Lipschitz estimates play a fundamental role in Mather’s theory. As
was shown by Herman, they are intimately related to the positive definite-
ness assumption
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5th lecture. Mather’s theory.

The Mather set. The graph of the derivative of a weak KAM solution is
semi-invariant under the flow of XH . Mather’s theory shows that it is, in a
generalized sense, made of pieces of invariant manifolds of a ”weakly hyper-
bolic” fully invariant set, the (image under the Legendre diffeomorphism
of the) Mather set :

Definition. The Mather set M̃0 ⊂ T ITI n is the closure of the union of the
supports of all invariant Borel probability measures which minimize

∫
Ldµ,

that is such that
∫

Ldµ = −c, where c is the Mañé energy. M̃0 is invariant
under the flow ϕt of XL.

Integrating the inequality u ≺ L+ c against an invariant measure, one gets

Proposition (universal calibration). Let (q, q̇) ∈ M̃0 and let γ(t) be
the extremal with initial conditions (q, q̇), that is ϕt(q, q̇) = (γ(t), γ̇(t)) ∈
M̃0. Then, for any u ≺ L + c and any t ≤ t′, γ|[t,t′] is (L, c, u)-calibrated.

As such a u exists (for instance a weak KAM solution), this proposition
implies that the extremals contained in the projection M0 of M̃0 on ITI n

are minimizing.

The structure theorem. The Mather set M̃0 ∈ T ITI n is a Lipschitz graph
over its projection M0 in ITI n. Its image under the Legendre diffeomorphism
Λ : T ITI n → T ∗ITI n (which is well defined in the autonomous case) is con-
tained in the critical energy level H−1(c).

The proof, which uses Lemma 2 of section 3 in a crucial way, is completely
analogous to that of the fundamental Lipschitz estimates at the end of
section 4. True, we are not dealing any more with weak KAM solutions,
but the situation is quite as good thanks to the above proposition which
can be restated as :
On M0, a function u ≺ L + c is as good as a weak KAM solution .

One gets that any u such that u ≺ L + c, is differentiable at q ∈ M0 and
that, for each (q, q̇) ∈ M̃0, one has du(q) = ∂L

∂q̇
(q, q̇). This implies that q̇

is uniquely determined by q, i.e. that M̃0 is a graph over M0, precisely
the image under the inverse Legendre diffeomorphism of the graph of du.
Finally, we get as in section 4 that the map q �→

(
du(q), q

)
from M0 to T ∗ITI n

is Lipschitzian with a Lipschitz constant independant of u. In other words,
the restriction of u to M0 is C1,1 when a priori u is only Lipschitzian. These
estimates are a fundamental feature of Hamilton-Jacobi theory. They have
numerous avatars, like the a priori Lipschitz estimates on invariant curves
of monotone twist mappings (a direct application of the extension of the
theory to time periodic Lagrangians) or the Lipschitz property of Buseman
functions, which correspond to the Lagrangian of a geodesic flow : if a C1

function satisfies ||du|| ≡ 1, it is automatically C1,1.
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The following diagram summarizes the situation :

Conjugate weak KAM solutions. Weak KAM solutions are determined
by their restriction to the Mather set M0. This allows to pair weak KAM
solutions u+, u− so that the graphs of their (almost everywhere defined)
derivatives play the role of (generalized) stable and unstable manifolds to
M̃0.

Convergence of the Lax-Oleinik semi-group in the autonomous
case. This is a kind of a generalized λ-lemma, which states that (in the
autonomous case only), for any u ∈ C0(M, IR), the limits when t → ∞ of
T−

t + ct and T+
t − ct exist and are weak KAM solutions u− or u+.

Mather’s alpha function as an averaged Hamiltonian. Using a con-
trol, that is replacing the Lagrangian L(q, q̇) by La(q, q̇) = L(q, q̇)−a·q̇, one
defines a critical energy ca and a Mather set Ma. Note that, if replacing L
by La does not change the Euler-Lagrange equations, it DOES CHANGE
THE MINIMIZERS of the action integral. The simplest example is the
geodesic flow of the flat torus : adding a mass to better distinguish be-
tween the tangent and cotangent sides, let us take L(q, q̇) = m

2 ||q̇||2. The
Lagrangian La can be written

La(q, q̇) =
m

2
||q̇||2 − a · q̇ =

m

2
||q̇ − 1

m
a||2 − ||a||2

2m
,

and the minimizers are immediately seen to be such that q̇ = 1
ma, that

is p = a. We have “controlled” (the word is from Kaloshin) the velocity
(or momentum) of the minimizers. Recall that the Legendre transform of
La(q, q̇) is Ha(p, q) = H(p + a, q).
Definition-Proposition. Mather’s alpha function is the function

α : H1(ITI n, IR) ≡ (IRn)∗ defined by α(a) = ca.

It is convex and superlinear.
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It can be checked that for any compact manifold M , α is naturally defined
on the first cohomology group of M , that is : the Mañé energy c(L − 
)
depends only on the cohomology class of the closed 1-form 
.
In the case of the torus, we can interpret α as an averaged Hamiltonian in
the following sense : let us pretend that to each a ∈ (IRn)∗ we can associate
in a differentiable way (even continuity is false because of non-unicity !) a
weak KAM solution ua. At each point q where ua is differentiable, we have

H(a + dua(q), q) = α(a).

Setting S(a, q) = a · q + ua(q), this is equivalent to

H

(
∂S

∂q
(a, q), q

)
= α(a).

The function S is of course not ZZn-periodic in q, that is not defined on
ITI n, but its derivative is. Hence S can be used as the generating function
of the symplectic transformation

Φ : IRn × ITI n → IRn × ITI n, Φ(p, q) = (a, b),

defined by

p =
∂S

∂q
(a, q) = a +

∂ua

∂q
(q),

b =
∂S

∂a
(a, q) = q +

∂ua

∂a
(q).

We have dp ∧ dq + db ∧ da = d2S = 0, hence da ∧ db = dp ∧ dq, which is
the preservation of the canonical symplectic form. This implies that in the
new coordinates (a, b), the Hamiltonian vector-field X∗

H becomes X∗
H◦Φ−1 ,

that is X∗
α. As α does not depend on the variables b, Hamilton’s equations

take the particularly simple completely integrable form

dai

dt
= 0,

dbi

dt
=

dα

dai
(a),

which is similar to the one defining the geodesic flow of the flat torus.
This is not astonishing. If for each a there exists a unique weak KAM
solution ua which is differentiable, the collection of the graphs of these
functions defines a foliation of the phase space by Lagrangian tori. The
existence of such a foliation would imply in turn the existence of action-
angle coordinates in which the flows on the invariant tori are linear.
In general, this foliation is neither uniquely nor eveywhere defined but
nevertheless, it can be thought of as a kind of (non uniquely defined) in-
tegrable skeleton made of KAM tori which are graphs (if they exist) and
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(non uniquely defined) pieces of stable and unstable manifolds of “weakly
hyperbolic” Mather sets. In the case of the geodesic flow of a torus of
revolution, this amounts to forgetting the whole (open) resonance zone. In
the case of a monotone twist map, which according to Moser is always the
Poincaré return map of the Euler-Lagrange flow of a periodic Lagrangian
whch satisfies the general convexity hypotheses, we get the union of the
invariant curves and (non uniquely defined) pieces of stable and unstable
manifolds of the Aubry-Mather sets.

Mather’s beta functions as an averaged Lagrangian. Legendre-
Fenchel duality converts Mather convex and superlinear α function into
the convex and superlinear function

β : IRn ≡ H1(ITI n), IR) → IR

defined by

β(ρ) = max
a∈(IRn)∗

(〈a, ρ〉 − α(a)) , or equivalentlyα(a) = max
ρ∈IRn

(〈a, ρ〉 − β(ρ)) .

The rotation number of an invariant probability measure. Let µ
be a Borel probability measure on T ITI n, invariant under the flow of XL (we
have denoted by ML the set of these measures).

Proposition-Definition. The rotation number ρ(µ) ∈ IRn ≡ H1(ITI n, IR)
of µ is uniquely defined by the identity∫

TT n


dµ = 〈[
], ρ(µ)〉 ,

valid for any closed 1-form 
 on ITI n ([
] is the cohomology class of 
).

The existence of ρ(µ) is proved by showing that, for any coboundary 
 = dθ
and any invariant (this hypothesis is fundamental) measure µ, the integral∫


dµ is equal to 0.
The interpretation of the beta function is given by the following

Proposition. The beta function is given by the formula

β(ρ) = min
µ∈ML,ρ(µ)=ρ

∫
TT n

Ldµ.

At first sight, the proof looks like a formal rewriting of the definition of α :

α(a) = − min
µ∈ML

∫
(La)dµ = max

µ∈ML

(∫
adµ −

∫
Ldµ

)
= max

ρ∈Rn

(
max

µ∈ML,ρ(µ)=ρ

(
〈a, ρ〉 −

∫
Ldµ

))
= 〈a, ρ〉 − min

µ∈ML,ρ(µ)=ρ

∫
Ldµ,

which one compares to the definition of α in terms of β.
The justification comes from the
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Fundamental proposition. For any ρ ∈ IRn ≡ H1(ITI n, IR), there exists
an invariant measure µ ∈ ML with finite action

∫
Ldµ and whose rotation

vector ρ(µ) is equal to ρ.

WARNING : THIS PROPOSITION BECOMES FALSE IF INVARIANT
MEASURES ARE REPLACED BY INTEGRAL CURVES (Hedlund ex-
amples on ITI 3, see below). This is the main reason why introducing invariant
measures, whose supports are collections of integral curves, is unavoidable.

Mather’s theory of minimal measures as a generalization of Hed-
lund’s theory. The following theorem of Mather relates the Mather sets
and the ĨTI

n
-minimizers. These are the extremals which, when lifted to the

universal covering IRn of ITI n, minimise the action integral between any two
of their points. They are the natural generalization to higher dimensions
of Hedlund’s class A geodesics on the 2-torus.

Theorem. For any a ∈ (IRn)∗, an extremal which is contained in Ma is

a ĨTI
n
-minimizer.

This does not mean that any vector ρ can be the rotation vector of a ĨTI
n
-

minimizer. In fact, if Hedlund had shown that for any Riemannian metric
on the 2-torus and any real number ρ, there exist class A geodesics which,
in the universal covering IR2, stay at a bounded distance of a straight line
of slope ρ and hence have the rotation number ρ, he had also given an
example of a Riemannian metric on ITI 3 for which class A geodesics exist
only for three rotation vectors. Indeed, to achieve a rotation vector, one
needs in general to take averages on a set of extremals, not on a single one.

The last figure indicates why Mather sets are more likely in general to have
gaps than to cover the whole ITI 2 : if we slightly deform the flat metric by
making a small localized bump, ITI 2-minimizers (i.e. class A geodesics) will
avoid the bump to stay minimizing and this creates a gap.

Figure 21
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