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Abstract

The course is a short introduction to some aspects of the simplest
non-integrable three body problem, the study of which goes back to the
seminal works of Hill, Poincaré and Birkhoff. After Goursat (or Levi
Civita) regularisation we are led to study a conservative twist map of an
annulus whose boundaries are the so-called Hill’s solutions. We shall show
in particular the existence of “quasi-collision solutions” that is of collision-
free solutions which come arbitrarily close to collisions. In the phase space,
such solutions belong to KAM invariant tori of the regularized system.
The main references are [Co, CL]. The extensions to the full three-body
problem of the existence of quasi-collision solutions, is done in [F, Z]. The
works of Poincaré on the restricted problem are described in [C3].

1 The Kepler problem as an oscillator1

The (normalized) motions in a plane of a particle submitted to the Newtonian
attraction of a fixed center – the so called Kepler problem – are the solutions of
the equation

ẍ = −x/|x|3,

where x = x1 + ix2 ∈ C = R2 is identified with a complex number and the dot
denotes the time derivative. These equations are the Hamilton equations

ẋ =
∂H

∂ȳ
, ẏ = −∂H

∂x̄

associated to the Hamiltonian H : (C \ {0})× C → R and the symplectic form
ω respectively defined by

H(x, y) = |y|2 − 2/|x|, ω = 2Re (dy ∧ dx̄) = 2(dy1 ∧ dx1 + dy2 ∧ dx2).

1A large part of these notes is taken from [C2]
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The Levi-Civita mapping (z, w) 7→
(
x = 2z2, y = w/εz̄

)
defines a two-fold

covering

(L.C.) K−1(0) \ {z = 0} → Σε = H−1(−1/ε2)

from the complement of the plane z = 0 in the 0-energy 3-sphere K−1(0) of the
harmonic oscillator

K(z, w) = |z|2 + |w|2 − ε2 = ε2|z|2
[
H

(
2z2, w/εz̄

)
+ 1/ε2

]
,

to the energy hypersurface Σε = H−1(−1/ε2) of the Kepler problem (both
diffeomorphic to S1 × R2).

Figure 1: The Levi Civita transformation

It is conformally symplectic and sends integral curves of the harmonic oscil-
lator with energy ε2 to those of the Kepler problem with energy −1/ε2 after the
change of time dt = 2ε|x|dt′ which prevents the velocity to become infinite at
collision. In the coordinates u1 = w + iz, u2 = w̄ + iz̄ these integral curves are
u1(t) = c1e

it, u2(t) = c2e
it, |c1|2 + |c2|2 = 2ε2, that is the intersections of the

3-sphere with the complex lines u1/u2 = cste, or in other words the fibers of
the Hopf fibration (u1, u2) 7→ u1/u2 : S3 → P1(C). The closest approximation
to a section of the Hopf map, the annulus

arg u1 + arg u2 = 0 (mod 2π)

is a global surface of section of the flow of the Harmonic oscillator in a sphere of
constant energy: with the exception of the two fibers which form its boundary,
all the fibers cut this annulus transversally in two points; hence, the second
return map is the identity. Thus perturbations of the Kepler problem with
negative energy are essentially perturbations of the identity map. This is one
of the main sources of degeneracies in celestial mechanics.
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2 The simplest non-integrable Hamiltonian: the
restricted problem in the lunar case

The equations of the n-body problem

d2~ri
dt2

= g
∑
j 6=i

mj(~rj − ~ri)
||~ri − ~rj ||3

make sense even if some of the masses vanish. Such masses are influenced by the
non-zero masses but do not influence them. We shall consider two primaries, say
the Sun (mass µ) and the Earth (mass ν) which have a uniform circular motion
around their center of mass and a 0-mass third body, say the Moon, which
stays close to the Earth. We identify the inertial plane with C (coordinate
X = X1 + iX2 centered on the center of mass of the couple Sun-Earth) and
introduce rotating (synodic) complex coordinates (ζ, u) by setting

X = ζeiωt, Y = Ẋ = ueiωt, that is u = ζ̇ + iωζ.

The equations become

ζ̈ + 2iωζ̇ − ω2ζ = gµ
ζS − ζ

|ζS − ζ|3
+ gµ

ζE − ζ

|ζE − ζ|3
,

where ζS = − ν
µ+ν r0 and ζE = µ

µ+ν r0 are the respective (fixed) positions of the
Sun and the Earth in the rotating frame. They take the following Hamiltonian
form (independant of t because of rotational invariance):

dζ

dt
=
∂Hsyn

∂ū
,

du

dt
= −∂Hsyn

∂ζ̄
, where

the Hamiltonian and the symplectic form are respectivelyHsyn(ζ, u) = |u|2 + 2ωIm(ζū)− 2
gµ

|ζS − ζ|
− 2

gν

|ζE − ζ|
,

ωsyn = 2Re (du ∧ dζ̄).

Explanation. In the inertial frame, the equations of motion have the (time-
depending) Hamiltonian form

dX

dt
=
∂Hin

∂Ȳ
,

dY

dt
= −∂Hin

∂X̄
, where

the Hamiltonian and the symplectic form are respectivelyHin(X,Y, t) = |Y |2 − 2gµ
ζSe

iωt −X

|ζSeiωt −X|
− 2gν

ζEe
iωt −X

|ζEeiωt −X|
,

ωin = 2Re (dY ∧ dX̄) = 2(dY1 ∧ dX1 + dY2 ∧ dX2).
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Embedding the extended phase space (coordinates (X,Y, t) as the zero energy
surface of the autonomous Hamiltonian Kin(X, t, Y,E) = Hin(X,Y, t)+E, with
symplectic form Ωin = 2

(
Re (dY ∧ dX̄) + dE ∧ dt

)
, we check that the transfor-

mation

(ζ, u, t, F ) 7→
(
X = ζeiωt, Y = ueiωt, t, E = F + +2ωIm(ζū)

)
is symplectic when the left hand space is endowed with the symplectic form
Ωsyn = 2

(
Re (du ∧ dζ̄) + dF ∧ dt

)
. It follows that in the rotating coordinates,

the Hamiltonian Hsyn is given by the sum

Hsyn(ζ, u, t) = Hin(ζeiωt, ueiωt, t) + 2ωIm(ζū),

whose second term is proportional to the angular momentum

= (X1Y2 −X2Y1) = −Im(ζū) = −Im(XȲ ).

Due to the invariance under rotation of the problem, Hsyn is independant
of time. We shall use slightly different coordinates, centered on the earth:

x = ζ − µ

µ+ ν
r0, y = u− iω

µ

µ+ ν
r0.

Moreover we shall normalize the equations by setting

g = 1, µ+ ν = 1, r0 = 1, so that ω =
√
g(µ+ ν)/r

3
2
0 = 1.
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(x,y)eC2,
x = x, + ix2

= yt + iy2 = dx/dt + iiox

FIGURE 1

and get the new equations (in R4 = C2)

dz/dt' = BK/dw, dw/dt'=-dK/dz,

K(z, w) = {\ + 2ie(zw-zw)}\z\2+\w\2-pe2-pe3g(z),

g(z) = 2\z\2{l/\2z2+1| - 1 + z2 + (z)2} = |z|2{2|z|4+3(z4+ (z")4) + O(\z\6)}.

These new equations have the following property: the energy surface K = 0 is close
to (and diffeomorphic to) the 3-sphere |z|2+|w|2 = ve2; if we restrict the Levi-Civita
mapping (z, w)-»(x, y) to the complement (diffeomorphic to an open solid torus)
of the 'circle' z = 0, we get an orbit preserving twofold covering of the energy surface
H = -\/e2 of the restricted three-body problem.

The structure of K is nice enough. If one keeps only the leading (quadratic)
terms, the linear flow one obtains (Hopf flow) is, up to the twofold covering, the
usual regularization of the two-body problem by the geodesic flow on the round
2-sphere ([2], [7]). If one forgets only the last term fie2g(z) (which is of order 6
in z), one obtains the still integrable two-body problem in a rotating frame: the
complement in the energy surface of two linked periodic orbits (corresponding to
the direct and retrograde circular motions having the given value of the Jacobi
integral) is foliated by invariant tori parametrized by the angular momentum. The
'middle' torus, corresponding to zero angular momentum, contains the 'circle' z = 0
and each integral curve lying on this torus is made up of ejection-collision orbits
(figure 2).

Figure 2: Rotating coordinates

The equations of motion of the Moon become

ẋ =
∂H

∂ȳ
, ẏ = −∂H

∂x̄
,
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where the Hamiltonian (up to the constant term which we have changed) and
the symplectic form are respectivelyH(x, y) = |y|2 + iω(x̄y − xȳ)− 2ν

|x|
− 2µ
|x+ 1|

− µ(x+ x̄) + 2µ,

ω = 2Re (dy ∧ dx̄) = 2(dy1 ∧ dx1 + dy2 ∧ dx2).

As in the first section, we consider the energy hypersurface H−1(1/ε2), with
ε a small parameter. Its projection on the x plane is made of three connected
components: a neighborhood of the Sun, a neighborhood of the Earth and a
neighborhood of infinity (the so-called Hill’s regions, which imply Hill’s stability
result, praised by Poincaré).

Figure 3: Hill’s regions

We shall be interested in the connected component of H−1(1/ε2) where |x| stays
small. Then

H(x, y) = |y|2 + iω(x̄y − xȳ)− 2ν
|x|

− 2µ
[
1
4
|x|2 +

3
8
(x2 + x̄2) +O3(x)

]
.

We see that the influence of the Sun on the Moon becomes negligible with
respect to the one of the Earth and that at the collision limit, it disappears and
one is left with a Kepler problem. To make this apparent, we again apply the
Levi-Civita transformation (z, w) 7→

(
x = 2z2, y = w/εz̄

)
. We get

K(z, w) = ε2|z|2
[
H

(
2z2,

w

εz̄

)
+

1
ε2

]
= f2(z, w)|z|2 + |w|2 − νε2 − ε2µg(z),

where

f(z, w) =
√

1 + 2iε(z̄w − zw̄), g(z) = 2|z|2
(

1
|2z2 + 1|

− 1 + z2 + z̄2

)
.
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As in the Kepler case, the direct image of the restriction to K−1(0) \ {z = 0}
of the Hamiltonian flow ż = ∂K

∂w̄ , ẇ = −∂K
∂z̄ becomes the flow of the restricted

problem with Jacobi constant −1/ε2 after the change of time dt = 2ε|x|dt′.
Each truncation of the Taylor expansion of K(z, w) at the origin,

K(z, w) = −νε2+|z|2+|w|2+2iε|z|2(z̄w−w̄z)−ε2µ(2|z|6+3|z|2(z4+z̄4)+08(z)),

makes sense dynamically when restricted to K−1(0) : we get
at order 2, the harmonic oscillator, which regularizes the Kepler problem;
at order 4, the regularization of the Kepler problem in a rotating frame ;
at order 6, Hill’s problem. This is the highest order of interest to us.

Remark: Euler’s two fixed centers problem and Lagrange’s problem.
Another classical way of writing down the equations in a rotating frame is to
use the variables ζ and ζ̇ which lead to the following expression for the synodic
Hamiltonian:

Hsyn(ζ, ζ̇ + iωζ) = |ζ̇|2 − ω2|ζ|2 − 2
gµ

|ζS − ζ|
− 2

gν

|ζE − ζ|
·

As µ|ζS − ζ|2 + ν|ζE − ζ|2 = (µ+ ν)|ζ|2 +µ|ζS |2 + ν|ζE |2 and ω2 = g(µ+ ν)/r30,
this can be written

Hsyn(ζ, ζ̇ + iωζ) = |ζ̇|2 − 2Ω(ζ) + cst, where

Ω(ζ) = gµ

(
|ζS − ζ|2

2r30
+

1
|ζS − ζ|

)
+ gν

(
|ζE − ζ|2

2r30
+

1
|ζE − ζ|

)
·

The relation between the two sets of variables corresponds to the addition of a
magnetic term to the symplectic form:

Re (du ∧ dζ̄) = Re (dζ̇ ∧ dζ̄) + iω(dζ ∧ dζ̄).

In other words, the magnetic term in the symplectic form absorbs the Cori-
olis term in the Lagangian. Forgetting it leads to the Hamiltonian HL and
symplectic form ωL respectively

HL(ζ, ζ̇) = |ζ̇|2 − 2Ω(ζ), ωL = 2Re (dζ̇ ∧ dζ̄).

The Coriolis force is taken out but the repulsive centrifugal force is preserved.
If both are taken out, one finds the two fixed centers problem, which was shown
by Euler to be completely integrable. In case µ = ν, the system governed by
HL coincides with the so-called Lagrange problem which consists in adding a
repulsive center located at the middle of the segment joining the two primaries ;
it was shown by Lagrange to be also completely integrable (a good reference is
[A]). Unfortunately, it was soon realized that these integrable were of no real
use in understanding the restricted problem.
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3 Hill’s solutions

The truncation K̂(z, w) = −νε2 + f2(z, w)|z|2 + w2 of K at fourth order is a
completely integrable Hamiltonian, a first integral being the angular momentum
or, what is equivalent, the function f2(z, w). This is not surprising as we already
knew that the restriction to K−1(0) corresponds to the completely integrable
Kepler problem in a rotating frame. The intersection of level hypersurfaces of K
and f2 defines in general a two-dimensional torus, except when the two hyper-
surfaces are tangent, that is when w = ±if(z, w)z. In this case the intersection
degenerates to a circle; in K−1(0), this defines two solutions which project (by
a 2-1 map) onto the two circular solutions (one direct, one retrograde) of the
rotating Kepler problem with the given value −1/ε2 of the Jacobi constant.

From now on, two roads may be followed: one can, along with Kummer [K],
stick to symplectic coordinates or one can, as did Conley, use the simpler but
not symplectic coordinates

ξ1 = w + if(z, w)z, ξ2 = w̄ + if(z, w)z̄.

We shall follow Conley. The equations ż = ∂K
∂w̄ , ẇ = −∂K

∂z̄ take the form

ξ̇1 = iξ1

(
1− ε

2
|ξ1 − ξ̄2|2

)
+ε2O5(ξ1, ξ2), ξ̇2 = iξ2

(
1 +

ε

2
|ξ1 − ξ̄2|2

)
+ε2O5(ξ1, ξ2).

For this section, we do not need the exact expression of the terms of order 5.
We shall show that the energy hypersurface K−1(0) contains two periodic

solutions of minimal periods close to 2π, corresponding to the so-called Hill’s
lunar orbits, direct and retrograde, which are almost circular periodic motions
of the Moon around the Earth in the rotating frame. The value 0 of the energy
does not play a special role and it is in fact possible to prove the existence
of two “Lyapunov” families of periodic solutions stemming from the origin
and foliating two smooth (even analytical) germs of invariant surfaces in the
(z, w) four dimensional phase space. This is a degenerate version of Lyapunov’
theorem, the degeneracy being the double eigenvalues ±i of the linearization
ξ̇1 = iξ1, ξ̇2 = iξ2, of the vector-field at ξ1 = ξ2 = 0. Recall that this degener-
acy comes from the fact that all solutions of the Kepler problem with a given
energy are periodic with the same period. Here are the main steps of the proof
of the existence of Hill’s orbits.

i) Putting the vector-field into normal form at order 3: the idea, which
goes back to Poincaré’s thesis and was much developped by Birkhoff, is to
simplify as much as possible a finite part of the vector-field’s Taylor expansion
at the origin by means of local change of variables tangent to Identity. It
relies on the fact that replacing X = (x1, · · · , xn) by Y = X + h(X), where the
components of h(X) start with terms homogeneous in X of degree r, transforms
the equation Ẋ = AX + F (X) into the equation Ẏ = AY + [A, h](Y ) + Or+1,
where [, ] is the Lie bracket of the two vector-fields. If A = diag(λ1, · · · , λn) and
h = (h1, . . . , hn) with hs(Y ) = yi1

1 · · · yin
n and hj = 0 if j 6= s, one checks that

[A, h] = k with ks(Y ) = (i1λ1 + · · ·+ inλn − λs)yi1
1 · · · yin

n and kj = 0 if j 6= s.
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It follows that one can suppress only non-resonant terms, i.e. those for which
no resonance relation i1λ1 + · · ·+ inλn − λs = is satisfied.

In our case, this allows to replace the equations by the following (we kept
the same name for the variables):

ξ̇1 = iξ1
(
1 + α|ξ1|2 + β|ξ2|2

)
+ ε2ϕ1(ξ1, ξ2),

ξ̇2 = iξ2
(
1 + a|ξ1|2 + b|ξ2|2

))
+ ε2ϕ2(ξ1, ξ2),

with α = β = − ε
2 , a = b = + ε

2 , ϕ1 and ϕ2 of order 5 in ξ1, ξ2, ξ̄1, ξ̄2. In the
neighborhood of the origin, the flow Φt(ξ1, ξ2) = (ξ1(t), ξ2(t)) can be written

ξ1(t) = eit
[
ξ1

(
1 + i(α|ξ1|2 + β|ξ2|2)t

)
+ ε2α1(ξ1, ξ2, t)

]
,

ξ2(t) = eit
[
ξ2

(
1 + i(a|ξ1|2 + b|ξ2|2)t

)
+ ε2α2(ξ1, ξ2, t)

]
,

with α1, α2 of order 5 in ξ1, ξ2, ξ̄1, ξ̄2 uniformly in t belonging to a compact.
ii) Regularizing the equations for a periodic solution by means of a blow-up:

We look for a periodic solution whose period T is close to the period 2π of the
solution ξ2 = 0 of the rotating Kepler problem approximation (an analogous
reasoning can be made for a solution close to ξ1 = 0). Because of the existence
of the energy first integral, the equations which define a periodic solution of
period T , that is ξ1(T ) = ξ1, ξ2(T ) = ξ2, are consequence of the equations

Arg ξ1(T )−Arg ξ1 = 2π, ξ2(T )− ξ2 = 0.

Writing down directly these equations would lead to possibly non differentiable
terms like α1(ξ1, ξ2)/ξ1. Indeed, they read

2π = T + arg
[
1 + i(α|ξ1|2 + β|ξ2|2)T + ε2

α1(ξ1, ξ2, T )
ξ1

]
,

[
eiT

(
1 + i(a|ξ1|2 + b|ξ2|2)T

)
− 1

]
ξ2 + ε2eiTα2(ξ1, ξ2, T ) = 0.

We solve this problem by a further localization in a domain of the form
|ξ2| ≤ |ξ1| by means of a complex blow-up

ξ1 = z1, ξ2 = z1z2

which replaces such a term by α1(z1, z1z2)/z1 which is now differentiable. The
first equation determines T as a C3 function of z1, z̄1, z2, z̄2,

T = 2π − 2π|z1|2(α+ β|z2|2) + o3,

where o3 vanishes at order 3 along z1 = 0. The second one becomes

2πi|z1|2
(
a− α+ (b− β)|z2|2

)
z2 + o3 = 03.

As a − α = ε 6= 0, solving this equation leads to a C1 surface tangent to the
plane z2 = 0, that is in the (ξ1, ξ2) space to a C2 surface N1 tangent at order 2
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to the plane ξ2 = 0. Intersecting with the energy hypersurface K = 0 gives the
seeked for periodic solution. In the same way, one proves the existence of N2

tangent to ξ1 = 0.
iii) Proving the analyticity of N1 and N2: this is done in Conley’s thesis by

closely following the proof given in the non resonant case by Siegel and Moser.
To understand the formulas, one suppresses the resonant terms of any order by
means of a formal (not convergent !) transformation. One gets new (formal
coordinates) ζ1, ζ2 such that ζ̇1 and ζ̇2 become formal series in the resonant
terms ζi|ζj |2 and ζi(ζj ζ̄k). Rewriting the computation of periodic solutions as
above leads to formal surfaces N1 and N2 where, for example, N1 is defined by a
(formal) equation of the form ζ2 = γ(|ζ1|2)ζ1, the restriction of the vector-field
being of the form ζ̇1 = α(|ζ1|2)ζ1 where α has purely imaginary values (this
corresponds to the fact that N1 is foliated by periodic solutions surrounding
the origin). One proves the convergence of γ and α by writing down majorant
series.

4 The annulus twist map

Replacing the boundaries ξ1 = 0 and ξ2 = 0 of the Kepler annulus by the two
Hill orbits, one can now construct a global annulus of section of the flow in the
3-sphere K−1(0) and analyze the first return map. Such an annulus is of course
not unique and it will be convenient to chose it so as to contain the “collision
circle” of equation z = 0.

In order to get precise enough information on the first return map, one must
analyze the equations up to the 5th order where the influence of the Sun comes
into play. Writing down a normal form up to this order implies first computing
the effect on terms of order five of the change of variables leading to a normal
form at order 3. In fact, one can dispense with this: it is enough to suppress
only the non resonant terms of order 5, keeping the terms of order 3 as they
stood initially. Moreover, the above analysis of the submanifolds N1 and N2

whose intersection with K = 0 defines Hill’s orbits, shows that there exists an
analytic change of variables which transforms them into coordinate planes. A
finer analysis shows that such a straightening change of variables differs from
Id only by terms εA + ε2B, where A is resonant of order 5 and B is of order
7. One deduces that such a straightening of N1 and N2 does not bring any new
change to the differential equation up to order 5. Finally, we get new coordinates
(ζ1, ζ2) such that N1 and N2 are respectively defined by ζ1 = 0 and ζ2 = 0, and
the energy hypersurface K−1(0) and the collision circle z = 0 by

1
2
(
|ζ1|2 + |ζ2|2

)
− νε2 + εO6(ζ) = 0, and ζ1 − ζ̄2 + εO5(ζ) = 0.

It follows that an annulus of section in K−1(0) containing the collision circle
and bounded by the Hill orbits can be defined by the equation (see figure 76)

Arg ζ1 +Arg ζ2 + εO4(ζ) = 0 (mod 2π).
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Computing a little more, one can find coordinates (ϕ, ρ) on this annulus, such
that the two boundaries are close to ρ = ±1 and the first return map takes the
form

Pε(ϕ, ρ) =
(
ϕ+

1
2
− ν

2
ε3 − 3ν2

2
(1− µ

4
)ε6ρ+ 0(ε7), ρ+O(ε7)

)
.

Coming back to the definition of this annulus, one checks that the return map
corresponds essentially to the passages of the orbit of the Moon through aphe-
lium in the rotating frame.
Remark. For writing down formulas, working in the 2-fold covering K−1(0)
of the energy hypersurface diffeomorphic to S3 is convenient but one can prefer
to state the results downstairs in the compactification (regularization), diffeo-
morphic to SO(3) (that is to the real projective space of dimension 3), of the
original energy hypersurface H−1(− 1

ε2 ). The first return map then becomes a
perturbation of the Identity (the Kepler case) of the form

Pε(ϕ̃, ρ) =
(
ϕ̃− νε3 − 3ν2(1− µ

4
)ε6ρ+ 0(ε7), ρ+O(ε7)

)
.

Originating from a Hamiltonian system, this map necessarily preserves a
measure defined by a smooth density. Moreover, it is a O(ε7) perturbation of
an integrable twist map whose twist is of size ε6. This is a perfect ground for
applying the main results of the general theory of conservative twist maps, a
particular case of the theory of Hamiltonian systems with two degrees of freedom
(see section 6):

1) Applied to the iterates of the return map, the Birkhoff fixed point theorem
yelds an infinite number of periodic orbits of higher and higher periods to which
correspond periodic orbits of long period of the Moon around the Earth in the
rotating frame;

2) The Moser invariant curve theorem implies the existence of a positive
measure Cantor set of invariant curves on which the map is conjugated to a
diophantine irrational rotation and to which correspond quasi periodic orbits of
the Moon;

3) To the Liouville rotation numbers, the Aubry-Mather theory associates
invariant Cantor sets to which correspond orbits of the Moon with a Cantor
caustic

5 Quasi-collision orbits

The Jacobi constant being fixed, the regularized flow takes place in a 3-sphere.
For the original (i.e. non-regularized) dynamics, a KAM invariant torus T of the
regularized flow corresponds either to an invariant torus if it does not intersect
the collision curve z = 0, or to a punctured invariant torus if it does intersect
it. We first show that the collision curve does not lie in an invariant torus:
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Theorem 1 ([CL]) If ε is small enough (that is if the Jacobi constant −1/ε2 is
large enough), the intersection of the collision circle z = 0 with its image under
the Poincaré return map Pε on the annulus of section Aε consists of exactly
eight transversal points2.

Proof. Working with the expression of the return map we have just obtained
is not convenient because in the coordinates we have used, the expression of the
collision curve z = 0 turns out to be of the form ρ = O(ε3), which is not precise
enough. Instead, we directly blow up the circle z = 0 to a torus boundary
by introducing polar coordinates in a transversal section and slowing down the
time:

z = εreiθ, w = ε(v + iu)eiθ, dt′ = rdt′′.

In the McGehee-like coordinates coordinates (r, θ, u, v), the equations become
dr/dt′′ = rv,

dθ/dt′′ = u− 2ε3r3,
du/dt′′ = −uv + µIm{z̄(∂g/∂z̄)},
dv/dt′′ = u2 − r2 + 4uε3r3 + µRe{z̄(∂g/∂z̄)}.

The compactified energy level (in fact its two-fold covering)

(1/ε2)K = u2 + v2 − ν + r2 − 4ε3r3u− µg(z) = 0

is diffeomorphic to the solid torus u2 + v2 ≤ ν, its boundary u2 + v2 = ν (that
is r = 0) being the collision manifold whose flow is depicted on figure 5: the
submanifolds W− and W+ are made of respectively of the trajectories negatively
asymptotic to C− and the trajectories positively asymptotic to C+, where the
two circles C− (u = 0, v =

√
ν) and C+ (u = 0, v = −

√
ν) are made of fixed

points. They coincide if the perturbation term µε2g(z) is absent, as being simply
the avatar of the zero angular momentum invariant torus of the rotating Kepler
problem.
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The interpretation of theorem 2 is clearly that, for a certain set of large values of
Jacobi constant, the original problem admits invariant punctured tori which can
even contain ejection-collision orbits (see figure 8).

Proof of theorem 1. We blow up z = 0 by choosing polar coordinates in a transversal
section:

z = ere'e, x=v+iu~rw/z, dt'=rdt".

This amounts to adding a 2-torus boundary to the complementary open torus and
leads naturally to McGehee-like coordinates (compare with [5]); the transformed
equations read

dr/dt"=rv,

dd/dt"=u-2e3r\

du/dt"=-uv + n Im {z(dg/dz)},

do I dt" =u2-r2 + 4ue3r3 + fi, Re {z(dg/dz)},

with the integral

(l/e2)K = u2 + v2-v+r2-4e3r3u-ng(z),

so that the compactified energy surface corresponding to H = -\/e2 becomes the
solid torus of equation

u2+v2sv.

As we could guess, the flow on and near the boundary (the collision manifold)
is qualitatively the same as in the McGehee regularization of the Kepler problem
([4]> [5]); it is depicted in figure 4, which shows the two circles of equilibria C+
and C_ on the torus u2 + v2 = v and their asymptotic trajectories W+ and W_.

FIGURE 4

The assertion of theorem 1 is obviously equivalent to the existence of eight 'simple'
transversal ejection-collision orbits, i.e. orbits going 'directly' (without following
part of the boundary torus) from one circle of equilibria to the other, along which
W+ and W_ intersect transversally. Without the perturbation coming from the terms
/x.e2g(z), we get an integrable situation in which trajectories of this kind generate
an annulus W+ = W_ bordered by the circles of equilibria; in the Levi-Civita
variables, the union of this annulus with the 'circle' z = 0 is nothing but the

Figure 4: The flow on the collision manifold
2which become four if we consider the return map in the annulus of section obtained in

SO(3) after blowing down the 2-fold covering.
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The proof of the theorem ([CL] page 67) consists in a standard perturbation
computation from the even simpler case ε = 0, which shows that the intersection
of W− and W+ consists in exactly eight heteroclinic trajectories, negatively
asymptotic to C− and positively asymptotic to C+, along which W− and W+

intersect transversally (figure 6).
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Using the invariance of our equations under the transformation

(6,r,u, v,t")~(-d,r,u,-v,-t"),

we get that the intersection of the same annulus v = 0 with the part of W_ above it
is nothing but the graph of 0>-» <£(-0).

As the intersection of these two curves is obviously composed (for e small enough)
of eight transversal points, the conclusion follows (figure 5). •

FIGURE 5. /i>0.

Remarks, (i) Because of the twofold covering involved in the Levi-Civita variables,
these eight points correspond to only four points in the McGehee compactification
of the original problem which appears in [5] (invariance of the equations under
6->6 + Tr).

(ii) The annulus v = 0, which plays such a prominent role in this proof, is closely
related to the annulus A. Indeed, if we set (see [2] and [3])

^ = w+ifz, £2 = w + ifz, f=l+2ie(zw-zw),

we get

v = [l/(e|f, - #2|)] Im (£,&), u = [1/(2*16 - £|)](|f,|2 -1&|2)-
In particular, v = 0 is equivalent to Arg £, + Arg £2 = 0(mod IT); but the same equation
mod277, which corresponds to v = 0, |M|>VV/2 , is just the annulus A when fi = 0
and is very close to the actual annulus A in the general case (see [2] and [3]).

Finally, u = 0 is equivalent to |£,|2 -1&|2 = 0, which is of course the zero-momentum
invariant torus in the case fj. = 0. So, in this case, W+ = W_ has the equation M = 0,
happily compatible with our calculations.

We have depicted in figure 6 the (integrable) flow when fi = 0.
(iii) Finiteness in theorem 1 already follows from analyticity; indeed, it is not

difficult to prove that Pe is real analytic up to the boundary for the differential
structure on the annulus which comes from its embedding in the energy sphere. On

Figure 5: Transversal intersection

Corollary 2 (Existence of invariant punctured tori) In any neighborhood
of ε = 0, there are intervals of values of ε such that, in the regularized energy
level, the collision circle intersects an uncountable number of KAM invariant
tori, each in a finite number of points. In the non regularized Kepler energy
surface, these correspond to “invariant punctured tori”.

Proof. Theorem 1 implies that the collision circle is not contained in an
invariant torus (that is, it is not an invariant curve of the Poincaré return map).
Because it is analytic and KAM tori are also analytic, the intersections consist
at most in a finite number of points. Varying the value of ε moves the invariant
curve of a given rotation number across the annulus, which forces intersection
with the collision curve. This proves the assertion.

Definition 1 An orbit without collision which comes arbitrarily close to a col-
lision is called a “quasi-collision orbit”.

Such orbits correspond to motions of the Moon which persistently change their
direction of rotation around the Earth in the rotating frame without ever collid-
ing with the Moon (they collide asymptotically when the time goes to infinity).

Lemma 3 Most of the orbits in an invariant punctured torus are quasi-collision
orbits.

Proof. This comes from the fact that in an invariant punctured torus, the
set of initial conditions leading to a collision (that is to one of the punctures) ia
finite union of orbits, hence of 2-dimensional measure 0. Figure 6 corresponds
to the case where z = 0 would intersect transversally in two points an invariant
torus of the system in an energy hypersurface of the regularized system. An
ejection trajectory is represented.
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^Graph I ,

z = 0

z = 0

Graph S,

z = 0

e near c,

FIGURE 7

Graph 2,

existence of at least two points of intersection of this set with its image under the
homeomorphism (<£, e)-»(/e(</>), e), where fe is the given family of homeomorph-
isms. •

Final comments. (1) As was pointed out to us by C. Simo, it is easy to see that if
in the Hamiltonian K we replace g(z) by |z|2{2|z|4+3(z4+(f)4)}, and fi and v by
1, we get the so-called Hill's problem. Since only this part of the Taylor expansion
of g is used in our proofs, our results are also valid for Hill's problem.

(2) It is noticeable that the complicated dynamics we get in the rotating plane is
still perfectly compatible with complete integrability and reflects only the relative
position of the 'circle' z = 0 with respect to eventual invariant tori in the Levi-Civita
3-sphere. Figure 8, drawn in the McGehee solid torus (up to a linear change of

Two circles 'at infinity' (i.e. on the collision manifold);
their complement is homeomorphic to ( T 2 - 2 points)

FIGURE 8. This figure corresponds to a case where z = 0 would intersect transversally in two points an
invariant torus of the system in the 3-sphere of Levi-Civita; we have represented an ejection trajectory.Figure 6: An invariant punctured torus

Remark. The detour through the Levi-Civita regularization was used for co-
herence with the construction of the annulus of section but it could have been
bypassed. Indeed, coming back to the original x, y variables, we get

x = 2ε2r2e2iθ, y = (v + iu)
e2iθ

εr
, dt = 4ε3r3dt′′.

Replacing 2θ by θ, this is essentially the McGehee regularization [McG].

6 Classical results about the dynamics of mono-
tone twist maps of the annulus: a quick sketch

Recall the twist mapping of the annulus that we have obtained :

Pε(ϕ̃, ρ) =
(
ϕ̃− νε3 − 3ν2(1− µ

4
)ε6ρ+ 0(ε7), ρ+O(ε7)

)
.

Because of its origin as the Poincaré return map on a surface of section in
some energy hypersurface of a Hamiltonian system, it is conservative, that is,
it preserves a finite measure equivalent to the Lebesgue measure. In particu-
lar, it charges open sets, which implies the intersection property: each curve
homothetic to the boundaries of the annulus must intersect its image. To such
conservative twist mappings of the annulus, three fondamental theorems apply,
asserting respectively the existence of periodic orbits, Cantor-like invariant sets
and regular invariant curves. For the original system, they mean the existence
respectively (in the rotating frame) of periodic solutions (in general of long pe-
riods) of the Moon around the Earth, of solutions with a Cantorian caustic and
of quasi-periodic solutions with a regular caustic, as illustrated on figure 7.
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Figure 7: The annulus of section and the return map

6.1 Birkhoff’s periodic orbits

Their existence is a consequence of the following theorem, conjectured by Poincaré
in the last year of his life and proved by Birkhoff one year after Poincaré’s death
(see [C3], section 12.2). See also [C5] and the references therein.
A diffeomorphism F of the closed annulus T1× [0, 1] which preserves the bound-
aries ”turns them in opposite directions” if there exists a lift F̃ of F to a dif-
feomorphism of the universal covering R× [0, 1] of the annulus which sends the
points of the two boundaries in opposite directions.

Theorem 4 (Birkhoff’s fixed point theorem) A conservative distortion of
a closed annulus possesses at least two fixed points

Our diffeomorphism F of the annulus is a monotone distorsion, which means
that the image of a segment ϕ̃ = constant is a graph over some sector of the
circle. In such a case we have much more precise results (see the next paragraph)
but let us show that one can readily apply Birkhoff’s theorem: because of the
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monotonicity, the rotation numbers ρ0 and ρ1 of F on the two boundaries are
distinct and it follows that if p/q is a rational number in between these two, the
qth iterate F q of F turns the boundaries in opposite directions. One deduces
that there exists periodic points of any rational rotation number between ρ0

and ρ1 (recall that, as T1 = R/Z, the rotation numbers are defined modulo 1).

6.2 Aubry-Mather invariant Cantor sets

This is the 2 degrees of freedom case of what Albert Fathi has developped under
the name weak KAM theory, a theory forrunned by Pierre-Louis Lions, which
complements fundamental works by Ricardo Mañé and John Mather. See [C5]
and the references therein. For an elementary introduction to the weak KAM
theory, see [C6].

Theorem 5 (Existence of Aubry-Mather invariant sets) For each irra-
tional number ω in between the rotation numbers of the boundaries, a monotone
distortion of the annulus possesses invariant sets (which can be of Cantor type
but also regular curves as described in the next paragraph) on which the orbits
of the restriction of F are circularly ordered as the orbits of the rotation ω.

A short proof was given by A. Katok: these “well ordered” invariant sets are
abtained as limits of “well ordered” periodic orbits; the crux of the argument is
the uniform Lipschitz estimates verified by such periodic orbits (see [C5]).

6.3 Moser’s invariant curves

Here is the statement of Moser’s invariant curve theorem used in [CL].

Theorem 6 Let 0 < γ ≤ 1, C > 0, β ≥ 0 be three real numbers, ω a real
number satisfying ∀p/q, |ω−p/q| ≥ γC/|q|2+β, and F a real analytic embedding
of (R/Z)× [− 1

4 ,
1
4 ] into (R/Z)× R,

F (ϕ, σ) = {ϕ+ ω + γσ + γΦ1(ϕ, σ), σ + γΦ2(ϕ, σ)}.

Suppose that F has the intersection property and consider a neighborhood A =
{(ϕ, σ), |ImΦ| ≤ a, σ ∈ A′} of (R/Z)×[− 1

4 ,
1
4 ] in (C/Z)×C on which the complex

extension of F is defined. For each η > 0 there is a δ > 0 depending on C, β,A
but not on γ, such that, if the C0 norms on A of Φ1 and Φ2 satisfy ||Φ1||A +
||Φ2||A < δ, there exists a unique real analytic function ψ : R/Z) → [− 1

4 ,
1
4 ]

whose graph is an invariant curve of F on which F is analytically conjugate to
the rotation ϕ 7→ ϕ+ ω, and such that ||ψ||0 < η.

7 Questions

1) When the collision curve does not lie in the closure of a Birkhoff region of
instability, i.e. a subannulus not containing any invariant curve, the closure of
the union of its iterates is of positive measure, as it contains a Cantor set of
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positive measure of quasi-periodic invariant curves. What if the collision curve
is contained in a Birkhoff region of instability ? If it intersects “genreric” islands
around elliptic fixed points, the same will be true but, is it always true ?
2) Is it even possible that, for some value of the Jacobi constant, the collision
curve, in addition to lying in a domain of instability avoids also all the Aubry-
Mather invariant Cantor sets and all the periodic orbits of the return map ?

3) When the Hill region opens, so that the 0-mass body may visit both primaries,
Are there orbits which have a quasi-collision with both primaries. For the 2-
fixed centers problem, there is an open subset of such quasi-collision orbits. By
perturbation, this shows that the same is true for the restricted problem in case
the primaries are far enough from each other, so that the angular velocity of
the rotating frame is a small parameter.

8 Comments on the references

The primary sources are [Co, C1, C2, CL]. See also Kummer [K], who choosed
to stick to symplectic changes of coordinates. The existence of quasi-collision
orbits in the non-restricted three-body problem is proved in [F] in the planar
case and in [Z] in the spatial case.
While our small parameter was the ratio of the distance Moon-Earth to the
distance Moon-Sun, in the so-called planetary problem studied by Poincaré, the
small parameter was the mass of one of the primaries (see [C3] section 9).
In chapter 4 of [C2], a dynamics similar to the one studied in this course is
described for the equal mass three body problem in the neighborhood of the
Lagrange relative equilbrium when restricted to a center manifold.
In [B], Birkhoff regularizes simultaneously the collisions of the zero mass body
with the two primaries. Of course this is interesting only in case the Jacobi
constant is small enough in absolute value so that one Hill region contains both
primaries. The references [LMS, GMS, FGKR, KLMR, M] are some examples
of the rich behaviour of the restricted problem for smaller (absolute) values of
the Jacobi constant.
To-day, computers allow to get a quite good idea of the global structure of the
phase space for 2 degrees of freedom systems. See for example [SiSt] on Hill’s
problem.
The Scholarpedia article [C4] gives a general view of the Three body problem
with some basic references.
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