
            

to Don

Action minimizing periodic orbits in the Newtonian n-body problem

Alain Chenciner

1. Central configurations, homographic motions, Sundman’s inequality

I shall start with a crash course in Celestial Mechanics, to set up notation and
to remind you, Don, of your first and everlasting (mathematical) love. For this, I
shall use freely [2],[8],[9],[10], where more details and appropriate references will
be found.

Equations and first integrals. After using Galilean invariance to fix the center
of mass, the phase space of the n body problem in IRk may be identified with the
tangent bundle of the configuration space X̂ = X \ {collisions},

X̂ =
{

x = (~r1, . . . , ~rn) ∈ (IRk)n,

n∑

i=1

mi~ri = 0
}
\
{
x, ∃ i 6= j, ~ri = ~rj

}
.

On X , the mass scalar product is defined by

x · x′ =
n∑

i=1

mi

〈
~ri · ~ri′

〉
IRk

if x = (~r1, . . . , ~rn), x′ = (~r1
′, . . . , ~rn

′).

We shall identify the phase space with the cartesian product X̂ × X and we shall
denote by (x, y) its elements. The equations of the n-body problem, written by
Lagrange in 1777, take the form

ẋ = y, ẏ = ∇U(x),

where the dot stands for time derivative and ∇U is the gradient of the potential
function, or force function, U – opposite to the potential energy – defined by

U(x) =
∑

i<j

mimj

|~ri − ~rj |
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(we chose the gravitational constant equal to one). Considered as a function
U(x, y) on X̂ × X , it is invariant under the diagonal action of the isometry group
of the euclidean space IRk:

R · (x, y) = (Rx, Ry) and R · (~r1, . . . , ~rn) = (R~r1, . . . , R~rn).

The same is true of the following functions on the phase space:

I = x · x, J = x · y, K = y · y, H =
1

2
K − U, L =

1

2
K + U.

These are respectively the moment of inertia with respect to the center of mass,
half of its time derivative, twice the kinetic energy in a frame which fixes the center
of mass, the total energy and the Lagrangian. By a formula of Leibniz, the fact
that the center of mass is at the origin implies

I =
1∑n

i=1 mi

∑

i<j

mimj |~ri − ~rj |2.

The size r = I
1
2 of the configurations is a norm on X (in a more dramatic way,

it is called “size of the universe” in [28], at least if we forget a most infortunate√
2 factor: please, Don, for the next sixty years, do not use any more 2I for what

should be called I. Sundman’s inequality is so much nicer without a factor 4 !).

Computing the derivatives Ḣ and Ï, one proves immediately the conservation of
energy and the Lagrange-Jacobi relation

Ḣ = 0,
1

2
Ï = K − U.

Finally, invariance under rotation implies the constancy of the angular momentum
bivector

C =

n∑

i=1

mi~ri ∧ ~̇ri,

which, using the orientation, can be thought of as a real number (resp. a vector ~C)
when k = 2 (resp. k = 3). We shall denote by |C| the norm of the bivector C. Let
us recall that the support of C is an even dimensional subspace of IRk. If C 6= 0, it
coincides with the ambient plane in case k = 2 and with the plane orthogonal to
the vector representing C in case k = 3. For any k, if C 6= 0, the formula (where we
identify IRk with its dual via the euclidean structure and C with an antisymmetric
operator from IRk = (IRk)∗ to IRk)

IC
(
~r1, . . . , ~rn

)
=

1

|C|
(
C(~r1), . . . , C(~rn)

)
, or

1

|~C|
(~C ∧ ~r1, . . . , ~C ∧ ~rn) if k = 3,

defines a complex structure, that is an operator IC whose square is −Identity,
on the subspace of X formed by n-tuples (~r1, . . . , ~rn) with each component in
the support of C (in particular, it is defined on the whole of X if k = 2). The
inequality ||IC(x)|| ≤ ||x|| always holds. We shall freely speak of IC as a true



          

complex structure and we shall call the set of elements of the space X of the form
λx + µIC(x) with real λ and µ, the complex line generated by x.

Two bodies. After fixing the center of mass, the motion of a two-body problem
takes place on a fixed line if C = 0, in a fixed plane otherwise. In the first case x
and y are proportional and Cauchy-Schwarz inequality IK − J2 ≥ 0 becomes an
equality. In the second case, y is always a complex multiple of x for the complex
structure defined by the angular momentum. One easily deduces from this the
identity IK − J2 = |C|2 as a complex Schwarz equality.

More than two bodies. The previous equality becomes Sundman’s inequality

IK − J2 ≥ |C|2,

which one obtains by replacing the norm ‖y‖ of the velocities by the norm of its
orthogonal projection on the complex line (real plane) generated by x.

Once written K ≥ J2/I + |C|2/I, Sundman’s inequality is nicely interpreted in
terms of Saari’s decomposition of the velocities [28]: some linear algebra shows that
for each (x, y), the “velocity configuration” y is the orthogonal sum of a component
yh, proportional to x, which induces a homothetic variation of the configuration,
a purely rotational component yr, i.e. such that there exists an antisymmetric
operator Ω on the euclidean space IRk satisfying for each i, ~̇ri = Ω~ri, and a
component yd which corresponds to a deformation of the normalized configuration
r−1x = I−

1
2 x. From the orthogonality of the three components one deduces

that K = ||y||2 = ||yh||2 + ||yr||2 + ||yd||2. Computing x · y = x · yh, one sees
that yh = I−1Jx, that is ||yh||2 = I−1J2 = (ṙ)2. Finally, one checks that yd is
orthogonal to the complex line generated by x. So Sundman’s inequality amounts
to bounding from below the rotation component ||yr||2, in reality the squared norm
of its projection onto this complex line, by I−1|C|2, and ignoring the deformation
component ||yd||2.
The equality IK − J2 = |C|2 holds at a given moment if and only if ([2] lemma
3.1)
– on the one hand yd = 0 and yr belongs to the complex line generated by x,
– on the other hand ||IC(x)|| = ||x||, that is if the motion takes place in a plane.
The equality holds for every t if and only if y is at each moment a complex multiple
of x (a real multiple if C = 0). This implies (see [2]) that

x(t) = ζ(t)x0, where ζ(t) ∈ C, ζ̈(t) = −U

(
x0

|x0|

)
ζ

|ζ|3 ,

which means that, in such motions, the bodies describe around their center of
mass similar keplerian motions.

Central configurations. The cases of equality of Sundman’s inequality described
above can exist only with very special configurations, the central configurations.
These are precisely the critical points of the homogeneous function of degree zero,
Ũ =

√
IU = rU (called “configuration measure” in [28]) or, equivalently, the criti-

cal points of the restrictions of U to the spheres I = constant. The corresponding
motions are called homographic motions with central configuration. The particu-
lar cases of the circular motions, where the configuration remains constant up to



           

isometry, are called relative equilibria (for the specialists, see [2] to discover that
if k ≥ 4, a quasi-periodic relative equilibrium motion can arise with a non-central
configuration). Conversely, every central configuration admits homothetic mo-
tions and, provided the ambient space dimension k is even, periodic homographic
motions for which the configuration remains constant up to similarity (that is
composition of homothety and isometry) [2].

The determination of the similarity classes of central configurations is a major
problem which pertains to algebraic geometry. The only cases completely under-
stood are the following:

(i) the collinear case (k = 1): for each set of n (positive) masses, Moulton’s theorem
asserts the existence of exactly one central configuration up to homothety for a
given order of the bodies. This gives n!/2 different configurations up to similarity;

(ii) the case of three bodies: to the Moulton’s collinear configurations, due to Euler
in this case, one must add the Lagrange equilateral configuration;

(iii) the case of four bodies of equal masses: Albouy’s theorem says that, excepting
the Moulton’s collinear configurations and the regular tetrahedron, one has only
three more planar configurations, namely the square, the equilateral triangle with
a mass at the center of mass and a particular isosceles triangle with a mass on the
axis of symmetry a little above the center of mass.

For general n and k, not even the finiteness of the number of similarity classes of
central configurations is known.

Homographic motions with central configuration are the simplest periodic motions
of the n-body problem and the only explicit ones (if one forgets that the possible
configurations are unknown for n bigger than 3). They can be defined by mimizing
IK−J2−|C|2. Among them, only those whose configurations minimize Ũ will be
met again in the sequel.

2. Minimizing the action

Let T be a positive real number and ΛT = H1(IR/TZZ ,X ) be the Sobolev space
of those mappings (“loops”) which are, together with their first derivative in the
sense of distributions, square integrable. We call

AT : ΛT → R ∪ {∞}, AT (x) =

∫ T

0

L
(
x(t), ẋ(t)

)
dt,

the action functional or simply the action. It is well known that, as for any
hamiltonian system, T -periodic orbits of the n-body problem are critical points of
the action functional. For such a positive functional, the critical points easiest to
find are certainly the absolute minimizers – which are the subject of this paper –
but three obstacles lay on the way:

A) non-coercivity. Minimizing AT over the full functional space H1(IR/TZZ ,X )
is not very rewarding as one readily checks that the minimum is attained “at
infinity” by configurations with all bodies infinitely separated and moving infinitely
slowly on infinitely small closed curves. The minimum value is of course zero.

B) collisions. Due to Sundman’s estimates

U = O(|t− t0|−
2
3 ) and K = O(|t− t0|−

2
3 )



          

in the neighborhood of a collision time t0 (see [10]), the action of a segment of
solution leading to a collision remains finite. So, a critical point of AT may include
such segments and even an infinite number of them, though the set of collision
times must have measure zero.

C) triviality. One has to find conditions under which an absolute minimum can-
not be a homographic periodic solution (we shall consider that these are “known”
even if their actual determination is a very hard open problem).

A) Coercivity. The action functional is called coercive if it goes to infinity as I
goes to infinity. Coercivity prevents an absolute minimizer from being a “critical
point at infinity”.

There are two natural ways of restricting the functional space so as to make the
action functional coercive:

i) Topological constraints. These can be homological or homotopical, the two
notions being the same in the case of two bodies.

ii) symmetry constraints. We shall see that, up to now, these appear to be much
more tractable than the the topological ones as far as proofs are concerned.

In both cases, the trick is to impose conditions on the loops such that if at any
given time the configuration is big, then the loop itself, and consequently the
action, must be big.

A-i1) Topological constraints: homology. The best known example and the
one which, in the Newtonian case, is the mother of all topological ones, is Gordon’s
theorem [19] on the planar Kepler problem, equivalent to the case n = 2, k = 2. It
asserts that among all planar loops which encircle the attracting center (i.e. which
are homologically non trivial), the ones which minimize the action are exactly
the Keplerian motions with the given period, including the “ejection-collision”
ones. Moreover, if the index of the loop is fixed to a value different from −1, 0, 1,
the minimizers are exclusively the ejection-collision Kepler motions. The main
observation is the convexity of the action functional for the Kepler problem (it is

proportional to T
1
3 ):

AT < AT1 +AT−T1 .

But as early as November 30th 1896, Henri Poincaré [27] had already foreseen part
of the story described hereafter, even if he didn’t prove himself anything concerning
Newton’s potential because of the problem of collisions (Poincaré didn’t know of
course Sundman’s work, which is posterior, but he certainly could compute the
action in the two-body case and discover it stayed finite along a collision solution;
we shall see in the paragraph on collisions how he eliminated this problem by
changing the potential). What Poincaré proposed for the three-body problem in
the plane, was to minimize the action on a space of loops representing a fixed
1-dimensional homology class in the configuration space. For three bodies in the
plane, the configuration space X̂ is diffeomorphic to IR4 \ 3 collision planes and
its first homology group is isomorphic to ZZ 3, the three components being the
algebraic number of turns that each side of the triangle defined by the bodies
undergoes along the loop (see [23]). In reality, Poincaré was interested only in
periodic orbits modulo rotation, that is in a rotating frame, but this is immaterial
for us, it only changes ZZ 3 to ZZ 3/(1, 1, 1)ZZ ∼= ZZ 2. Indeed, the quotient of the
configuration space by the SO(2) symmetry is realized by the Hopf map IR4 → IR3



         

and the reduced configuration space is diffeomorphic to IR3\3 half-lines and hence
homotopic to a 2-sphere minus 3 points (see [13] and references therein). One
checks readily, for example, that coercivity is insured as soon as the homology
class (k1, k2, k3) ∈ ZZ 3 is such that at least two of the ki are different from 0 (in
his note of 3 pages, Poincaré does not explicitely address the problem of coercivity
but he was certainly aware of it). The first results in the Newtonian case using
the Poincaré strategy were obtained in July 2000 by Andrea Venturelli [35]. We
describe them below (Theorem 1).

A-i2) Topological constraints: homotopy. It is strange that Poincaré did
not think to replace the first homology group H1(X̂ ) by the first homotopy group
π1(X̂ ) – the fundamental group – that he had just defined the year before in his
famous paper on Analysis situs. The homotopy class of a loop is a much richer
invariant. For example, in the case of three bodies in the plane, it is coded by
the braid type of the (colored) braid defined by the bodies in space time IR2 × IR
(see [23] where one finds more generally a complete study of the coercive classes in
the general case of the n-body problem in the plane). The analogous problem for
periodic geodesics on negatively curved surfaces was studied quite early but the
first study of minimization of the action over a given homotopy class for potentials
including Newton’s, was done – and only numerically – in 1993 by Cris Moore [25].
We shall come back after stating Theorem 5 to his very interesting paper which,
by the way, was completely ignored by specialists in Celestial Mechanics till June
2000 when Phil Holmes made me aware of it after I showed him reference [13].
The same ideas were independantly developed theoretically in 1998 by Richard
Montgomery [23] (similar results by Luca Sbano for n = 3 appeared at the same
time in [29]), but only for “strong force” potentials which avoid collision problems
(see below).

In these proceedings, Richard Montgomery [24] shows well the difficulties of min-
imizing on a given homotopy class: for example, with three bodies, the Lagrange
(= equilateral) ejection-collision orbit of the given period is adherent to any ho-
motopy class (put the topology in a tiny ball), so that a collision-free minimizer
in any homotopy class must have strictly smaller action than that of Lagrange.

A-ii) Symmetry constraints. The first papers to make use of symmetry con-
straints to force coercivity seem to have been [18] in the case of 2 bodies (=Kepler
problem) and [15] in the general case. In both cases, one restricts the action func-
tional to the subspace ΛaT of ΛT consisting of loops x which satisfy for all t the
condition

x(t + T/2) = −x(t).

This condition is called, for obvious reasons, antisymmetry by analysts and sym-
metry by geometers. For the sake of œcumenism, we shall call it (anti)symmetry.
It clearly implies coercivity. Note that among Keplerian motions, only the circular
ones are (anti)symmetric.

Let us rephrase the definition of ΛaT in the following way: it is the set of invariant
elements under the action a of the group ZZ/2ZZ on ΛT defined by

(
a(1) · x

)
(t) = −x(t− T/2).

More generally, let us consider an orthogonal (i.e. by isometries) representation ρ
of a finite (or compact) group G in the real Hilbert space ΛT (with the H1 scalar



           

product), such that, for any g in G,

AT (ρ(g) · x) = AT (x).

This is the case here because ZZ/2ZZ acts on Rk by isometry, the symmetry with
respect to the origin, and on the circle R/TZZ also by isometry, the rotation by
angle π.

Notation. We call ΛρT the linear subspace of ΛT formed by the elements which
are invariant under the representation ρ. We call AρT the restriction of AT to ΛρT .

In the sequel we shall consider only representations of the form

ρ(g) · x(t) = α(g) · x(β(g)−1 · t),

where α and β are isometric actions of G respectively on X and on the circle: a
loop x(t) is invariant under ρ if and only if it is equivariant under α and β.
There are of course trivial cases in which AρT is not coercive, for example if α or
β is trivial. But in all the cases we shall consider, the coercivity will be easy to
prove. Moreover, the following lemma is a particular instance of Palais’ principle
of symmetric criticality [26]:

Lemma. Any critical point of AρT is a critical point of AT .

Proof. After identification of ΛT with its tangent space at any point by transla-
tion, we deduce from the ρ-invariance of AT that, for any g ∈ G,

dAT (ρ(g) · x)(X) = dA(x)(ρ(g)−1 ·X).

If x belongs to the vector subspace ΛρT of elements which are fixed by the action,

dA(x)(ρ(g)−1 ·X) = dA(x)(X).

As ρ(g) preserves the H1-scalar product, the H1-gradient ∇A(x) at any point
x ∈ ΛρT satisfies

(ρ(g) · ∇A(x)) ·X = ∇A(x) · (ρ(g)−1 ·X) = ∇A(x) ·X.

This means that ∇A(x) belongs (=is tangent) to ΛρT , which implies that a critical
point of the restriction AρT of A to ΛρT is indeed a critical point of A.

As we said, we shall be mainly interested in global minimizers of ΛρT . Note that,
once we have coercivity, the weak lower semi-continuity of the functional implies
in a standard way the existence of a minimizer in ΛρT .

Example: relative equilibrium motions. We suppose k = 2. Let us consider
the “standard” representation ρst of the circle G = S1 in ΛT defined by

ρst(θ) · x(t) = (Rθ · x)(t− θ

2π
T ),

where Rθ · x is the rotation of the whole configuration x by the angle θ . A
critical point of AρstT is a relative equilibrium motion x(t) = R 2πt

T
x(0). Note that

ΛρstT is a subspace of ΛaT . We shall come back to this in our first theorem. Related



       

“standard” actions are obtained when replacing the circle by the subgroup ZZ/mZZ
of m-th roots of unity. Such actions were used in [5].

B) Collisions. More than coercivity, this is certainly the main difficulty of the
variational approach to the problem of finding periodic orbits for the Newtonian n-
body problem. Proving that a given critical point, say a minimum of AT in a well
chosen functional space, is a “true” solution without collision, requires in general
much work. This explains the popularity of the so called “strong force” problem
where the Newtonian exponent −1 in the potential is replaced by an exponent
−a ≤ −2 for which any path leading to a collision has infinite action (see [12]).
Few people – including the author before he was told so by Robert McKay in July
2000 at the Rio conference – know that it is Henri Poincaré (and not Gordon, for
example) who introduced this notion in the note [27] and proved there that any
segment of solution leading to a collision has infinite action.

Proving directly that a minimizer is collision-free appears often to be easier under
symmetry constraints than under topological constraints. Here is an example

A simple example: exclusion of total collisions in the (anti)symmetric
case. Before giving an overview of known cases where the problem of collisions
could be overcome, we show the simplest reasoning by which collisions can be
excluded (the first instances of this kind of reasoning are again [18] and [15]).
Namely, we shall show that, if k = 2, any x ∈ ΛaT minimizing AaT has no total
collision. If not, we can suppose after translating the time, that a total collision
occurs at t = 0. The (anti)symmetry assumption implies that a total collision
occurs again at t = T/2.

Let us use Sundman’s inequality to compare the kinetic energy of the ejection-
collision path x|[0,T/2] to the one of a Kepler problem on the line: K ≥ (ṙ)2. We
cannot do better as Sundman’s theorem implies that the angular momentum C
must be zero (see [10]).

Let U0 = U0(m1, . . . , mn; k) be the minimal value of Ũ . For three bodies in
the plane U0(m1, m2, m3; 2) = 3

√
3/
√

m1 + m2 + m3 is the value of U on an
equilateral triangle of unit size. For four bodies in space, U0(m1, m2, m3, m4; 3) =
6
√

6/
√

m1 + m2 + m3 + m4 is the value of U on a regular tetrahedron of unit size.
For four bodies of unit mass in the plane, U0(1, 1, 1, 1; 2) = 4

√
2 + 2 is the value

of U on a square of unit size. One has by definition U ≥ U0/r.

Finally, the Lagrangian L may be bounded from below by the Lagrangian of a
Kepler problem on the line:

L ≥ 1

2
ṙ2 +

U0

r
.

Then Gordon’s theorem implies that the action of x|[0,T/2] is greater or equal
to the Kepler action of an ejection-collision solution in time T/2 of the Kepler
problem on the line with potential U0. Moving to the plane and applying the
convexity argument, we see that the action of the (anti)symmetric loop x is strictly
greater than the Kepler action of any T -periodic solution of the Kepler problem,
in particular of a T -periodic circular solution. But this last action is the same as
the one of a T -periodic relative equilibrium solution of the n-body problem in IR2

with a central configuration such that Ũ = U0(m1, . . . , mn; 2). As such a solution
is (anti)symmetric, we have found an element x0 of ΛaT without collision, whose



         

action is strictly smaller than the action of any loop x in ΛaT with at least one
total collision. This ends the proof that a minimizer in ΛaT cannot have any total
collision.

Unfortunately, this argument cannot work for partial collisions because if such a
collision occurs at time t = 0, x(T/2) will only be symmetric to x(0) with respect
to the origin, not equal to it. It cannot work either in 3-space for 4 bodies or
more because a relative equilibrium motion with Ũ = U0 simply does not exist in
3-space (see [2]).

We describe now a few known cases where the absolute minimizers of the action
functional AρT can be proved to be collision-free solutions of the Newtonian n-body
problem.

3. Some collision-free minimizers

i) I shall start with the only result I know – excepting Gordon’s one – which
uses homological constraints with Newton’s potential. This result was proved by
Andrea Venturelli in July 2000. It is an exact generalization of Gordon’s theorem
to the case of three bodies in the plane, and a partial answer to the expectations
of Poincaré.

Theorem 1 ([35]). Let us fix an element (k1, k2, k3) ∈ H1(X̂ ) = ZZ 3 in the first
homology group of the configuration space of the three-body problem in IR2. If
(k1, k2, k3) = (1, 1, 1) or (k1, k2, k3) = (−1,−1,−1), the minimizers of the action
AT among the loops in this homology class are exactly the Lagrange (i.e. equilat-
eral) homographic solutions. If (k1, k2, k3) 6= (1, 1, 1), (−1,−1,−1) but each ki is
different from 0, the minimizers of the action AT among the loops in this homology
class are exactly the Lagrange homothetic ejection-collision solutions.

The proof, which works only for three bodies, is based on the possibility of writing
the action as a sum of three “two-body” actions:

AT (x) =
∑

(i,j)=(1,2),(2,3),(3,1)

mimj∑
mi

∫ T

0

(
|~̇ri − ~̇rj |2

2
+

∑
mi

|~ri − ~rj |

)
dt.

It is interesting to note that proving directly that a Lagrangian homographic
motion with non-zero excentricity is a local minimum of the action seems by no
means easy.

ii) All the other results that I shall describe use symmetry constraints. In the
(anti)symmetric setting, the first results asserted

1) the existence of a minimizer,
2) the fact that this minimizer is collision-free.

They did not address the problem of triviality because they considered more gen-
eral potentials than just the Newtonian one, in particular non homogeneous and/or
non SO(2)-symmetric potentials. They appeared in [5] for the n-body problem
in the plane and in [30] [31] for the case of three bodies in space. In the first
paper, collisions are shown to be absent from a minimizer by a global estimate.
On the contrary, in the last ones, local perturbation arguments are used to show
that the presence of a collision, double or triple, prevents a loop from being a local
minimizer. These results made the following theorem not too unexpected, even if,
as we shall see, it contained some surprise.



         

Theorem 2 ([11]). If k is even, or if n ≤ k, a relative equilibrium motion whose
configuration minimizes Ũ is a minimizer of AaT . If moreover the similarity classes
of central configurations which minimize Ũ are isolated, there are no other mini-
mizers.

In [11], the second part of the theorem was mistakenly stated without the hy-
pothesis that similarity classes of central configurations be isolated (I am grateful
to Vittorio Coti Zelati who did not trust the “proof” given there of equality in
Sundman’s inequality). I shall discuss this point at the end of the paragraph. The
conditions on n, k are necessary to insure the existence of such a relative equilib-
rium motion (see the comment at the very end of paragraph 2). They had also
been forgotten at first and it is a question of Vittorio Coti Zelati (the same!) to
the author of the present paper at the Aussois meeting in June 1998 which made
this apparent. The question was about the first case where the conditions are not
satisfied, namely n = 4 and k = 3, and it was instrumental in the discovery of the
less expected

Theorem 3 [14]. For four bodies of equal masses in 3-space, any minimizer of
AaT is free from total collision but it cannot be a relative equilibrium motion.

The absence of total collision is proved by almost the same argument we used in
the plane: any loop with a total collision has greater action than the ejection-
collision loop of the regular tetrahedron, which in turn has greater action than the
relative equilibrium motion of the square.
The next candidate is thus a relative motion x(t) of the the square, but a well
chosen vertical deformation

x(t) 7→ x(t) + ε cos
2πt

T

(
(0, 0, 1), (0, 0,−1), (0, 0, 1), (0, 0,−1)

)

shows that such a motion is not even a local minimum. The above deformation is
invariant under the action of ZZ/4ZZ on R3 (coordinates a, b, c) generated by the
isometry

S(a, b, c) = (−b, a,−c).

This strongly suggests restricting the action AT to the subspace ΛhhT (hh means
Hip-Hop) defined by the loops which are invariant under the following orthogonal
representation hh of ZZ/2ZZ × ZZ/4ZZ in ΛT :

{
hh(1, 0) · x(t) = −x(t− T/2)

hh(0, 1) · x(t) =
(
S~r4(t), S~r1(t), S~r2(t), S~r3(t)

)
,

where x = (~r1, ~r2, ~r3, ~r4). The action AT is invariant under hh because all four
masses are equal. One can then prove the

Theorem 4 [14]. For four bodies of equal masses in IR3, an absolute minimizer
of AhhT is a collision-free solution of Lagrange equations. Such a solution, called
Hip-Hop, hesitates periodically between the shape of a tetrahedron and the shape
of a square.

When proving the existence of the Hip-Hop, we were sure that this orbit was
new, but I was made aware by Ian Stewart that the family of spatial equal-mass



             

symmetric periodic orbits to which the Hip-Hop belongs was first discovered nu-
merically in 1983 by Ian Davies, Aubrey Truman and David Williams [17]. The
symmetry principle is very clearly stated in this nice paper which inspired the
abstract developments of Ian Stewart in [34] for non-singular potentials. These
solutions were also rediscovered – still numerically – under the suggestive name of
“pelotes” by Georges Hoynant [20]. A related paper was written by Ken Meyer
and Dieter Schmidt in a perturbative situation [21]. Nevertheless, none of these
papers uses the variational method and our existence proof seems to be the first
one.
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I already said that in the topological setting, a thorough study of the topological
hypotheses implying the coercivity property for the n-body problem in the plane
had been made by Richard Montgomery in [23]. The related collision problem is
discussed by Richard in these proceedings [24]. His study was an important step
towards the surprising theorem which follows. Note that in spite of its origin, it is
nevertheless based on (very strong) symmetry constraints and not on topological
ones. To describe this result, it will be convenient to label the bodies (0, 1, . . . , n−1)
instead of (1, 2, . . . , n).

We take n = 3 and k = 2 and all three masses equal to 1 (planar three body
problem with equal masses). We identify IRk = IR2 with the complex plane CI
and denote as usual complex conjugation by z 7→ z. For equal masses, Lagrange’s
equilateral relative equilibrium solution has the peculiarity that all three bodies
follow one and the same circle. If we replace the circle by a closed curve sym-
metric with respect to both coordinate axes, this property is a consequence of the
invariance of the corresponding loop under a symmetry of the Lagrangian which
we proceed to describe.
Let us recall that the dihedral group Dp, of order 2p, is the symmetry group of a
regular p-gon. It admits the following presentation by generators and relations:

Dp =
〈
s, σ; sp = 1, σ2 = 1, sσ = σs−1

〉
.

We shall call “natural” the representation β0 of Dp by isometries of the circle
S1
T = IR/TZZ defined by

β0(s) · t = t + T/p, β0(σ) · t = −t.

We define a representation L (for Lagrange) in ΛT of the dihedral group D6 which
leaves invariant Lagrange relative equilibrium. As already said in paragraph A-ii),



              

we define L by giving representations α and β of D6 as isometries respectively of
X and S1

T . We shall take β = β0 and define α by

α(s) · (x0, x1, x2) = (−x2,−x0,−x1), α(σ) · (x0, x1, x2) = (x0, x2, x1).

The generator s2 of the normal subroup ZZ/3ZZ acts by circular permutation:

α(s2) · (x0, x1, x2) = (x1, x2, x0).

Note that the action defined by restricting α and β to ZZ/3ZZ , leaves AT invariant
only because all three masses are equal. It is indeed a remarkable action: the
invariants in ΛT are loops of the form:

x(t) = xq(t) =
(
q(t), q(t + T/3), q(t + 2T/3)

)
.

This means exactly that the three bodies chase each other around a planar loop
q ∈ Λ3,T , where

Λ3,T =
{
q ∈ H1(IR/TZZ ), IR2), q(t) + q(t + T/3) + q(t + 2T/3) = 0

}
.

Moreover, it follows from Theorem 2 that Lagrange’s relative equilibrium is the
only absolute minimum of ALT .

The surprise is that we can define another very natural representation E (for E ight)
in ΛT of the group D6. We still take β = β0 but define α by

α(s) · (x0, x1, x2) = (−x2,−x0,−x1), α(σ) · (x0, x1, x2) = (−x0,−x2,−x1).

The action of the ZZ/3ZZ part is the same and invariance under it has the same
interpretation as above. But if moreover x(t) is invariant under the full repre-
sentation E of D6, the curve q is symmetric with respect to both axes and must
satisfy q(0) = q(T/2) = 0. In particular, it cannot be a circle.

Theorem 5 [13]. An absolute minimizer of AET has no collision: it is a zero
angular momentum T -periodic solution of the planar three-body problem with
equal masses of the form

x(t) =
(
q(t), q(t + T/3), q(t + 2T/3)

)
,

where q is an “eight-shaped” curve in ∈ Λ3,T , symmetric with respect to both
axes.
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During a period, every Euler configuration is realized twice, once along each of two
fixed lines (figure 2). “Eight” orbits are in some sense comparable to the Lagrange
relative equilibrium solutions, but in the latter case the angular momentum, in-
stead of being equal to zero, is maximal.

Of course, here too we (and not only we) were sure that this orbit was new. But
it had indeed been already discovered numerically by Cris Moore in 1993, in the
paper [25] that I already quoted in section A-i2). This is quite remarkable, and
even astonishing, because it follows from the theorem of Richard Montgomery [24]
alluded to at the end of section A-i2 that the eight cannot be an absolute minimizer
in its homotopy (= braid) class (thank you, Richard, for having pointed out this
fact). More precisely, the Lagrange ejection-collision solution of the same period,
which is adherent to any homotopy class, has smaller action than the eight: it
follows from the values of the action given in ([13] Appendix 1) that the action of
the eight with period T = 2π is equal to 12×2.0309938 = 24.3719256 . . . while the
action of the Lagrange ejection-collision orbit with the same period is only equal
to 2× 5.39433× 61/3 = 19.60429 . . . This situation should be compared to the one
described at the beginning of section (Ai1) for the Kepler problem: in the space of
loops with an index different from -1, 0 or 1, the minimizer is the ejection-collision
Kepler orbit.

Nevertheless, if one imposes the ZZ/3ZZ symmetry, then, in order that it belongs
to the space of invariant loops, the Lagrange ejection collision orbit has to be
repeated 3 times, each time with period T/3 and with exchange of the bodies.
The corresponding action is 3 × 2 × 5.39433 × 21/3 = 40.778579 . . . which is now
greater than the action of the eight. But up to now, we have no proof of the
existence of the eight as a minimum of the action in its homotopy class under the
ZZ/3ZZ symmetry constraint only, even if the numerical computations of Carles
Simó ([12],[33]) indicate that it should be true.

More precisely, Simó’s computations indicate that“the” eight orbit is probably
unique and that “its” shape in the plane is very close to the one of a quartic.
Simó [32] has also shown numerically that “this” orbit is stable, that is completely
elliptic with (indefinite) torsion. It can be continued for different masses (the three
bodies then move along slightly different eight-shaped curves) and the domain of
“stability” in the normalized mass triangle is a tiny triangular neighborhood of
the equal mass point. This is also in sharp contrast with the Lagrange relative
equilibrium solutions, which are “stable” only when one of the masses is much
bigger than the two others. That a minimizing periodic orbit may be “stable” is
not as surprising as it appears at first sight (see [4]).

Remark. The dihedral group D6 is isomorphic to the direct product D3 × ZZ 2,
that is to the group formed by the isometries of the reduced configuration space
X̂/SO(2) which leave the potential invariant in the case of equal masses (see the
end of A-i1)); hence, in contrast with Lagrange relative equilibrium, the eight
possesses the full symmetry of the reduced configuration space (there is not a
direct eight and a retrograde one because changing the orientation amounts to
rotating of π). The group D6 can also be written as a semi-direct product of
ZZ/3ZZ by ZZ/2ZZ × ZZ/2ZZ . Its quotient by ZZ 3 is the symmetry group of the
planar curve q.

Theorems 4 and 5 have in common that they rely heavily on symmetry asumptions



        

on the masses. Also, in both theorems, the minimizers are non trivial. Indeed the
natural candidates to be absolute minimizers – the relative equilibrium motions
– are ruled out: in theorem 4 because the regular tetrahedron would need one
dimension more to be allowed such a motion, in theorem 5 because the circle does
not possess the right D6-symmetry. Nevertheless, the actual minimizers have much
to do with relative equilibrium motions and central configurations. In a sense,
they do their best to achieve this impossible goal: keep I (and in consequence U)
constant. Numerical computations – by Jacques Laskar for theorem 4 and Carles
Simó for theorem 5 – show indeed that I and U are not far from being constant
in the corresponding solutions. This is pertinent in view of the following

Saari’s conjecture: if I is constant along a solution of the n-body problem, the
motion is rigid, i.e. all rij remain constant (it is then a relative equilibrium, see
[2] prop. 2.5).

Remark on theorem 2 and Saari’s conjecture. What is really proved in
[11] is that a minimizer x(t) of AaT is a uniform motion along a round circle in the
metric space X of configurations. This implies immediately that, at each time, x(t)
is a central configuration because ẍ(t) and ∇U(x(t)) are both proportional to x(t)
(this also follows from the fact that Ũ(x(t)) is minimal). Hence, if similarity classes
of central configurations minimizing Ũ are isolated, the motion is homographic
and even a relative equilibrium because of the (anti)symmetry. If this is not
the case, a counter-example would exist as soon as an affine straight line (D) of
non similar central configurations minimizing Ũ would exist in X : it would be
provided by a circle of well chosen radius in the (vector) plane generated by (D).
The corresponding solution would look quite strange, each body running around
an ellipse centered on the center of mass. And, as I = cste, it would be at the
same time a counter-example to Saari’s conjecture.

Other results of interest. Other cases exist where the minimum has no collision:

1) In [16], V. Coti Zelati shows the existence of (anti)symmetric periodic solutions
for the problem of n small masses in IRk, k ≥ 2, revolving in near-circles around
a massive sun. No critical point has collisions because of the perturbative setting.

2) In [3], G. Arioli, F. Gazzola and S. Terracini show that the retrograde Hill’s
orbit minimizes the action functional in an appropriate functional space.

3) Following the method of [13], Kuo Chang Chen found in [7] new periodic so-
lutions of the 4-body problem in the plane in the case of equal masses. At each
instant, the bodies form a parallelogram; two of them rotate in one direction on a
curve which looks like an ellipse with center at the center of mass of the system,
while the two others rotate in the opposite direction on a similar curve, with the
same center, orthogonal to the first one. Here the group is ZZ/4ZZ × ZZ/2ZZ with
the normal subgroup ZZ/2ZZ × {1} expressing that the bodies lie on two curves,
the quotient ZZ/2ZZ × ZZ/2ZZ defining the two symmetries which exchange these
two (oriented) curves.

Remark. I should stress the fact that I was interested exclusively here in the
Newtonian problem and in action minimizing periodic orbits. It was pointed out
to me by Vittorio Coti Zelati that in most of the papers on the subject which
followed Gordon’s paper, the point was not so much to find new results on the n-



          

body problem as to get results which could survive a perturbation of the potential.
These are not discussed here.

4. About the proofs of Theorems 2,4 and 5.

Theorems 2,4 and 5 all rely on symmetry constraints. We try only here to give the
main ideas and to put them in perspective, referring to the papers [11],[13],[14] for
complete proofs.
In theorem 2, the (anti)symmetry of x(t) implies that its mean is zero, which
implies in turn the Poincaré inequality

∫ T

0

Kdt ≥ 4π2

T 2

∫ T

0

Idt,

with equality if and only if the Fourier expansion of x(t) contains no harmonic but
the first one. This implies

A(x) ≥
∫ T

0

(
2π2

T 2
I +

U0√
I

)
dt,

where U0 = U0(m1, . . . , mn; k). Taking I = I0, the minimum of the function
under the integral sign, leads to a candidate for a minimizer, namely the relative
equilibrium motion with size

√
I0 and configuration corresponding to U0. The

conditions on n, k insure that such a motions does exist. The only subtlety is in the
converse assertion that any minimizer is of this type: one shows that equality must
be satisfied in Sundman’s inequality, which implies that the motion is homographic.
Being (anti)symmetric, it is a relative equilibrium.

In theorem 4, the ZZ/4ZZ symmetry and the invariance under rotation around
the vertical axis reduce the system to a 3 degree of freedom system with SO(2)
symmetry (the position of one body determines the position of the other three).
To exclude the collisions we use a very simple deformation: given a loop with
at least one collision, one can assert the existence of another loop with the same
action which is contained in a vertical plane containing the z axis. A small rota-
tion of this plane around its intersection with the horizontal plane is then shown
to decrease the action thanks to Sundman’s estimates in the neighborhood of a
collision. Similar studies can be pursued with ZZ/3ZZ replacing ZZ/4ZZ and more
generally with ZZ/nZZ and n or more bodies. The reduced problems one obtains
are natural generalizations of the spatial isosceles problem of three bodies.

In theorem 5, a minimizer cannot be a relative equilibrium motion, simply be-
cause this would imply that the curve q is a circle and the circle does not possess
the required D6 symmetry. On the other hand, critical points with collisions do
exist in ΛET . One has for example the ejection-collision homothetic motion of an
equilateral triangle repeated symmetrically after time T/2 (“symmetric” homoth-
etic motion), or the collinear “Schubart’s orbit” modified in such a way that the
bodies be exchanged after a binary collision (they traverse each other instead of
bouncing). To show that an absolute minimizer of AET has no collision, we intro-
duce a “test curve” q0 ∈ Λ3,T and show that the action of the corresponding loop
xq0(t) ∈ ΛET is smaller than the action of any loop with at least one double or triple



            

collision. The test curve, which has the shape of an eight, is uniquely defined up
to isometry by the following conditions: along the corresponding loop xq0(t), the
angular momentum is zero, the size I0, the kinetic energy K0/2 and the potential
U0 are constant. Moreover, I0 is chosen so that the action be minimal among
similar loops. This test curve has such a low action that in the evaluation of the
action of a loop with collision, one can even forget one mass (the one not partic-
ipating in the collision in case of a binary collision) and reduce the computation
to the case of two bodies. In the original proof, a numerical estimate of the length
of some implicitely defined curve was needed (and gracefully provided by Carles
Simó and Jacques Laskar who agreed up to an impressive number of decimals).
Thanks to refined estimates on the action of loops with collision obtained by Kuo
Chang Chen [6], no numerical estimate is necessary any more.

5. Many bodies: choreographies. At the Chicago meeting, I ventured saying
that theorems 4 and 5 were probably the beginning of a story, and indeed they
were, even if, as we saw, the story really began in 1896. A whole new world of
periodic solutions of the n-body problem with equal masses in the plane or in
space is being discovered, at the moment only numerically (see [12] and [33]).
All these solutions, named choreographies, share the property that the n bodies
chase each other around a fixed curve. After the “eight”, a solution where 4
bodies sit on a “supereight” with one more lobe was found by Joseph Gerver:
the configuration stays symmetric with respect to the origin (parallelograms) and
the angular momentum is different from zero. Then Carles Simó found and is
still finding ad libitum such solutions with more and more general supporting
planar curves (in particular curves with no symmetry) when the number of bodies
increases. He finds them as local minimizers of ARnT whereRn is the representation
in ΛT of the cyclic group ZZ/nZZ which generalizes the representation of ZZ/3ZZ
used for the “eight”:

Rn(1) ·
(
x0(t), x1(t), . . . , xn−1(t)

)
=
(
x1(t− T/n), x2(t− T/n), . . . , x0(t− T/n)

)
.

As for n = 3, ΛRnT is isomorphic to the space Λn,T of planar curves defined by

Λn,T =
{
q ∈ H1(IR/TZZ ), IR2), q(t) + q(t + T/n) + · · ·+ q(t + (n− 1)T/n) = 0

}
.

Trading this action against an action of another cyclic group, one could find so-
lutions where the bodies stay on two curves (see [7], already described at the end
of paragraph 3), three curves. . . Symmetric solutions such as supereights (chains)
with up to n − 1 lobes, flowers, etc, can be obtained as local minimizers of AρT
where ρ is a representation of a cyclic or dihedral extension (ZZ/nmZZ or Dnm) of
ZZ/nZZ or a product of such an extension by a subgroup of O(2) acting trivially
on the circle.
For example, the (direct) flower with a three-fold symmetry and four bodies de-
picted in Fig. 3c of [12] is a fixed loop of the representation of D12 defined (compare
to paragraph 3) by β = β0 and

α(s) · (x0, x1, x2, x3) = (e−2πi/3x3, e
−2πi/3x0, e

−2πi/3x1, e
−2πi/3x2),

α(σ) · (x0, x1, x2, x3) = (x0, x3, x2, x1).



         

Gerver’s (direct) supereight with four bodies depicted in Fig. 3b of [12] is a fixed
loop of the representation of D4 × ZZ 2 (different from D8 !) defined by

β = β0, α(s)(x0, x1, x2, x3) = (x1, x2, x3, x0),

α(σ)(x0, x1, x2, x3) = (x0, x3, x2, x1),

for the D4 factor,

β trivial, α(1)(x0, x1, x2, x3) = (−x2,−x3,−x0,−x1)

for the ZZ 2 factor.

But only the solutions where an odd number n of bodies chase each other around
a ZZ 2 × ZZ 2-symmetric “eight” seem to be obtainable as global minimizers: as in
the case n = 3, they are fixed loops of the representation of D2n defined by β = β0

and

α(s) · (x0, x1, . . . , xn−1) = (−x(n+1)/2,−x(n+3)/2, . . . ,−x0,−x1, . . . ,−x(n−1)/2),

α(σ) · (x0, x1, . . . , xn−1) = (−x0,−xn−1,−xn−2, . . . ,−x1)

which is not a symmetry of the relative equilibrium of the regular n-gon.

In contrast, the D4 × ZZ 2-symmetry of Gerver’s supereight (direct, resp. retro-
grade) and the D12-symmetry of the (retrograde, resp. direct) three-lobed flower
with four bodies are also shared by the (direct, resp. retrograde) relative equilib-
rium motion of the square.
Hence such choreographies can be only a relative minimizer of the action in their
symmetry class. To prove their existence, one must introduce homotopical con-
straints.

For spatial solutions also, one already finds choreographies in [17] (implicitly) and
in [20] (explicitly): tuning appropriately the period of a reduced periodic solution
and the period of vertical oscillations of the diagonals produces indeed solutions
where the four bodies stay on a fixed spatial curve. This was later independently
noticed by several people, and in particular by Carles Simó and Susanna Terracini.
In this way, a potentially infinite number of spatial choreographies for four bodies
was found numerically to exist.

6. Conclusion: symmetry versus topology.

Let us start with the Newtonian problem of three bodies in the plane. Homological
constraints do detect Lagrange’s solution whose class is ±(1, 1, 1) (Theorem 1)
but fail to detect the “figure eight” solution whose class is (0, 0, 0). Numerically,
it was possible to detect this solution as a local minimizer using a homotopical
constraint [25], or as a global one using a homotopical constraint combined with
ZZ/3ZZ symmetry ([12],[33]), but to my knowledge, no existence proof is available
in these contexts. Indeed, the only existence proof is the one of Theorem 5, which
relies solely on the D6 symmetry constraint. It is certainly an interesting question
to decide if the equality of the three masses implies that there is a collision-
free minimum in the homotopy class of the “eight” when imposing only ZZ/3ZZ
symmetry, that this minimum is unique up to isometry and that it possesses the



       

D6-symmetry imposed in Theorem 5. For more general choreographies, symmetry
constraints are not enough to define the class and must be mixed with homotopy
constraints, which makes possible proofs a priori more difficult.

As another example, in Theorem 4, one may conjecture that, in the reduced space,
a minimizer is a “brake” orbit but we can only prove that such a brake orbit
exists by imposing the corresponding symmetry on the space of paths we consider.
Also the ZZ/4ZZ symmetry could be automatic for a minimizer in the space of
(anti)symmetric loops.

A beautiful theorem of Albouy [1] states that a planar central configuration of
four equal masses must have some symmetry. Numerical experiments by Rick
Moeckel [22] show that such a property is no longer true for eight bodies or more.
But it could be true for central configurations which minimize Ũ . One could then
ask more generally if periodic solutions of the n-body problem with equal masses
which minimize the action in a “reasonable” subspace of ΛT must always have
some extra-symmetry.
This is certainly not true in general: examples of choreographies found numer-
ically by Carles Simó ([12], figure 4f) show that one cannot expect in general
that symmetry in the minimizers be an automatic consequence of symmetry in
the masses, but maybe one could expect that under topological constraints with
“some” symmetry, the minimizers be “more symmetric”. The story goes on...
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réduction des homothéties dans le problème des n corps, Regular and chaotic
dynamics V.3, 3 (1998), 93–106.
[11] A. Chenciner and N. Desolneux Minima de l’intégrale d’action et équilibres re-
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