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The Lagrangian of the classical n-body problem has well known symmetries: isome-
tries of the ambient euclidean space (translations, rotations, reflexions) and changes
of scale coming from the homogeneity of the potential. To these symmetries are
associated “simple” solutions of the problem, the so-called homographic motions,
which play a basic role in the global understanding of the dynamics. The classical
subproblems (planar, isosceles) are also consequences of the existence of symme-
tries: invariance under reflexion through a plane in the first case, invariance under
exchange of two equal masses in the second. In these two cases, the symmetry acts
at the level of the “shape space” (the oriented one in the first case) whose existence
is the main difference between the 2-body problem and the (n ≥ 3)-body problem.
These symmetries of the Lagrangian imply symmetries of the action functional,
which is defined on the space of regular enough loops of a given period in the
configuration space of the problem. Minimization of the action under well-chosen
symmetry constraints leads to remarkable solutions of the n-body problem which
may also be called simple and could play after the homographic ones the role of
organizing centers in the global dynamics. In [13] and [16], I have given a survey
of the new classes of solutions which had been obtained in this way, mainly chore-
ographies of n equal masses in a plane or in space and generalized Hip-Hops of at
least 4 arbitrary masses in space. I give here an updated overview of the results
and a quick glance at the methods of proofs.

1. The Newtonian n-body problem and its symmetries

Given a configuration x = (�r1, . . . , �rn) of n point masses m1, . . . , mn in a euclidean space
(E, ·), the newtonian potential function (opposite to potential energy) of x is

U(x) =
∑
i<j

mimj

||�ri − �rj ||
.

The classical Newton equations may be written

ẍ = ∇U(x),

provided we introduce on the configuration space En the kinetic energy metric, also called
mass metric, associated with the scalar product

x · y =
n∑

i=1

mi�ri · �si if x = (�r1, . . . , �rn), y = (�s1, . . . , �sn).

Isometries of E acting diagonally on En leave the equations invariant. A reduction of
the translation symmetry may be obtained by fixing the center of mass at the origin or,
more conceptually by considering a configuration as an element of D ⊗ E ∼= En−1, where
D = R

n/(1, . . . , 1)R is the disposition space introduced in [2] in the spirit of Jacobi. A
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reduction of the symmetry under all isometries may be found in [29] in the case of 3 bodies
and [2] in the general case: the idea is that the natural reduced variables are the (squared)
mutual distances, which are independant only if the dimension of E is at least 2(n − 1).
Hence for dim(E) ≤ 3, the dimension of E appears as a constraint within the space of mutual
distances. Joined to the invariants of the angular momentum, it defines the symplectic
leaves of the Poisson structure on the quotient phase space. At last, the homogeneity of the
Newtonian potential implies the existence of a symmetry under change of scale: if x(t) is a
solution and λ is a positive real number, λ−2/3x(λt) is also a solution. This fact is at the basis
of the analysis of the behaviour of solutions near a partial or total collision (section 3). The
above symmetries imply the complete integrability of the 2-body problem. After reduction
of the translation symmetry, this problem is equivalent to the Kepler problem of a particle
attracted by a fixed center and central force problems (not even invariant under rotation)
are known since Newton to be integrable. In the next section, we review those solutions of
the n-body problem which are Keplerian.

2. The “simplest” solutions: homographic motions

The main difference between the (n ≥ 3)-body problem and the 2-body problem is the exis-
tence of a shape. Indeed, all segments are similar but the set of triangles in R

2 up to oriented
similarity has naturally the geometry of a round 2-sphere (abandoning the orientation or
going up to R

3, one replaces the sphere by a disk; for n bodies up to oriented similarity in
R

2, one gets CPn−2; in R
3 the corresponding set is no more a manifold).

Hence it is not astonishing that the “simplest” solutions of the newtonian n-body prob-
lem, and in fact the only ones whose dynamics is “explicit”, are the so-called homographic
motions where the shape does not change up to similarity and the motion of each body is
Keplerian. When the energy is negative, one gets a family of periodic motions characterized
by an eccentricity e between 0 (relative equilibria where the configuration rotates as a single
rigid body around its center of mass) and 1 (homothetic motion ending in total collapse on
the center of mass). For intermediate values of e, one gets “complex homothetic” solutions
for a complex structure defined on the support of the angular momentum bivector. The ex-
istence of these motions is clearly related to the symmetries of the problem under isometries
and changes of scale.

e=0 0<e<1 e=1

Figure 1. The equilateral homographic motions discovered by Lagrange

2.1. Homothetic motions and central configurations

The study of Keplerian motions of n-body systems goes back to Euler and Lagrange at
the end of eighteenth century in the case of 3 bodies. If one excepts relative equilibria in
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dimension at least 4, such motions are possible only for the so-called central configurations
which can be defined as the ones which when released without initial velocities undergo a
homothetic collapse onto their center of mass �rG. They are characterized by the collinearity
of the forces ∇U(x) and the relative configuration x − xG = x − (�rG, . . . , �rG), that is the
collinearity of the two gradients ∇U(x) and ∇I(x), where

I(x) = ||x − xG||2 =
n∑

i=1

mi||�ri − �rG||2 =
1∑
mi

∑
i<j

mimj ||�ri − �rj ||2

is the moment of inertia of the configuration with respect to its center of mass. This
collinearity is equivalent to saying that x is a critical point of the restriction of U to the
sphere I = I(x), or a critical point of the scaled potential Ũ =

√
IU , homogeneous of degree

0 (and constant in case n = 2). In the case of 3 non collinear bodies, the squared mutual
distances may be taken as independant coordinates and the collinearity for the gradients
of U and I yields immediately the equality of all three mutual distances (the celebrated
Lagrange equilateral configuration). The actual determination of central configurations for
more than 3 bodies is a very difficult task. Even the finiteness of the number of solutions
up to similarity is known only in the case of 3 bodies (Lagrange [29]), or 4 bodies of the
same mass (Albouy [1]) and of collinear configurations (Moulton). It is known to be false if
one allows negative masses, which is an indication of the difficulty of the problem. Central
configurations are the object of active research which in most cases must be computer-
assisted.

2.2. Relative equilibria and balanced configurations

As René Thom kept saying, to understand a mathematical object, one must start un-
derstanding its singularities. For the n-body problem, these are the relative equilibrium
solutions, which become equilibria after one has “reduced” by the rotational symmetry (see
[2] for a general discussion of the reduction).

Relative equilibria in dimension at least 4 are shown in [2] to exist for more general
configurations, the balanced configurations, which may be defined as critical points of the
restriction of U to the set of configurations whose inertia form is the same up to rotation
(this set is also an orbit of the so-called democracy group which, in the langage of [2], is
simply the orthogonal group of the disposition space D endowed with the mass metric).
For 3 bodies, one must fix not only I, which is the trace of the endomorphism associated
to the inertia form via the euclidean structure of the ambient space E, but also the area
of the triangle, which is proportional to the determinant). The only 2-dimensional central
configuration is the equilateral triangle. However any isosceles triangle with equal masses is
balanced and, as so, admits periodic or quasi-periodic relative equilibrium motions in R

4.

2.3. Complex homothetic motions and Sundman’s inequality

Homographic motions with a central configuration (this is automatic if e �= 0) are in fact
complex homothetic for a complex structure defined on the support of the angular momen-
tum bivector [2]:

x(t) = ζ(t)x0, where the complex-valued function ζ(t) satisfies ζ̈ = −U0|ζ|−3ζ.
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They may be characterized in the following way: the quadratic isometry invariants of an
element (x, y) of the phase space are the moment of inertia I(x, y) = ||x−xG||2 with respect
to the center of mass, (half) its derivative J(x, y) = (x − xG) · (y − yG) along the flow of
Newton equations and (twice) the kinetic energy K(x, y) = ||y − yG||2 in a galilean frame
fixing the center of mass: The angular momentum bivector

C =
n∑

i=1

mi(�ri − �rG) ∧ (�vi − �vG) if x = (�r1, . . . , �rn), y = (�v1, . . . , �vn),

defines a complex structure on its support (see [2] for precise definitions). A slightly refined
version of the complex Cauchy-Schwartz inequality for this structure gives the classical
Sundman’s inequality IK − J2 ≥ c2, where c denotes the norm of the bivector C. Equality
characterizes the homographic motions with central configuration. For relative equilibrium
motions in R

p with (balanced) non central configuration (this implies p ≥ 4), IK − J2 is a
constant strictly greater than c2 (see [2]).

Another fundamental consequence of the homogeneity is the analysis, due to Sundman
in the case of 3 bodies, of the solutions which undergo a collision. We review it in the
next section as it will be basic in the application of the variational method to the n-body
problem.

3. Solutions ending in collision

3.1. The scaling symmetry

The scaling symmetry due to the homogeneity of the potential function admits a less effective
reduction than the former ones. This symmetry is expressed in the fact that if x(t) is a
solution of Newton’s equations and λ is a positive real number, xλ(t) = λ− 2

3 x(λt) is also
a solution. Identifying these solutions leads to a “reduced” system living in a “reduced”
phase space which may be identified with the subspace of the phase space X̂ ×X defined by
I = 1. The total energy Hλ and angular momentum Cλ of xλ(t) are obtained from those of
x(λt) by multiplication respectively by λ

2
3 and λ− 1

3 . Hence, this reduction leads to a gain in
dimension only in the case H = 0 and C = 0. Otherwise, the reduced system admits only the
first integral

√
|H|C, better known after taking the quotient by the rotations under the form

H|C|2. The dynamics in the open set defined by H > 0 (resp. H < 0) reflects, up to change
of time, the dynamics of any energy level of the same sign. They are glued together along
a common “boundary”, the quotient of the energy level H = 0 by the scaling symmetry. In
this “boundary”, sits the quotient of H = 0, C = 0, which can be identified with the so-
called “collision manifold”. Introduced by McGehee, this manifold plays a fundamental rôle
in the study of solutions which get close to total collision(see[32]) and allows to recover more
geometrically the classical results of Sundman. Sundman had proved that a total collision
can occur only if the angular momentum is equal to 0. Solutions ending or starting in total
collision correspond in the reduced space to solutions which are asymptotic to singularities
of the collision manifold. As these singularities are the solutions invariant under the scaling
transformation, one sees readily that they are exactly the parabolic homothetic motions:
x(t) = t

2
3 x̄, where x̄ = x(1) is a central configuration. In particular, in a total collision

solution, the configuration of the bodies tends, after normalization of its size, to the set
of central configurations. All this can be presented via the introduction of the “symmetry
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vector-field” Y : ẋ = x, ẏ = − 1
2y, which becomes a symmetry of Newton’s equations after

the change of time defined by dτ/dt = I
3
4 (see [12]). The case of partial collisions is more

delicate [40, 45, 25] but the final estimates are the same: in a cluster undergoing a (partial)
collision, the normalised configuration of the cluster tends to the set of central configurations
and the behaviour of its size is the same as the one in a homothetic solution, that is the
same as for a 2-body collision: if in the solution (�r1(t), . . . , �rn(t)) the bodies i and j collide
at time t0, their mutual distance satisfies

||�ri(t) − �rj(t)|| = O(|t − t0|
2
3 ), ||�̇ri(t) − �̇rj(t)|| = O(|t − t0|−

1
3 ).

Two problems occur when one tries to understand the behaviour of the rescaled con-
figuration of the bodies in a cluster undergoing a collision: (i) the possible existence of a
continuum of non equivalent central configurations, which implies that there is not neces-
sarily a limit shape; (ii) the infinite spin problem, that is the possibility that if a limit shape
exists, its orientation does not stabilize asymptotically. The blow-up technique, proposed
by S. Terracini and developed in [45] (see also [25]) helps dealing with these problems.

3.2. Blow-up

Let x : [a, b] → X be a solution of Newton’s equations with an isolated total collision at
t = t0. Let us call xλ the restriction to [a, b] of xλ(t) = λ− 2

3 x(t0 + λ(t − t0)). The xλ’s
form a bounded, and hence weakly compact, subset of H1([a, b],X ). Hence there exists a
sequence λn tending to 0 such that xλn

converges weakly to a limit x̄; one can show [45, 25]
that x̄ is a parabolic homothetic collision-ejection solution, that is a solution of the form
x̄(t) = (t0 − t)

2
3 x̄0 if a ≤ t ≤ t0 and x̄(t) = (t − t0)

2
3 x̄1 if t0 ≤ t ≤ b, where x̄0 and x̄1

are central configurations. If the collision is not total, one gets the same conclusion when
restricting the attention to one colliding cluster (the others “ go to infinity”). The existence
of such limits will be fundamental in the next section.

4. Action minimization and the collision problem

Newton equations coincide with the Euler-Lagrange equations of the action functional S,
which to a path x : [t0, t1] → X in the configuration space associates

A(x(t)) =
∫ t1

t0

L(x(t), ẋ(t))dt,

where the Lagrangian L is defined by

L(x, ẋ) =
1
2
||ẋ||2 + U(x).

Hence critical points t 
→ x(t) with values in the subset X̂ of non-collision configurations are
exactly the solutions of Newton’s equations. If one replaces the interval [t0, t1] by the circle
S1

T = R/TZ, the critical points with value in X̂ become the periodic solutions of period T .
Recall that, by Weierstrass theorem, the fact that classical Lagrangians have positive-

definite Hessian with respect to the velocities implies that small extremals do minimize A.
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4.1. The necessity of constraints

The first attempt to find (relative) periodic solutions of the n-body problem by way of
minimizing the action is the short note [38] of Poincaré in 1896, the year after he defined
the fundamental group. In modern langage, what he proposed was to fix a non trivial
homology class of loops in the (relative) configuration space of the planar 3-body problem
and to minimize the action among such loops of a given period. Not waiting for Sundman’s
theory of collisions (1913) or for Tonelli’s proof of the existence of minimizers (1930), he
was well aware of the fact that the action of a solution ending in a collision is finite (one
integrates a function of t of the order of |t − t0|−

2
3 ) and that a minimizer could well be the

concatenation of pieces of solution separated by a closed set (of zero measure) of collision
times. This prevented him from concluding existence in the Newtonian case and led him to
introduce the so-called “strong force” potential (1/r2 instead of 1/r) for which this problem
disappears because |t − t0|−

2
3 is replaced by |t − t0|−1.

Constraints of some kind are certainly necessary in order to force coercivity of the prob-
lem, that is to prevent that the minimum of the action functional be attained only at infinity.
Otherwise, minimizers are obviously stationary loops of infinitely separated bodies.

And here comes the main problem: to find constraints for which the minimizers are
collision-free. A general remark comes first: it is very unlikely that one can obtain interesting
results by constraining only the homology or homotopy class of the loops among which one
minimizes. This is because, as noted by Montgomery [34], minimizers are most likely to
undergo collisions. The only exception I know is Venturelli’s generalization [44] to the 3-
body case of Gordon’s theorem [26], which is a partial answer to Poincarés quest. We shall
see in what follows that symmetry constraints behave much better.

4.2. Symmetry constraints

One defines naturally an action x 
→ g · x of a finite group G on the loop space Λ =
H1(R/TZ,X ) by setting

(g · x)(t) = (ρ(g)�rσ(g−1)1(τ(g−1)t), . . . , ρ(g)�rσ(g−1)n(τ(g−1)t),

where τ : G → O(2), σ : G → Sn and ρ : G → O(E) are respectively actions of G on
the time circle R/TZ (by isometries), the index set {1, 2, . . . , n} (by permutations) and the
ambient euclidean space E (by orthogonal transformations). Such a group action leaves A
invariant provided only permutations of equal masses occur. Invariant loops x ∈ ΛG are
those which are equivariant under the combined actions τ of G on R/TZ and g·(�r1, . . . , �rn) =
(ρ(g)�rσ(g−1)1, . . . , ρ(g)�rσ(g−1)n) of G on X . It follows from the Palais symmetric criticality
principle ( [37, 13]) that critical points of the restriction AG of the action to ΛG are also
critical points of the action A on the full loop space, and hence solutions provided that they
are collision-free. We shall use the following notations: I = [t0, t1] will be a fundamental
domain of the action τ of G on the time circle. The restriction to I of a minimizer x of
AG is a path x|I : I → XKer(τ) which is a minimizer among similar paths with the same
endpoints (if not, symmetrize a path with lower action to get a contradiction). There are
two cases, one case in which the image of τ is cyclic and the other case in which this image
does contain reflections. In the second case, the endpoints t0, t1 of I will be fixed by some
reflection and their isotropies Gt0 and Gt1 will be larger than Ker(τ). The two cases are
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best illustrated by the (Z/2Z×Z/4Z)-symmetric Hip-Hop [20] and the D6-symmetric Eight
[19] (see figure 2).

5. Beating the collisions: from local deformations to solving the fixed
ends problem

Various tools are used to get a contradiction from the hypothesis that an action minimizer
has a collision. In their discussion, we allude to the solutions described in the last section.

5.1. Making local deformations

This works only for isolated collision times. Action decreasing deformations must be dictated
by the geometry of the limit central configuration provided such a limit exists (see par. 3).
As this geometry is not thoroughly known for n ≥ 4 bodies, this implies that only few bodies
collisions can be analyzed in this way. Explicit local deformations are just impossible to
design in general ! Examples are the early works of the italian school [4, 39, 24]

5.2. Evaluating the action of collisions by comparison to a 2-body problem

Comparing an n-body system to a 2-body is a fundamental tool. It amounts to forgetting the
shape: this is exactly what Sundman’s inequality IK − J2 ≥ c2 accomplishes by forgetting
the deformation velocity (write it as K = Kscale + Krot + Kdef ≥ J2/I + c2/I). It is the
main tool available to get global results on the behaviour in the large – in particular on the
size – of an n-body system [11].

In our context, it is the knowledge of the action of solutions of the 2-body problem which
may be used to estimate a lower bound of the action of loops (or paths)

1) Gordon’s theorem[26] was the first attempt since Poincaré to apply variational meth-
ods to the n-body problem: it asserts that minimizers of the action

∫ T

0
( 1
2 |�̇r|2 + g

|�r| )dt of the
planar Kepler problem (Newtonian fixed center at the origin) are exactly the Keplerian so-
lutions of the given period T provided one minimizes among loops whose index with respect
to the attracting center is different from zero. It has the virtue of showing the simplest
example where all minimizers of a reasonable problem have collisions because if one insists
in minimizing the action among loops with any given index different from (−1, 0,+1), one
gets only ejection-collision loops as minimizers.

2) K.C. Chen [7] has greatly increased the applicability of Gordon’s theorem by proving
that the homology (index) constraint could be replaced by the much less demanding condi-
tion that every line through the center meets the loop. Among the minimizers are also half
Keplerian orbits way and back but the action is the same. He also noticed [8, 9] that only
arcs of Keplerian circle minimize the action among paths joining two half-lines making an
angle θ < π in given time. Both extensions are used in the quoted papers to get good lower
bounds of the action of collision in problems constrained by symmetry conditions. This is
done by writing the action of the n-body problem as a sum of actions of n(n − 1) virtual
2-body problems (with centers of mass not at rest): each mass mi is decomposed into n− 1
masses mij bound together at �ri and mij is made to act only on mji. For n = 3, a natural
decomposition into three 2-body problems had been used by Venturelli in his proof of the
generalization to the planar 3-body problem of Gordon’s theorem [44]
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3) C. Marchal noticed that, given two points �r′ and �r′′ in the punctured plane, both
the direct and indirect Keplerian arc joining these two points in given time have lesser
action than the collision-ejection path between them. This is a key ingredient in [43] where
Terracini and Venturelli prove the existence of a family of solutions of the 2n-body problem
in 3-space with equal masses, which contains (when n = 2) the original Hip-Hop and a
spatial choreography already observed numerically by G. Hoynant [27].

5.3. Constructing test paths

One constructs by hand a path satisfying the constraints with low enough (and computable)
action. This is more global and allows beating even a local minimizer provided one has
an estimate from below of the action of a path with collision satisfying the constraints.
Examples are the proof of the existence of the Eight [19], where a horizontal lift of the
equipotential containing the Euler points in the shape sphere is used, of the P12 family of
Marchal [15], where one uses a Lagrange horizontal family, and of Chen’s retrograde orbits
of Hill type [9], where the model is explicit with circles.

5.4. Averaging deformations: Marchal’s theorem and its invariant form

The following theorem, mainly due to Marchal (see [30, 16]), is the most powerful tool
available to prove that minimizers under well chosen symmetry constraints have no collision.

Theorem 5.1. Let x′ = (�r′1, �r
′
2, · · · , �r′n) and x′′ = (�r′′1 , �r′′2 , · · · , �r′′n) be two arbitrary config-

urations, possibly with collisions, of n material points with positive masses m1, m2, · · · , mn

in the plane or in space. For any T > 0, any local minimizer of the action among paths
x(t) = (�r1(t), �r2(t), · · · , �rn(t)) in the configuration space which start at x(0) = x′ and end
at x(T ) = x′′ is a true (i.e. collision-free) solution of Newton’s equations (in the plane or
in space) in the open interval ]0, T [.

Marchal’s key idea to show that local minimizers have no collision was to compute the av-
erage of the action after small deformations in all possible directions of one of the bodies
involved in a collision. For such perturbations the change in the integrated potential dom-
inates the increase in the integrated energy. To estimate the change in potential, Marchal
used the fact that in three dimensions the Newtonian potential is the Green function for the
Laplacian. He made the striking observation that the effect of his averaged perturbations
of the potential term is equivalent to replacing the colliding particle by a sphere centered at
that particle, of uniform density, and of time-varying radius. The potential due to such a
massive sphere is constant inside that sphere, whereas the original point-particle potential
increases without bound, and as a result the averaged perturbation decreases the action. In
particular there must be at least one direction of perturbation among those averaged over
which decreases the action. Marchal also gave a modification of the averaging process, which
took care of the planar problem. This idea was a breakthrough which permitted to com-
pletely bypass the necessity of any precise knowledge on central configurations. Marchal’s
proof worked only in the case of isolated collisions with limit configuration. Using the work
of several people (R. Montgomery, S. Terracini and A. Venturelli), I was able to complete
the proof and I exposed it in [16]. The two main steps in this proof are 1) the existence
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of an isolated collision if there is a collision in a minimizer x(t) and 2) the reduction, via
blow-up, of the case of an arbitrary isolated collision to the case of a parabolic homothetic
collision-ejection solution. For 1), one uses the minimizing property of x(t) with respect
to reparametrizations (internal variations) to show that the energy of a colliding cluster k
remains continuous on a neighborhood of the collision time t0 provided that no collisions
occur between bodies in k and bodies not belonging to k; one then uses this continuity and
the so-called Lagrange-Jacobi relation to prove that an accumulation at t0 of collision times
would lead to a contradiction provided no subcluster of k undergoes a collision near t0 (this
is the case if the collision at t0 concerns the smallest possible number of bodies). For 2),
one proves that if a minimizer x(t) has an isolated collision at t0, the blow-up x̄, defined as
a limit of λ− 2

3 x(t0 +λ(t− t0)), is also a minimizer of the fixed ends problem. In both cases,
the technical elaboration came from Venturelli’s thesis [45]

This theorem applies immediately to local minimizers x ∈ ΛG of AG, that is to local
minimizers under symmetry constraints, in case τ is a faithfull action on the time circle (i.e.
Ker(τ) = 0). Let [t0, t1] ⊂ [0, T ] be a fundamental domain of this action: the restriction
of x to [t0, t1] must be an unrestricted local minimizer of the action A among paths with
the same endpoints, and as such collision-free in the open interval ]t0, t1[. But if τ acts
only through non trivial rotations, the starting point t0 may be chosen arbitrarily and x

cannot have a collision. Applications of this remark are given in [16]. When this is not the
case, the methods described in 5.1,5.2 and 5.3 can sometimes be applied to prove that no
collision occurs at the boundary of a fundamental domain[16, 7] but a much more systematic
(not universal, however) way of dealing with this problem results from the generalization
of Marchal’s theorem to invariant paths given by Ferrario and Terracini [25]. Their key
observation is that averaging perturbations along circles is sufficient to get a decrease of the
averaged modified action. This results directly from Marchal’s treatment (see [16]) for the
planar Newtonian problem but works with much greater generality for any 1/rα potential
with 0 < α < 2 in R

d, d = 2, 3, . . . , due to the the following inequality: for �r,�s ∈ R
3 \ {0},

let

S(�r,�s) =
∫ ∞

0

[
1

|t(2/2+α)�r + �s|α − 1
|t(2/2+α)�r|α

]
dt.

Then, for every �r ∈ R
3 \ {0} and for every circle S ⊂ R

3 with center at 0,

S̃(�r, S) =
1
|S|

∫
S

S(�r,�s)d�s < 0.

One first notices that S(�rγ , S) is a monotonically decreasing function of the angle γ ∈ [0, π
2 ]

between �rγ and the plane generated by S; then, one computes the integrals when �r belongs to
the plane generated by S with the help of series expansions of the inverse-distance function.
On the other hand, if a parabolic homothetic solution x(t) = t(2/2+α)(�r1, . . . , �rn) of the
n-body problem is perturbed by the addition of a variation vδ(t) = R(t)(�δ1, . . . , �δn), where
R(t) is equal to 1 if t ∈ [0, T −

∑
|�δi|2], to 0 for t ≥ T and decreases linearly in between,

the variation in action is

A(x + vδ) −A(x) = |δ|1−α/2
∑
i<j

S

(
�ri − �rj ,

1
|δ| (

�δi − �δj)
)

+ O(|δ|),
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and hence the average of the variation is negative provided this average is taken over a set
of δ’s such that each difference vector �δi − �δj covers a circle. Taking a single non-zero �δi

varying along any small circle S ⊂ R
3 will suffice in the absence of group action. But let

us suppose now that we restrict to the paths x : [0, T ] → XK , where XK is the subset
of configurations which are invariant under the action on X of a finite group K. In the
application to minimizers of AG, K will be the kernel of the action τ . Its action on X is
defined by g · (�r1, . . . , �rn) = (ρ(g)�rσ(g−1)1, . . . , ρ(g)�rσ(g−1)n). The proof of the existence of
an isolated collision time (if any) goes on without modification when one replaces X by
XK . Now, if a cluster k of bodies collides at some time, its images under the action of
K will also collide and every deformation of the chosen cluster must be repeated via K to
preserve invariance. But, the clusters being at distances from each other which are bounded
away from zero, the contributions to the variation of the action of their mutual interactions
and of their interactions with the non colliding bodies won’t play any significant role in
the estimations. Hence, one can focus on a single colliding cluster or, what is equivalent,
suppose that the subgroup H which leaves it invariant is K itself. Finally, one can use
blow-up to replace this collision by a parabolic homothetic one. Let us then choose an index
i ∈ k and start again with a family of deformations �δi of body i which covers a circle S. To
preserve the invariance property, this circle must be contained in the subspace EHi fixed by
the isotropy subroup of the index i for the action σ; moreover, one must define �δj = ρ(g)�δi

whenever g ∈ H and j = σ(g)i. For the �δi − �δj to all vary on circles, the �δj must all lie on
S and move rigidly with �δi. This forces to chose S invariant under the action ρ of H and
moreover to be such that this action consists only of rotations (the presence of a reflexion
would irremediably destroy the rigidity !). Such a circle is called in [25] rotating for i under
H. As at least two bodies are present in a collision, one must ask for the existence of such a
circle for at least n− 1 bodies in order to be able to choose at least one such index i in any
case. Each time this existence is granted, one has a Marchal theorem for invariant paths.
Moreover, the same construction allows to settle in many cases the problem of collisions at
the boundaries of a fundamental domain, in which cases Ker(τ) must be replaced by the
isotropy group Gt of the corresponding time t. Here is the precise statement found in [25]:

Definition 5.1. The group G acts on the loop space Λ with the rotating circle property if
for every isotropy subgroup Gt ⊂ G of the τ action and for at least n − 1 indices i, there
exists a rotating circle S under Gt, that is a circle on which Gt acts by rotations and which
is contained in the subspace EGi

t fixed by the isotropy subgroup Gi
t of i for the action σ of

Gt on {1, 2, . . . , n}.

Theorem 5.2. Let G be a finite group which acts on Λ in such a way that every maximal
isotropy subgroup of the action τ on R/TZ either has the rotating circle property or has
trivial action σ on the set of indices. Then any local minimizer of AG is collision-free.

The gain is two-fold: (i) one can deal with group actions for which some instants of the
time t have non trivial stabilizer Gt, typically, when some element acts by reversing the time
(this doe not work all the time, for example it does not work for the D6-symmetric eight
but it does for the eights with less symmetry [16]), (ii) one can deal with constraints which
at any time restrict the shape of the configurations in play (the simplest examples are the
isosceles subproblems or the original Hip-Hop [20]).
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Note that the requirements of the rotating circle property are easier to meet in space
than in the plane. The following figure, which is made up of two transparencies from the
oral lecture, illustrates the theorem in the first two cases studied by the author respectively
with A. Venturelli [20] and R. Montgomery [19].

2

Figure 2. The basic examples : two transparencies from the lecture
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6. The next “simplest” solutions: constrained action minimizers

6.1. Action minimizing properties of planar homographic solutions

1) The existence of the planar subproblem may be seen, via the unicity of solutions of
differential equations, as a consequence of the invariance of the equations under reflexion
through a plane. This implies in particular that solutions of the Kepler problem are nec-
essarily planar. The same is true of any homographic and non homothetic solution of the
n-body problem in R

3: for example, a regular tetrahedron can collapse homothetically onto
its center of mass but it cannot rotate or have a homographic motion of eccentricity e < 1.
That it cannot rotate is easy to verify (it would have to become more and more flat) but
the result for 0 < e < 1 is deep and Lagrange, who proved the result for 3 bodies [29], was
well aware of this depth. More generally, homographic but non homothetic solutions of the
n-body problem can occur only in even dimension [2].

2) The planar relative equilibria whose configuration minimizes Ũ =
√

IU are minimiz-
ers of the action among loops satisfying the italian symmetry x(t + T/2) = −x(t). Other
minimizers could possibly exist if there were continua of similarity classes of central config-
urations which minimize Ũ [18, 13]. As this is not the case for n = 3, the Lagrange relative
equilibrium (with equilateral configuration whatever be the masses) of the given period is
the only minimum of the action among loops with the italian symmetry. A characterization
of the equilateral homographic solutions as minimizers in their homology class was given by
Venturelli in [44] (the homology class is determined by the three integers kij which give the
effective number of turns accomplished by each side of the triangle during one period). As
in Gordon’s theorem, which Venturelli’s theorem generalizes, the minimizers in any other
homology class for which each kij is different from 0 are the homothetic collision-ejection
solutions. In particular, such minimizers have necessarily a collision.

To get new solutions as minimizers, one has to exclude the homographic solutions by an
appropriate choice of the constraints. This is done in various ways in the following sections:
imposing pure symmetry constraints in R

3 or a mixture of symmetry and topological con-
straints in R

2 but I do not know of a single example where topological constraints alone lead
to interesting non-collision minimizers (see [34]). There are two main classes of examples,
according to whether or not equality of masses occurs, that is whether or not permutations
of bodies are allowed.

6.2. New “simple” solutions: arbitrary masses

I discuss two classes: in the first one, purely spatial, the homographic solutions – necessarily
planar – are excluded because their action has a non positive Hessian, which forbids them to
be even a local minimizer; in the second one, planar, they are excluded by the combination
of symmetry constraints and a homotopy constraint.

6.2.1. Generalized HipHops: the simplest non planar solutions

It follows immediately from Marchal’s theorem that a minimizer of the action among loops
of configurations with the italian symmetry are collision-free. For the spatial problem,
such minimizers are never planar as soon as the number of bodies is greater than three
[16, 14]. This comes from the fact that if, as we said, a planar relative equilibrium whose
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configuration minimizes Ũ is a minimizer for the planar problem with italian symmetry,
it is never a minimizer for the spatial problem: the Hessian of the action has a negative
direction for exactly the reason which makes the spatial configurations which minimize Ũ

non planar [31]. The original Hip-Hop has all its masses equal and an extra Z/4Z-symmetry
(figure 3). The first proof of its existence is in[20] but it had already been found numerically
in [23]. The Z/4Z-symmetry is probably a consequence of minimization under the italian
Z/2Z-symmetry alone. If, inspired by the next example, we replace the italian symmetry
by the conditions x(t + τ) = eiφx(t) and z(t + τ) = −z(t) (we identified R

3 with C×R), we
obtain periodic or quasi-periodic motions which, for π − φ small enough, are non planar.

6.2.2. Retrograde Hill’s orbits

Here, one comes back to the planar 3-body problem and one uses the rich topology of the
shape space. Relative equilibria with lowest action are excluded by the choice of an extra
symmetry constraint (reflexion) which forces the shape to be collinear at t=0 and t = τ/2.
More precisely, the constraints are that x(t + τ) = eiφx(t), 0 < φ ≤ π, and x(−t) = x̄(t)
(one identifies R

2 with C and hence X with C
n−1). Collinear relative equilibria, which may

minimize locally, are excluded by choosing the homotopy class of retrograde Hill-type loops.
The absence of collision when π−φ is small is proved in [9] for “good” masses by comparing
the action of an explicit test path to the action of collisions estimated as in 5.2.2. Analogous
results for n bodies are announced in [10]. See also [3] for the classical Hill case

Figure 3. A Hip-Hop solution (4 equal masses) and two retrograde Hill solutions (equal and unequal masses)

6.3. New “simple” solutions: equal masses

Invariance under permutation of equal masses accounts for the existence of the generalized
isosceles subproblems, where the configuration is assumed to be at any time invariant under
a group of symmetries of X which may permute equal masses. Subtler are the symmetries
of the action which act simultaneously on the time circle S1

T and the configuration space
X . The quotient of the configuration space of the planar n-body problem by the natural
action of SO(2) can be identified with the complex projective space CPn−2, quotient of
(R2)n−1 ≡ C

n−1 by the diagonal action of C \ {0}. For n = 3, this is the Riemann sphere
and it is called in this context the shape sphere. In the spatial problem, the quotient of X by
the rotation group leads to spaces which are singular in the neighborhood of collinearities.
In the 3-body case, one gets the 2-disk of unoriented triangles of fixed size. This disk can
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be conveniently parametrized by the three squared mutual distances r2
ij = |�ri −�rj |2 subject

to the positivity of the polynomial which gives the squared area (Heron’s formula) [2].

6.3.1. The D6-symmetry of the shape sphere and the Eight

The dihedral group D6 is the natural symmetry group of the shape sphere, that is of the set
of similarity classes of oriented triangles. It can be presented as the group generated by two
generators g1, g2 and the relations g6

1 = g2
2 = 1, g1g2 = g2g

−1
1 . The following figure shows

the action of the generators and the decomposition of the sphere into a fundamental domain
and its 11 images under the action of the group on X (compare to the formulas in figure
2). The boundaries are made from the equator, which represents the flat triangles, and the
three meridians which represent the isosceles triangles. The two poles are the equilateral
triangles with the two orientations. For each choice of masses, the shape sphere inherits a
metric from the mass metric on X . The metrics corresponding to different sets of masses are
different but they share the same conformal structure. For a nice application of this, see[35].
The Eight [19] (already discovered numerically in [36]) is a minimizer among loops invariant
under the action of D6 given in figure 2, which lifts the action on the shape sphere. A
fundamental domain of the action on the time circle is the interval [0, T/12]. The invariant
version of Marchal’s theorem applies everywhere, except at the boundary point t = T/12
where the configuration must be isosceles and the rotating circle property is not available due
to the required invariance under reflexion through the horizontal axis (figure 2). It applies
however for proving the existence of eights with a priori symmetry D3 or Z/6Z [16, 25].
The original proof in [19] (see also [15]) uses the fact that the zero angular momentum lift
of the equipotential through the Euler points in the shape sphere is an eight with the D6-
symmetry and that its action is smaller than the one of any invariant loop with collision.
The actual minimizer is not qualitatively different from this model; this makes it close to be
a counterexample to Saari’s conjecture which asserts that the only solutions whose moment
of inertia with respect to the center of mass is constant are the relative equilibria. A proof
of this conjecture for 3 arbitrary masses in the plane was given by Moeckel [33].

Figure 4. The shape sphere and the D6-invariant lift of the equipotential curve

In 3-space, the Eight gains a new symmetry, the reflexion through its plane. It can
be continued to families of periodic solutions in a frame rotating around any one of its
symmetry axes. Each of these correspond to a breaking of the D6 × Z/2Z-symmetry into a
symmetry under a subgroup isomorphic to D6 (see [22])
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6.3.2. The choreographies

These are solutions of the n-body problem in E of the form

x(t) = (q(t), q(t + T/n), . . . , q(t + (n − 1)T/n)),

where q : S1
T → E is a closed curve. They are invariant under group actions which contain

the action of Z/nZ by t 
→ (t+T/n) on S1
T and circular permutation on the set {1, 2, . . . , n}.

For this action of Z/nZ alone, it is shown in[5] that the minimizers are the relative equilibria
of the regular n-gon (this may be different in rotating frame). Many planar choreographies
were computed numerically by C. Simó [21, 42] as local minimizers of the action under the
Z/nZ-symmetry, some supported by a curve without any symmetry, but for most of them,
no existence proof is available because topological constraints are mixed to the symmetry
constraints. The same is true of the many 3-body choreographies found numerically by Simó
[41] by a shooting method followed by symmetrization, in a way reminiscent of Birkhoff’s
method for finding Hill’s solutions in the restricted 3-body problem. We already alluded in
5.2.3 to the first proof of existence of a non planar choreography (4 equal masses [43]); it
is done by minimization under a mixture of symmetry and topological constraints which is
made to work by a clever use of the blow-up and the property of described in 5.2.3. Multiple
choreographies with several curves correspond to the action of a product of cyclic groups;
the first one was proved to exist by Chen [6] (number 1 of figure 5).

Questions: (i) is equality of all the masses necessary to get this type of solutions ? (see
[17]); (ii) do choreographies with non equal time intervals exist ?

Figure 5. Some choreographies (1-2 by Chen, 3 by Gerver, 4-6 by Simó)

7. CONCLUSION: What next ?

Finding new solutions is not necessarily a goal in itself. It would be really interesting if these
new solutions, when unstable, could serve as organizing centers of the global dynamics (com-
pare Moeckel [32]). Up to now, only the Eight with 3 bodies has been found (numerically)
stable [41]. The study of the invariant manifolds will certainly need to be computer assisted,
as are already the proofs of local unicity of the Eight and existence of Gerver’s orbit (number
3 in figure 5) [28]. Many other problems are pending: gains of symmetry (in many cases, the
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minimizers seem to possess more symmetry than was asked for), proof of the existence of
minimax solutions (see [5] for a minimax interpretation of the Eight), understanding how to
find solutions satisfying topological constraints, limits of choreographies for n → ∞, etc...
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22. A. Chenciner, J. Féjoz and R. Montgomery, Rotating eights, in preparation
23. I. Davis, A. Truman and D. Williams, Classical periodic solutions of the equal mass 2N -body

Problem, 2n-Ion problem, and the n-electron atom problem, Physics Letters 99A, 15–17 (1983)
24. G. Dell’Antonio, Non-collision periodic solutions of the N -body system, Nonlinear Differential

Equations Appl. 5 1, 117–136 (1998)
25. D. Ferrario and S. Terracini, On the Existence of Collisionless Equivariant Minimizers for the

Classical n-body Problem, preprint (2003)
26. W.B. Gordon, A Minimizing Property of Keplerian Orbits, American Journal of Math. 99,

n015, pp. 961–971 (1977)
27. G. Hoynant, Des orbites en forme de rosette aux orbites en forme de pelote, Sciences 99, 3–8

(1999)
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