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Abstract

Originating in the qualitative studies of differential equations by Henri
Poincaré (Poincaré sections), the notion of “discrete dynamical system”
is understood to day as the study of the orbits of the action of a discrete
group, such as Z (or a discrete monoid such as N) on a set X. In other
words, in the case of an action of Z we are interested in the properties of
the orbits T n(x), n ∈ Z of an invertible map T : X → X, with particular
emphasis on their asymptotic properties when n → ±∞. The so-called
qualitative theory concerns the case when X is a topological space (resp a
Ck-manifold) and T a continuous map (resp. a Ck map), while the ergodic
theory concerns the case of a measure space X and a measure preserving
map T . In these notes, we address mainly the ergodic side, leaving aside
many basic notions like hyperbolicity.
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5.1 Poincaré recurrence theorem . . . . . . . . . . . . . . . . . . . . . 34
5.2 Invariant sets, invariant functions . . . . . . . . . . . . . . . . . . 34
5.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Unique ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 The main ergodic theorems 40
6.1 The operator point of view: Von Neuman’s ergodic theorem . . . 40
6.2 Birkhoff’s ergodic theorem . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Kingman’s subadditive ergodic theorem . . . . . . . . . . . . . . 43
6.4 Conditional expectation and the ergodic theorems . . . . . . . . 48
6.5 Applications: law of large numbers, entropy . . . . . . . . . . . . 49

6.5.1 Strong law of large numbers . . . . . . . . . . . . . . . . . 49
6.5.2 Shannon’s entropy (see [C3, CT]) . . . . . . . . . . . . . . 51

2



7 A glimpse into dynamical entropies 52
7.1 The entropy of a finite probability space . . . . . . . . . . . . . . 52
7.2 The entropy of a discrete source . . . . . . . . . . . . . . . . . . . 53
7.3 Kolmogorov’s entropy . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4 Topological entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



1 First examples: linear maps, linear automor-
phisms and rotations on tori, annulus twists

A discrete topological dynamical system is a continuous map : T : X → X from
a metric (or at least metrisable) space X to itself. Iterating T defines an action
n · x = Tn(x) of the semi-group N, which extends to an action of the group Z
if T is a homeomorphism. In this last case, it can be considered as the discrete
version of an autonomous differential equation whose flow is defined for all times
(and hence defines an R-action). We start with basic examples given by analytic
maps from an analytic manifold to iself. This is the occasion to introduce some
important words: the orbit of x ∈ X under the action of N (resp. Z) is the set

O+
T (x) = {Tn(x), n ∈ N}, resp. OT (x) = {Tn(x), n ∈ Z}.

In case T is a homeomorphism, O+
T (x) is called the positive orbit of x in order

to avoid confusion. One says that the orbit of x is periodic if there exists an
integer n ≥ 1 such that Tn(x) = x. One also says that x is a periodic point of
period n of T (a fixed point if n = 1).

Definition 1 The dynamical system T : X → X is said to be positively topo-
logically transitive (resp. positively minimal) if there exists x ∈ X such that
(resp. if for every x ∈ X) the closure O+

T (x) of its positive orbit is equal to X.
The homeomorphism T is said to be topologically transitive (resp. minimal) if
there exists x ∈ X such that (resp. if for every x ∈ X) the closure of its orbit
OT (x) is equal to X.

For another definition of topological transitivity, equivalent if the space X is
reasonable, see Lemma 4.

Definition 2 A subset A ∈ X is called T -invariant (or invariant by T ) if
T−1A = A (compare to definition 16).

Exercise 1 A homeomorphism T : X → X is minimal if and only if the only
closed invariant subsets are ∅ and X.

1.1 Linear maps

Let X be a finite dimensional real or complex vector space and T : X → X be
a linear map. Using the spectral decomposition on C one can write X as the
direct sum of invariant subspaces on each of which T takes a simple form in a
well-chosen basis.

Exercise 2 Describe all the possible behaviours of the orbits of a linear map
T : R2 → R2.

Exercise 3 Prove that a linear map T : E → E of a finite dimensional vector
space on K = R or C into itself cannot be transitive.
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A direct proof could follow from the classification of such linear maps but a
much nicer proof, borrowed from [Fa], can be obtained by showing that if T had
a dense orbit in E, its transpose T ∗ : E′C → E′C (defined by ϕ 7→ ϕ ◦ T on the
C-vector space E′C be formed by the K-linear maps from E to C) could not have
any eigenvalue.
Caution ! this is definitely false in infinite dimension. A surprising example
is the derivation T (ϕ) = ϕ′ from the Fréchet space C∞([0, 1],R) to itself: there
exists a (see Exercise 7).

1.2 Linear automorphisms on tori

One defines Tr as the quotient Tr = Rr/Zr.

Exercise 4 Tr inherits from Rr a quotient topology and a quotient group struc-
ture: if π : Rr → Tr is the quotient map, Ω ⊂ Tr is open iff π−1(Ω) ⊂ Rr is
open; the formula x̂ + ŷ = π(x + y) defines the group law independently of the
choice of representatives x, y of x̂ = π(x) and ŷ = π(y).

If f : Rr → Rr is such that x− y ∈ Zr =⇒ f(x)− f(y) ∈ Zr, the composition
π ◦f defines uniquely a map F : Tr → Tr such that π ◦f = F ◦π. In particular,
if the linear map A : Rr → Rr is such that A(Zr) ⊂ Zr, it induces a map
A : Tr → Tr.

Exercise 5 A is surjective if and only if detA 6= 0, it is injective if and only
if detA = ±1.

In particular, a linear automorphism of Tr preserves Haar measure m: for any
measurable subset E ⊂ Tr, one has m(A

−1
(E) = m(E) (see 2.3 and lemma

19for definitions).

Proposition 1 If A : Tr → Tr is linear automorphism, the periodic points are
dense in Tr.

Proof. The subset Qr/Zr is dense in Tr and each of its elements is a periodic
point of A. Indeed, for any q ∈ N\{0}, the map A sends the finite set ( 1

q Zr)/Zr

to itself. But a bijection of a finite set is necessarily periodic.

Exercise 6 A quite famous example in the history of discrete dynamical sys-
tems – a parangon of Anosov diffeomorphism – is the linear automorphism A

of the 2-torus T2 defined by the matrix A =
(

2 1
1 1

)
. Using the irrationality

of the eigenvalues of A and lemma 2 below, show that the images Es, Eu un-
der the canonical projection π : R2 → T2 of the eigenspaces Es, Eu of A are
dense in T2. Deduce that A is transitive. Hint: use criterion in lemma 4 be-
low after noticing that given two open subsets U and V in T2, one can choose
x ∈ U ∩ Es, y ∈ V ∩ Eu and a small enough neighborhood W of 0 such that
x+W ⊂ U and y +W ⊂ V , and that as soon as n ∈ N is large enough, A

n
(x)
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and A
−n

(y) both belong to W ; conclude by noticing that x + A
−n

(y) ∈ U and
that A

n(
x+A

−n
(y)
)

= A
n
(x) + y ∈ V (see figure 0.1).

Figure 0.1 Proof of transitivity of A.

The following figure, quite well known under the name of “Arnold’s cat” shows
the fate of a 2-dimensional cat lying in T2 when submitted to iterates of A.

a. b.

c. d.

Figure 1: a–c. Action of A =
(

2 1
1 1

)
on torus;

d. Action of A3 on Fig. a, magnified.

theory of dynamical systems. This was not understood in his time — one more
manifestation of the chaoticity in this area. The fact that there are dynamical
systems which are, so to speak, “intrinsically chaotic” (chaotic due to their own
dynamics, not because of exterior perturbations) and the mechanism making
them chaotic11 were understood much later, in 1960s.

2 Hyperbolic automorphisms of the 2-torus

An algebraic automorphism of the 2-torus T2 = R2/Z2 (the standard projection
R2 → T2 will be denoted by p) is defined by a matrix A ∈ SL(2, Z) or A ∈
GL(2, Z). Initially, A acts on R2 and then this action projects onto T2. Namely,
A defines a toric automorphism

Â : T
2 → T

2 Âp(x) = p(Ax), i.e. Â(x + Z
2) = Ax + Z

2.

Â and A are called hyperbolic if for the eigenvalues λ, µ of A one has |λ| >
1, |µ| < 1. Let Eu

A be the unstable eigendirection for A, i.e. a line Re in R2

where Ae = λe; later we shall also need the stable eigendirection Es
A = Re′

where Ae′ = µe′. Denote by Wu,s
A the projections of Eu,s

A to T2. They are dense
on the torus. Projections of the lines parallel to Es,u

A constitute an unstable

11At least the mechanism making many systems chaotic. We do not claim that there can
be no other sources of chaoticity.

13

Figure 0.2 Arnold’s cat and its image under the third iterate of A.

Exercise 7 2) Surprizingly, essentially the same proof shows that the deriva-
tion T (ϕ) = ϕ′ from the Fréchet space C∞([0, 1],R) (endowed with the distance
d∞(ϕ,ψ) =

∑
n∈N

1
2n inf

(
||ϕ(n) − ψ(n)||0, 1

)
) to itself is transitive. Indeed, let
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A and B be the continuous linear maps from C∞([0, 1],R) to itself defined re-
spectively by

A(ϕ) = ϕ′, B(ϕ)(x) =
∫ x

0

ϕ(t)dt.

Check that AB = Id and that, if P is a polynomial, limn→∞An(P ) = 0 and
limn→∞Bn(P ) = 0. Admitting the density of polynomials in C∞([0, 1],R)
(Weirstrass theorem), show that the proof of transitivity of A in Exercise 6 be-
comes a proof of transitivity of A when replacing Es and Eu by the polynomials,
A by A and A

−1
by B.

1.3 Rotations on tori

The translation

Rα = Rα1,α2,··· ,αr
(x1, x2, · · · , xr) = (x1 + α1, x2 + α2, · · · , xr + αr)

induces the rotation Rα = Rα1,α2,··· ,αr
: Tr → Tr (as there is no ambiguity,

we shall keep the same notation for the translation of Rr and the corresponding
rotation of Tr).

Lemma 2 The real number α is irrational if and only if the rotation Rα : T1 →
T1 is minimal.

Proof. As the orbit of any point is just translated (rotated) from the orbit of 0,
it is enough to show that the orbit of 0 is dense, that is to show that the additive
subroup generated by α is dense. If α is rational, this subroup is finite. If α is
irrational, the points in the orbit are all distinct; as the circle T1 is compact,
there is an accumulation point, that is there exist integers i 6= j and p such that
|iα−jα−p| = |(i−j)α−p| < ε. The end of the proof is an easy exercise. Notice
that taking positive (or negative) orbits would be sufficient. The analogous
result on Tr, r ≥ 1 is

Theorem 3 (Kronecker) Let α = (α1, α2, · · · , αr) ∈ Rr. The real num-
bers 1, α1, · · · , αr are rationally independent, i.e. there is no (r + 1)-tuple
(k0, k1, · · · , kr) ∈ Zr+1 \ {0} such that k0 + k1α1 + · · · + krαr = 0, if and
only if the rotation Rα : Tr → Tr is minimal.

Proof. Of course, here also it is enough to show that the orbit of 0 is dense,
that is to show that the subgroup of Tr generated by (the class of) α is dense.
There exist proofs based on the geometry of numbers (for ex. by Mahler) but
here is a proof closer to the spirit of ergodic theory; it is based on the following

Lemma 4 (criterion of transitivity) Let T : X → X be a homeomorphism
of a complete metric space X with a countable basis of open sets and no isolated
point. T is topologically transitive (resp. positively topologically transitive) If
and only if for any two nonempty open sets U, V ⊂ X, there exists n ∈ Z (resp.
n ∈ N) such that T−n(U) ∩ V is nonempty.

7



This criterion is often taken as a definition of topological transitivity.
Proof of the “if” part. Let (Ui)i∈N be a countable basis of (nonempty) open sets.
By hypothesis, ∀i ∈ N, ∪n∈ZT

−nUi intersects all the Uj , and hence is dense in
X. Hence,

{x ∈ X, OT (x) = X} = ∩i≥0

(
∪n∈ZT

−nUi

)
is a countable intersection of open and dense sets. One concludes by Baire’s
theorem (recalled below) that the set of x whose orbit is dense is dense in X,
hence non empty. For the positively transitive part, just replace Z by N.

Theorem 5 (Baire) In a complete metric space (X, d), a countable intersec-
tion ∩n∈NVn of open dense subsets Vn is dense.

Proof. Given U open, one constructs by induction a sequence of balls B(xn, rn)
such that

B(xn, rn) ⊂ Vn ∩ U ∩ B̊(xn−1, rn−1) and 0 < rn ≤ 1/n.

One concludes that the closed balls B(xn, rn) are nested and that their centers
converge to a point x ∈ U ∩ (∩n∈NVn).
Remark. Baire’s theorem is the topological counterpart of the notion of full
measure. It is the basis of the topological notion of genericity. For a beautiful
parallel discussion of the two notions, see [O]. For an example, see Exercise 26

Proof of the “only if” part. If the orbit of x is dense, it intersects every non
empty open set. Hence, given U and V , there exists k, l ∈ Z such that T k(x) ∈ U
and T l(x) ∈ V , hence T (l−k)(U) ∩ V 6= ∅. It is for the positively transitive
case that the condition that X has no isolated point is needed. Indeed, this
condition implies that an open set is necessarily infinite; now, if T p(x) ∈ V
with p ∈ N, U ′ = U \ {x, T (x), · · · , T p(x)} is still open hence there exists m,
necessarily strictly greater that p, such that Tm(x) ∈ U ′, which implies that
T p(x) ∈ T−n(U) ∩ V with n = m− p > 0.
End of the proof of theorem 3. To show that a homeomorphism T is not topo-
logically transitive, it is enough to find a continuous non constant T -invariant
function f : X → R; but, If k0 + k1α1 · · · krαr = 0, x 7→ sin

(
2π
∑r

i=1 kixi

)
is a

Rα-invariant function, hence Rα is not topologically transitive.
Under the hypotheses of lemma 4, to prove that a homeomorphism T is topo-
logically transitive, it is enough to show that there are no two disjoint open
non empty invariant sets Ũ , Ṽ . Indeed, given arbitrary open subsets U, V of X,
Ũ = ∪n∈ZT

−nU and Ṽ = ∪n∈ZT
−nV are invariant. If they cannot be disjoint,

there exists m,n such that TmU ∩ TnV 6= 0, hence Tm−nU ∩ V 6= ∅.
Now, let us suppose that U is a Rα-invariant open set and let X be its charac-
teristic function. If the Fourier expansion of X is

X (x1, · · · , xr) =
∑

(k1,··· ,kr)∈Zr

Xk1···kre
2πi

Pr
j=1 kjxj ,
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the Rα-invariance implies

Xk1···kr (1− e2πi
Pr

j=1 kjαj ) = 0.

If 1, α1, · · · , αr are rationally independent, these identities imply that the only
non-zero coefficient is X0···0, which means that X is constant outside a set of
zero Lebesgue measure. One concludes that the complement of U has empty
interior (any open set has positive Lebesgue measure), hence a fortiori, U cannot
be disjoint from another invariant open set which proves that Rα is transitive.
We shall prove now a stronger version of Kronecker’s theorem 3 (for another
proof, see Proposition 37).

Theorem 6 In Theorem 3, one can replace “minimal” by “positively minimal”.

As it suffices to deal with topological transitivity, this theorem is an immediate
corollary of the following proposition:

Proposition 7 Let X be a metric space without isolated point. For a continu-
ous homeomorphism T : X → X, topological transitivity and positive topological
transitivity in the sense of criterion 4 are equivalent.

A counter example is the map x 7→ x+ 1 from Z to itself.
Proof. 1) One starts proving the following key property:

if for every pair U, V of non empty open subsets of X there exists k ∈ Z such
that U ∩ T kV is non empty, then for any non empty U and any integer m,
there exists n ≥ m such that U ∩ TnU is not empty.

By contradiction, suppose that there exists U and n0 ≥ 0 such that, ∀n ≥ n0,
U∩TnU is empty. Then, ∀x ∈ U, ∀j ≥ 0, T ix 6= x (it cannot come back because
U does not) and the same will be true of a small enough open neighborhood
V (we are in a metric space): ∀i ≥ 1, V ∩ T iV = ∅. As X has no isolated
points, one can find two disjoint open sets V1, V2 ⊂ V . Then ∀i, V1 ∩ T iV2 = ∅
and V2 ∩ T iV1 = ∅. This implies ∀k ∈ Z, V1 ∩ T kV2 = ∅, which contradicts the
hypothesis.
To conclude the proof of proposition 7, one notices that given U, V and k ∈ Z
such that U∩T kV is not empty, the key property implies that there exist l > −k
such that (U ∩T kV )∩T l(U ∩T kV ) is not empty. But this implies that U ∩TnV
is not empty, with n = k + l > 0.

Exercise 8 Give examples of rotations of Tr whose orbits are dense in a sub-
torus of Tr. What condition insures that all the orbits are periodic ?

Exercise 9 (Doubling the angle) Show that the periodic points of the map
F : T1 3 θ 7→ 2θ ∈ T1 are dense in T1 (a periodic point of period n is a point θ
such that Fn(θ) = θ). Compare with the informations given by exercise 18.

Remark: why are rotations on tori important ? They arise of course as
invariant subsystems of linear maps having part of their spectrum on the unit
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circle and hence are closely related to problems of stability and bifurcations.
More significantly, linear flows on tori are the building blocks of completely in-
tegrable Hamiltonian systems, and their Poincaré return maps (see section 1.4)
are rotations in well chosen coordinates. The perturbation theory of such com-
pletely integrable systems, known under the acronym of KAM (= Kolmogorov,
Arnold, Moser) theory is one of the landmarks of the theory of dynamical sys-
tems in the 20th century. The existence of a Cantor set of invariant closed
curves in Figure 2 is a consequence of this theory (see [C0]).

1.4 A glimpse to Poincaré return maps

To a C∞ function H : R2n → R (the Hamiltonian), one associates the Hamilto-
nian vector-field1XH defined by

dxi

dt
= −∂H(x, y)

∂yi
,
dyi

dt
=
∂H(x, y)
∂xi

, i = 1, · · · , n

One checks immediately that the functionH remains constant along any integral
curve of XH : this is the conservation of energy. Let ω =

∑n
i=1 dxi ∧ dyi be

the canonical symplectic form on R2n ≡ T ∗Rn. Let Σh = H−1(h) ⊂ R2n be a
regular energy manifold, and let ωh be the restriction of ω to Σh. The restriction
XH,h to Σh of the vector-field XH can be shown to generate the kernel of the
differential 2-form ωh, which means that it is well defined up to multiplication
by a scalar by the condition that for any (x, y) ∈ Σh and any tangent vector
X ∈ T(x,y)Σh, one has ωh(XH,h, X) = 0.

Definition 3 A hypersurface S ⊂ Σh is called a local hypersurface of section
(or a Poincaré section) of the vector-field XH,h if it cuts transversally its integral
curves and if a first return map P (also called the Poincaré return map) can be
defined, at least locally, by associating to a point of some domain S ′ ⊂ S the
first point on its positive integral curve which returns to S.

Figure 1. Poincaré section and return map
1The 2n coordinates in R2n are written x1, · · · , xn, y1, · · · , yn because, more conceptually,

one should think of R2n as the cotangent bundle T ∗Rn of Rn.
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Iterating the first return map P gives informations on the flow of XH,h which do
not depend on the law of time (i.e. one does not distinguish between XH,h(x, y)
and its reparametrized versions λ(x, y)XH,h(x, y), where λ : Σh → R is a smooth
function). A fixed point of P corresponds to a periodic solution of XH,h, an
invariant curve of P corresponds to an invariant 2-torus of XH,h, . . . The above
assertion that the restriction XH,h to Σh of the vector-field XH generates the
kernel of the differential 2-form ωh implies that the restriction of this 2-form to
a hypersurface of section S is non-degenerate, hence that its (n − 1)th wedge
product ω∧(n−1)

h is a volume form on S. In particular, 2 degrees of freedom
autonomous Hamiltonians (i.e. when n = 2) give rise to diffeomorphisms of
surfaces which preserve a smooth area form. Poincaré introduced this notion
when studying the so-called planar circular restricted 3-body problem (see [C1,
C2]). In the version given by Birkhoff, the surface of section is an annulus and
the return map is an area preserving monotone twist map of the 2-dimensional
annulus. The dynamics of the first return map is very complicated, in particular
it contains as subdynamics both minimal rotations on T1 and Bernoulli shifts.

Figure 2. The return map of the restricted 3-body problem at high Jacobi constant.
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Billiard maps Given a convex billiard table, i.e. a compact convex domain of
R2 with smooth boundary Γ , a billiard trajectory is made of straight segments
which reflect on Γ by changing the sign of the angle with the normal to Γ at the
contact point. Such a trajectory is naturally associated to a map T : A → A
of the annulus A = S1 × [0, π] in the following way: let γ : [0, 2π] → R2

be a parametrization of Γ by arclength t. To a couple (t, α) of a reflection
point γ(t) and the reflection angle α, the map T associates the couple (t1, α1)
corresponding to the next reflection.

Lemma 8 Let l(t, t1) be the length of the Euclidean chord between the points
γ(t) and γ(t1). One has

∂l

∂t
(t, t1) = − cosα,

∂l

∂t1
(t, t1) = cosα1

Proof. See figure 3 for a proof in the spirit of Newton.

Exercise 10 Compute the billiard map T for a billiard in a round disc.

For more on billiards, see [Ta].

Figure 3. A billiard and the associated billiard map.

1.5 Some topological notions of recurrence

This section is very sketchy; for more see [LC].
The simplest examples of recurrence are the fixed points (T (x) = x) or the
periodic points (∃n ∈ N, Tn(x) = x).

Definition 4 Given a continuous map T : X → X and x ∈ X, its ω-limit set
is the set of accumulation points of the sequence (Tn(x)n≥0):

ω(x) = {y, ∃ni → +∞, lim
i→+∞

Tni(x) = y}, i.e. ω(x) =
⋂
n

{T i(y), i ≥ n}.
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If T is a homeomorphism, one defines the α-limit set of x as the ω-limit set of
T−1, that is the set of accumulation points of the sequence (T−n(x)n≥0):

α(x) = {y, ∃ni → +∞, lim
i→+∞

T−ni(x) = y}, i.e. α(x) =
⋂
n

{T−i(y), i ≥ n}.

If x ∈ ω(x) (resp. x ∈ α(x), one says that x is positively (resp. negatively)
recurrent.

Note that ω(x) is closed and positively invariant, even invariant if T is a home-
omorphism but that, in general, the set of recurrent points is not closed: an
example is the “time τ map” of the pendulum equation (exercise 12).

Definition 5 The point x is said to be wandering if there exists a neighborhood
U of x such that ∀n ≥ 1, T−n(U) ∩ U = ∅. Otherwise x is said to be non
wandering. One usually calls Ω(T ) the set of non wandering points of T . An
open set U such that ∀n ≥ 1, T−n(U) ∩ U = ∅ is called a wandering domain.

Exercise 11 Show that the set Ω(T ) of non wandering points is closed and
positively invariant (and invariant if T is a homeomorphism). Show that a pos-
itively recurrent point is non wandering and that the same is true of a negatively
recurrent point if T is a homeomorphism.

Exercise 12 The pendulum differential equation

d2x

dt2
+ ω2 sinx = 0, that is

dx

dt
= y,

dy

dt
= −ω2 sinx,

defines a flow (a global R-action) that is a 1-parameter group of diffeomorphisms
of the plane ϕt : R2 → R2, t ∈ R which factorizes through a 1-parameter group
of diffeomorphisms of the cylinder ϕ̂t : R/2πR× R → R/2πR× R, t ∈ R.

Let T = ϕτ or T = ϕ̂τ , where τ is a real number. Study in both cases the
various invariant sets

Fix(T ) ⊂ Per(T ) ⊂ Rec(T ) ⊂ Ω(T )

(fixed points, periodic points, recurrent points, non wandering points).
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2 From coin tosses to Bernoulli shifts: an in-
troduction to measured spaces and measured
dynamical systems

2.1 Algebras and σ-algebras

Let X be the set {0, 1}n of sequences ω = (a1, a2, · · · , an), where each ai is 0
or 1. One can think of X as a sequence of n coin tosses, where 0 represents
“tail” and 1 represents “head”. An element of X (resp. a subset C of X) will
be called an elementary event (resp. an event). The interpretation of such a
subset is “it happens any one of the elements of C”. Suppose now that the
probability to get 0 is P (0) = p and the probability to get 1 is P (1) = q = 1− p;
mathematically, this means endowing the finite set {0, 1} with a probability
measure. To suppose the coin tosses are independent (this is the basic notion
which makes probability theory distinct from measure theory) means that the
elementary event ω = (a1, · · · , an) has probability µ(ω) = pn0qn1 , where n0 is
the number of i such that ai = 0 and n1 = n− n0 is the number of j such that
aj = 1. As there are exactly

(
n
n0

)
=
(

n
n1

)
elementary events having the same

probability as ω, we get that∑
ω∈X

µ(ω) =
n∑

n0=0

(
n

n0

)
pn0qn−n0 = (p+ q)n = 1.

This endows X with a probability measure µ, the probability µ(C) of an event
C being defined as the sum of the probabilites of its elements.
The set P of all events, which is nothing but the set of all subsets of X is an
algebra in the following sense :

Definition 6 Let X be a set. A collection G of subsets of X is called an algebra
if it contains X itself and if it is closed under the operations of formation of
complements and finite unions.

It follows from the definition that an algebra is also closed under finite intersec-
tions. In our case, as X is a finite set, G is also finite, and the following theorem
asserts that it is equivalent to a partition of X :

Theorem 9 If the algebra G is finite, there exists pairwise disjoint subsets
A1, . . . , Ar of X, called the “atoms”, whose union is X, such that G coincides
with the set of unions of atoms. One says that the atoms Ai “generate” G. Con-
versely every partition P “generates” the finite algebra formed by the unions of
its atoms.

Sketch of proof (see [Si] page 4): consider the intersections G±1∩G±2∩. . .∩G±r,
where the Gi, i = 1, . . . , r are an enumeration of the elements of G and G−i = Gc

i

is the complement of Gi.
In the case of the algebra P of all the subsets of the finite set X, the Ai are the
elements {ω} of X, that is the elementary events.

14



Why introduce this notion of algebra ? Unavoidable when the cardinal of
X is infinite, this notion is already encountered very naturally in the finite case :
suppose, for example, that we are only able to count the number f(ω) =

∑n
i=1 ai

of 1’s in ω = a1a2 . . . an ∈ {0, 1}n. The map f : X → {0, 1, 2, . . . , n} is an
example of a random variable with finite values (called a simple random variable
by Billingsley [B1]). Its levels f−1(k) form a partition of X and hence generate
an algebra different from P. The only probability we can measure is the one of
elements of this algebra: more precise events are not perceived by our means of
observation. If instead of considering f we consider the random variable with 2
values, which associates to ω ∈ X the parity g(ω) of the number of 1’s, it means
that we have only access to the coarser algebra generated by the partition into
2 parts, the “even” elementary events and the “odd” ones.

Exercise 13 Compute the probabilities of the atoms Ai in the above examples.

The infinite case: When the cardinal of X is infinite, the definition of an
event is subtler. The formalization of the calculus of probabilities given in the
30’s by Kolmogorov (see [Ko]) is anchored in Lebesgue measure theory and
appeals to the fundamental notion of σ-algebra, or tribe, due to Emile Borel.
The events are the subsets of X which can be “measured”, that is the ones to
which one can assign a probability.

Definition 7 Let X be a set. An algebra X of subsets of X is called a σ-
algebra (or a tribe) if it is closed under the operations of countable union. The
pair (X,X ) is called a “measure space”.

Hence, a σ-algebra is closed under formation of complements and countable
unions and intersections.

Lemma 10 A family G of subsets of X (for example an algebra) being given,
there exists a smallest σ-algebra X containing it, defined as the intersection
of all the σ-algebras containing it. One says that X = σ(G) is the σ-algebra
“generated” by G.

Definition 8 A probability measure on the measure space (X,X ) is a function
µ : X → [0, 1] such that µ(X) = 1 and µ (∪Ci) =

∑
µ(Ci) if the Ci are a (at

most) countable family of elements of X which, as subsets of X, are pairwise
disjoint. One says that µ possesses the property of countable additivity (or σ-
additivity). If C ∈ X , µ(C) is the “probability” of the event C and the triple
(X,X , µ) is called a probability space.

The restriction to countable families is justified by the fact that the non-zero
elements of a summable family of real numbers form at most a countable subset.
Kolmogorov had chosen as an alternative to the countable additivity axiom the
continuity axiom, which is a kind of monotone convergence: if a decreasing
sequence A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . of elements of X has an empty intersection,
one has limn→∞ µ(An) = 0. One can show that the countable additivity axiom

15



is equivalent to the continuity axiom and also to each of the following properties:
ainsi qu’à chacune des propriétés suivantes :

1) For any increasing sequence Ai of elements of X , µ(∪Ai) = limµ(Ai).
2) For any decreasing sequence Ai of elements of X , µ(∩Ai) = limµ(Ai).

Remark. A convenient notation used by Kolmogorov is
∑
Ci for disjoint

unions.
The basic theorem is the following (see [B1]):

Theorem 11 A function µ defined on an algebra G of subsets of a set X, which
is σ-additive and has total mass 1, admits a unique extension to a probability
measure defined on the σ-algebra X generated by G.

A supersonic overflight of the proof (see [B1] section 3): one starts by
defining an outer measure µ∗ which, to each subset A of X associates

µ∗(A) = inf
∑

n

µ(An),

where the inf is taken on the set of sequences A1, A2, . . . of elements of G such
that A ⊂ ∪nAn. One gets an inner measure µ∗ by going to the complement :

µ∗(A) = 1− µ∗(Ac),

where Ac = X \A is the complement of A. One then shows that if A ∈ X , one
has for any subset E of X the equality

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ∗(E).

One then deduces that µ∗ is a probability measure on X and one checks easily
that µ∗(A) = µ(A) if A ∈ G. Unicity is a consequence (with some work) of the
minimality of X .
CAUTION (see [B1] section 2) : a transfinite induction is necessary to pass
from an algebra to the σ-algebra it generates. In particular, a tribe is either
finite or it has at least the cardinal of the continuum. This suggest the difficulty
inherent in the explicitation of general Borelian sets.
Lebesgue measure on the interval [0, 1]. The basic example of a prob-
ability measure is the interval [0, 1] endowed with the Borelian tribe and the
Lebesgue measure. It is convenient to define the Borelian tribe B as the σ-
algebra generated by the algebra I formed by the finite unions of disjoint in-
tervals [xi, yi[⊂ [0, 1]. The Lebesgue measure λ is the unique extension of the
length of the intervals: λ([x, y[) = |y − x|. From the proof of theorem 11, one
sees that the measure of a Borelian B can be defined as the inf of the sum∑

n |yn − xn| of the lengths of a sequence of intervals [xn, yn[ whose union con-
tains B. One can extend λ to a larger tribe but one can show that, if one
accepts the axiom of choice and the continuum hypothesis, one cannot define
on the tribe of all subsets of [0, 1] a probability measure µ such that each single-
ton {x} has probability µ({x}) = 0. Nevertheless, one extension is compulsory,
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the extension of λ to all negligible sets, that is to all parts of [0, 1] which may
be covered by a sequence of intervals whose sum of the lengths is arbitraryly
small: one decides to give them the measure 0 even if they do not belong to the
Borelian tribe. The countable subsets are negligible but there are many others
......
Remark. We shall see in the sequel (Proposition 14) that the probability space
([0, 1],B, λ) is in a precise sense equivalent to a fair game of heads and tails with
an infinite number of coin tosses.
Remark. To check directly a property on an arbitrary element of a tribe X may
be difficult while checking it on a set of generators (for example the elements
of an algebra G such that X = σ(G)) may reveal much simpler. The following
lemma allows often to restrict to such a check (the role of symmetric difference
A∆A0 = (A ∩Ac

0) ∪ (Ac ∩A0) in the notion of almost everywhere invariance is
exposed in section 5.2):

Lemma 12 Let (X,X , µ) be a probability space and let G be an algebra gener-
ating X (i.e. X = σ(G)). For any A ∈ X and ε > 0, there exists A0 ∈ G such
that µ(A∆A0) < ε.

In other words, any element of the tribe is arbitrarily well approximated by an
element of the algebra.
Sketch of proof. It is a direct consequence of the construction of the extension
of µ from G to σ(X ): by definition of µ∗(A) as the inf of the sums

∑∞
n=1 µ(An)

on the set of sequences of elements of G whose union contains A (see the sketch
of proof of theorem 11), there exists, for all ε > 0, a sequence Cn of elements of
G such that A ⊂ ∪∞i=nCn and

∑∞
i=n µ(Cn) < µ(A)+ 1

2ε. As the sequence µ(Cn)
converges, there exists an integer N such that

∑∞
n=N+1 Cn <

1
2ε. One can then

show (exercise) that A0 =
∑N

i=1 Cn is a suitable choice.

2.2 The game of “heads or tails” as a stochastic process

Let X = {0, 1}N∗ be the set of infinite sequences

ω = a1a2 . . .

of 0’s and 1’s. As above, each such sequence can be thought of as an infinite
sequence of “independent” coin tosses in a “heads or tails” game. It is the real-
ization of a stationary stochastic process without memory: “stationary” means
that the probability p that ai = 0 and the probability q = 1− p that ai = 1 are
independent of the “time” i of the coin toss ; the independence (or absence of
memory) means that the probability of a cylinder

Aj1j2...jk

i1i2...ik
=
{
ω ∈ X; ai1 = j1, ai2 = j2, . . . , aik

= jk
}
, i1, . . . ∈ N∗, j1, . . . ∈ {0, 1},

is
µ(Aj1j2...jk

i1i2...ik
) = µ(Aj1

i1
)µ(Aj2

i2
) . . . µ(Ajk

ik
),

that is pk0qk1 if the sequence j1j2 . . . jk contains k0 terms equal to 0 and k1 =
k − k0 terms equal to 1.
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Exercise 14 1) A finite intersersection of cylinders is still a cylinder;
2) the complement of a cylinder is a disjoint union of a finite number of

cylinders ;
3) a finite union of cylinders may also be written as a finite union union of

disjoint cylinders ;
4) deduce from 1),2),3) that the finite unions of disjoint cylinders form an

algebra G of subsets of X (compare to the algebra of finite unions of disjoint
intervals [ai, bi[ of [0, 1]).

It is natural to define the tribe X as the one generated by the algebra G of finite
unions of cylinders. One says that the probability measure µ = µp,q whose
value on the cylinders was just given is the product of an infinity of copies of
the measure (p, q) on {0, 1}.
Apart from the countable unions of disjoint cylinders, to produce non trivial
elements of X is not so easy. In fact, we shall show that the problem is the
same as the one of producing a non trivial Borelian of the interval [0, 1] ⊂ R.
The tribe X is indeed the Borelian tribe for the topology on X generated by the
cylinders, that is the infinite product topology (see exercise 15).
Finally, the probability of an element of X is defined as the unique extension
of the probability we have defined for cylinders, in exactly the same way as the
mesure of Borelians of [0, 1] is deduced from the measure (length) of intervals.

Exercise 15 (the topological space {0, 1}N∗ as a Cantor set). One endows
{0, 1}N∗ with the product topology: a basis of open sets is formed by the cylinders.
In other words, an open set is an arbitrary union of cylinders. Another definition
is via the introduction of the distance d(a1a2 . . . , b1b2 . . .) =

∑∞
k=1

|ak−bk|
2k . Show

that the map

f3 : {0, 1}N∗ → [0, 1], f3(a1a2 . . . an . . .) =
∞∑

k=1

2ak

3k

is a homeomorphism from {0, 1}N∗ to the standard triadic Cantor set K. Show
that K is of zero Lebesgue measure.

From {0, 1}N∗ to the interval [0, 1]: Let us now consider the map

f2 : {0, 1}N∗ → [0, 1], f2(a1a2 . . . an . . .) =
∞∑

k=1

ak

2k
.

As any element of [0, 1] possesses a dyadic expansion , this map is surjective.
It is not injective: the inverse image of 1

2 consists in 1000 . . . and 0111 . . ., and
same non-unicity phenomenon of the dyadic expansion occurs on the countable
dense set of dyadic numbers, of the form m

2k where m and k are integers.
But, surprisingly, in the case of equiprobability (p = q = 1/2) i.e. fair coin toss,
f2 is as good as a bijection from the measure point of view. Making precise this
assertion requires the introduction of some definitions.
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2.3 Measurability and preservation of measure

Measurable maps play the part of arrows in the category whose objects are
measure spaces:

Definition 9 A map f : (X,X ) → (Y,Y) from a measure space to another one
is said to be measurable if the inverse image f−1(B) of an element of Y is an
element of X .

Notice that the smaller the left tribe X , the more demanding a property is
mesurability. If for example X is defined by a finite partition and if (Y,Y) is
R with its Borelian tribe, the only measurable maps are the ones which are
constant on each piece of the partition.

Definition 10 Given a measurable map f : (X,X ) → (Y,Y) and a (probability)
measure µ on (X,X ), the direct image f∗µ of µ is the (probability) measure on
(Y,Y) defined by f∗µ(B) = µ

(
f−1(B)

)
.

In practice, f∗µ is characterized by the equality
∫

Y
ϕd(f∗µ) =

∫
X

(ϕ ◦ f)dµ.

Definition 11 A measurable map f : (X,X , µ) → (Y,Y, ν) from a probability
space to another one is said to be measure preserving if f∗µ = ν

Definition 12 A measured dynamical system is a quadruple (X,X , µ, T ), where
(X,X , µ) is a probability space and T : (X,X , µ) → (X,X , µ) is measurable and
measure preserving.

From now on, when we shall speak of a measure preserving map, we shall imply
that it is measurable. In practice, the following lemma is used:

Lemma 13 If the tribe Y is generated by the algebra G, in order that the map
f : (X,X ) → (Y,Y) be measurable, it is enough that the inverse images f−1(G)
of the elements G of G belong to X . In the same way, in order that f be measure
preserving, it is enough that µ(f−1(G)) = ν(G) holds for any element G of the
algebra G.

As a hint of the proof, the reader should meditate on the identity

f−1(σ(G)) = σ(f−1(G)).

Exercise 16 Show that a measurable map T : (X,X , µ) → (X,X , µ) from a
probability space to itself is measure preserving if and only if it satisfies any one
of the following properties (the same notation is used for a function and its class
in Lp(X,Xµ)):

1) for any measurable f : X → [0,+∞[,
∫

X
f ◦ Tdµ =

∫
X
fdµ,

2) for any f ∈ L1(X , µ), f ◦ T ∈ L1(X , µ) and
∫

X
f ◦ Tdµ =

∫
X
fdµ,

3) for any f ∈ Lp(X , µ), 1 ≤ p < +∞, f◦T ∈ Lp(X , µ) and ||f◦T ||p = ||f ||p,
4) for any non-negative f ∈ L∞(X , µ),

∫
X
f ◦ Tdµ =

∫
X
fdµ.
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Definition 13 A map f : (X,X , µ) → (Y,Y, ν) from a probability space to
another one is an isomorphism of probability spaces if

1) it is a bijection modulo zero-measure sets (i.e. there exists a µ-negligible
A ⊂ X and a ν-negligible B ⊂ Y such that f define a bijection from X \ A to
Y \B) (on speaks of a bijection “mod 0”)

2) f et f−1 are measurable and measure preserving.

We can now make precise the relation between Lebesgue measure on the interval
and a fair game of heads and tails alluded to at the end of section 2.1 (such a
relation was formulated for the first time by Steinhaus in [St]):

Proposition 14 The map

f2 :
(
{0, 1}N∗

,X , µ 1
2 , 1

2

)
→
(
[0, 1],B, λ

)
is an isomorphism of probability spaces: (f2)∗µ 1

2 , 1
2

= λ and (f−1
2 )∗λ = µ 1

2 , 1
2
.

In other words, the space of infinite sequences of 0’s and 1’s endowed with its
Borelian tribe and the probability measure corresponding to independent and
unbiased coin tosses is, from the point of view of measure theory, equivalent to
the interval [0, 1] endowed with its Borelian tribe and the Lebesgue measure.

Sketch of proof: we deduce from lemma 13 that it is enough to check mea-
surability and measure preservation by f2 on intervals and even on intervals of
the form ] p

2k ,
p+1
2k ] which are easily seen to generate the Borelian tribe. But, if

x =
∑k

i=1
ai

2i et y = x+ 1
2k , one checks immediately that f−1

2 [x, y] = Aa1a2...ak

12...k

and hence that µ 1
2 , 1

2

(
f−1
2 [x, y]

)
= 1

2k = |y − x| = λ([x, y]).
On the other hand, non-injectivity of f2 holds on a negligible set: indeed, let
D be the subset of {0, 1}N∗

formed by the sequences which after some rank
consist only of 1’s; D is contained in a countable union of subsets, each of them
contained in a finite union of cylinders whose sum of probabilities may be chosen
arbitrarily small (exercise). Its complement {0, 1}N∗ \D is in bijection with the
interval [0, 1[ obtained by removing a unique point.

Exercise 17 (sequel to exercise 15) Show that the map δ = f2 ◦f−1
3 is con-

tinuous and surjective from the standard triadic Cantor set K onto the interval
[0, 1]. Show that it takes the same value at the extremities of any interval in
[0, 1] \K. Draw the graph of the unique continuous map from [0, 1] onto itself
obtained by extending δ by a constant on each connected component of [0, 1]\K.
Check that this graph deserves the name of “devil’s stair” given to it by the
dynamicists: it is a nice example of function which has bounded variation but
is not absolutely continuous (i.e. different from the integral of its derivative,
which exists and is Lebesgue-almost everywhere equal to zero).
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Figure 4. The devil’s staircase.
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2.4 The game of “heads or tails” as a dynamical system:
Bernoulli shifts

The stochastic properties of an infinite sequence of independent coin tosses (with
probabilities p and q of 0 and 1 respectively) are nicely reflected in the dynamical
properties of a dynamical system, the so-called Bernoulli shift, which is the map

T : ({0, 1}N∗ ,X , µp,q) → ({0, 1}N∗ ,X , µp,q), T (a1a2a3 . . .) = (a2a3a4 . . .).

As it “forgets” a1, this map is surjective but not injective: the inverse image of
any element contains two elements. The map T is measurable and its fundamen-
tal property is the preservation of all the probability measures µ = µp,q on the
Borelian tribe X of {0, 1}N∗ which are naturally associated to the probabilities
(p, q) on {0, 1}. Indeed, the inverse image T−1(A) of the cylinder A = Aj1j2...jk

i1i2...ik

is the cylinder Aj1j2...jk

i′1i′2...i′k
, where i′n = in +1; hence, the process being stationnary,

it has the same probability pk0qk1 as A. One concludes by applying lemma 13.

Orbits and dynamics. An orbit {ω, Tω, T 2ω, . . . , Tnω, . . .} of T is a dynami-
cal description of the sequence ω of coin tosses; the language and the method of
the theory of dynamical systems, which consist in treating such an orbit as the
discrete version of an integral curve of a differential equation, prove remarkably
appropriate and effective in the description of stationary processes of this type.

Exercise 18 When p = q = 1
2 , the translation of T into the world of the

interval [0, 1] is the map x 7→ 2x(mod.1) = 2x − [2x] which is easily seen to
preserve Lebesgue measure ([x] is the integer part of x).

Figure 5 : The map x 7→ 2x on the interval and on the circle.
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From simply infinite to doubly infinite sequences:
It is often more pleasant to work with invertible transformations ; in the case of
Bernoulli shifts, this is accomplished by the consideration of an infinite sequence
of coin tosses in the past as well as in the future: one defines a bimeasurable
bijection T : {0, 1}Z → {0, 1}Z which preserves all the probability measures
µ = µp,q by the formula

T (. . . a−2a−1a0a1a2 . . .) = (. . . b−2b−1b0b1b2 . . .), where bi = ai+1.

Exercise 19 One supposes that p = q = 1
2 . Show that if g2 : {0, 1}Z → [0, 1]2

is defined by

g2(. . . a−2a−1a0a1a2 . . .) =

(−∞∑
k=0

ak

21−k
,

∞∑
k=1

ak

2k

)
,

the direct image of µ 1
2 , 1

2
by g2 is the Lebesgue measure on [0, 1]2 and that g2

conjugates (mesurably) T : {0, 1}Z → {0, 1}Z to the map τ : [0, 1]2 → [0, 1]2

defined by

τ(x, y) =
(1
2
(x+ [2y]), 2y − [2y]

)
.

Explain why τ is called the “baker transformation”.

Figure 6 : The baker transformation.
Remark. The existence of the continuous surjective map from the Cantor set
{0, 1}N∗ to the interval [0, 1] and the fact that a Cantor set is homeomorphic
to any of its finite cartesian powers, imply the existence of generalized Peano
curves, that is of continuous surjective maps from [0, 1] to [0, 1]n for any n ∈ N.
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3 Existence of invariant probability measures

We are interested in the existence of Borel probability measures which are in-
variant by a continuous map T : X → X of a topological space X into itself.
Being Borel means that the measure is defined on the Borelian tribe of X, that
is on the tribe generated by the open subsets of X.
If X is not compact, such a measure may well not exist at all. Think of a
translation from R to R.
When X is compact, we shall use the interpretation of measures on X as Radon
measures which is given by the Riesz representation theorem. Let C0(X,C)
be the space of continuous maps f : X → C endowed with the topology of
uniform convergence (i.e. the norm ||f || = supx∈X |f(x)|) and let C0(X,C)∗ be
its topological dual, that is the set of continuous linear maps L : C0(X,C) → C.

Theorem 15 (Riesz representation theorem) If X is a compact topologi-
cal space, the map µ 7→

[
f 7→

∫
X
fdµ

]
is a bijection from the set of Borel prob-

ability measures on X to the set of elements L ∈ C0(X,C)∗ which are positive
(i.e. take positive values on real positive functions) and satisfy L(1) = 1.

We shall endow C0(X,C)∗ with the weak∗topology, defined as follows: a se-
quence (Ln)n≥0 converges to L if limn→∞ Ln(f) = L(f) for every f ∈ C0(X,C).
This choice is dictated by the following fundamental property: let ||L|| be the
norm on C0(X,C)∗ which defines its strong topology:

||L|| = sup
f∈C0(X,C),||f ||≤1

|L(f)|.

Then, the unit ball {L ∈ C0(X,C)∗, ||L|| ≤ 1} is compact for the weak* topology
(this is essentially a consequence of Tychonov’s theorem which asserts that an
arbitrary product of compact sets is compact, see for example Brezis’ book on
functional analysis). As

∣∣∫ fdµ∣∣ ≤ ∫ |f |dµ ≤ ||f ||, the subset M(X) of Borel
probability measures is contained in this unit ball. As it is closed, it is compact.
Moreover, it is convex.

3.1 The theorem of Krylov and Bogoliubov

Theorem 16 Every continuous map T : X → X of a compact space X admits
an invariant Borel probability measure. The set MT (X) of such measures is a
compact convex subset of M(X).

The compacity hypothesis is necessary, as shown by the example of a translation
on the real line.
Proof. We are looking for a fixed point of the map µ 7→ T∗µ from M(X) to
itself. This map is continuous for the weak* topology: if limn→∞ µn = µ and
f ∈ C0(X,C),

lim
n→∞

∫
fdT∗(µn) = lim

n→∞

∫
f ◦ Tdµn =

∫
f ◦ Tdµ =

∫
fdT∗(µ).
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Given a probability measure µ, let

µn =
1
n

n−1∑
i=0

(T∗)iµ,

and let µ′ be the weak* limit of a subsequence (µnk
)k∈N. One has

||T∗(µnk
)− µnk

|| = || 1
nk

(
(T∗)nkµ− µ

)
|| ≤ 2

nk
.

On the one hand, the sequence T∗(µnk
)−µnk

converges weakly to T∗µ′−µ′, on
the other hand it converges strongly, and hence also weakly, to 0. Finally, as T∗
is continuous in the weak* topology, MT (X) is closed; as T∗ is affine (that is
T∗(tµ+ (1− t)ν) = tT∗(µ) + (1− t)T∗ν for all µ, ν and all t ∈ [0, 1]), MT (X) is
convex.

Corollary 17 If T1, T2, · · · , Tn, · · · are pairwise commuting continuous maps
of a compact space X into itself, they possess a common invariant probability
measure.

Proof. The subset C1 = MT1 ⊂ M(X) of fixed points of (T1)∗ is compact,
convex and it is invariant under T2, T3, · · · Applying the same reasoning to
T2, T3, · · · , leads to a nested sequence of non empty compact convex subsets of
M(X) whose intersection is also non empty, compact and convex.
Notice that in these proofs we have used on the one hand the fact that T∗ is
an affine map from the compact convex subspace M(X) ⊂ C0(X,C)∗ to itself,
on the other hand the norm on C0(X,C). In this abstract setting, the Krylov-
Bogoliubov theorem and its corollary appear as a special case of an abstract
theorem due to Markov and Kakutani

Theorem 18 (Markov-Kakutani) Let C be a compact convex subset of a
locally convex topological vector space. If T1, T2, · · · are pairwise commuting
continuous affine maps from C to itself they have a common fixed point.

The proof is the same except that the use of the norm to prove that the weak
limit of the µnk

is indeed a fixed point is replaced by the use of the Hahn-Banach
theorem.

3.2 Back to the examples of section 1

LINEAR MAPS

Exercise 20 Find the probability measures invariant by a linear map of a finite
dimensional vector space. It will be useful to make use of lemma 19:
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MINIMAL ROTATIONS OF TORI

Lemma 19 If α = (α1, · · · , αr) with 1, α1, · · · , αr rationally independent, the
Haar measure is the only probability measure which is invariant by Rα1,··· ,αr :
Tr → Tr.

Proof. The Haar measure µ on Tr is the direct image π∗λ of the Lebesgue
measure on the unit cube [0, 1]r. The Riesz representation theorem insures that
it is well defined by its values on continuous functions ϕ : Tr → C:∫

Tr

ϕdµ =
∫

[0,1]r
ϕ ◦ π dλ,

where π : [0, 1]r → Tr = [0, 1]r/Zr is the quotient projection.
1) As the Lebesgue measure is invariant under any translation of Rr, this mea-
sure is invariant under any rotation of Tr and it is the only one with this
property. The proof is an easy exercise which consists in considering finer and
finer partitions of Tr into equal pieces which are obtained from one of them by
rotations, for example the half-open cubes

Cm
k1·kr

= π

([
k1

2m
,
k1 + 1

2m

)
× · · · ×

[
kr

2m
,
kr + 1

2m

))
,

and approach uniformly any continuous function ϕ : Tr → C by a family of
functions ϕm constant on the pieces of such partitions. One concludes because
two rotation-invariant probability measures take the same value on the ϕm.
2) To prove that the Haar measure is the only probability measure which is
invariant under the single “irrational” rotation Rα, we shall use theorem 3: let
ϕ : Tt → C be a continuous function and let µ be a Rα-invariant measure.
For any θ ∈ Tr, there exists a sequence (nk)k∈N, which tends to +∞ such that
limk→∞Rnk

α = Rθ. As ϕ is uniformly continous, one deduces that∫
Tr

ϕ(Rθx)dµ(x) = lim
k→∞

∫
Tr

ϕ(Rnk
α x)dµ(x)) =

∫
Tr

ϕ(x)dµ(x).

Hence µ is invariant under the full group of rotations of Tr and one concludes by
1). We shall come back in section 5.4 to this property, called unique ergodicity.

POINCARÉ RETURN MAPS The notations are those of section 1.4.

Exercise 21 Show that the map P : S ′ → S preserves the restriction $ to S
of the differential 2-form ω, hence in particular the volume form $n−1.

BILLIARD MAPS

Exercise 22 Show that the map T : S1 × [0, π] defined in section 1.4 preserves
the 2-form sinαdα ∧ dt.

Indication. Write d2l(t, t1) = 0.
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4 Homeomorphisms of the circle

Orientation preserving circle homeomorphisms (and diffeomorphisms) play a
central role in the theory of dynamical systems. They appear naturally as return
maps on a curve of section for differential equations without singular points
on the 2-dimensional torus T2. Poincaré emphasizes that the problem posed
by their study is simpler but reminiscent of problems which arise in Celestial
Mechanics.

4.1 Lifting a homeomorphism of the circle to the real line

It is technically more convenient to deal with homeomorphisms of the real line,
which means working in the universal cover D0(T1) of the group Homeo+(T1)
of orientation preserving homeomorphisms of the circle:

Lemma 20 Each orientation preserving homeomorphism F : T1 → T1 lifts
to a homeomorphism f = IdR + ϕ : R → R which is the sum of the Identity
and a continuous 1-periodic function ϕ : R → R (which one identifies with
a continuous function ϕ : T1 → R). This means that π ◦ f = F ◦ π, where
π : R → T1 is the canonical projection. Two such lifts f1 and f2 differ by an
element z ∈ Z, that is: f2 = f1 + z.

Figure 6bis : Lifting a homeomorphism of the circle.
Proof. The existence of f : R → R such that F ◦ π = π ◦ f follows formally
from elementary homotopy theory because R is contractible but it is essentially
obvious on the figure. If f is a lift, so is x 7→ fz(x) := f(x + z) whatever
be z ∈ Z. Indeed, π ◦ fz(x) = π ◦ f(x + z) = F ◦ π(x + z) = F ◦ π(x).
Moreover, being in the kernel of π, the difference fz − f has values in Z and
hence is constant; as F is bijective and orientation preserving, this implies that
f1(x) = f(x+ 1) = f(x) + 1. One concludes easily.
It follows from this lemma that the universal cover D0(T1) of Homeo+(T1) is

D0(T1) = {f : R → R, f increasing homeomorphism, f(x+ 1) = f(x) + 1}.
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We endow D0(T1) with the distance

d(f, g) = max
(

max
x∈R

|f(x)− g(x)|,max
x∈R

|f−1(x)− g−1(x)|
)
.

Exercise 23 Show that D0(T1) is a topological group (i.e. that the maps (f, g) 7→
f ◦ g and f 7→ f−1 are continuous) and that it is complete.

Remark. This lemma generalizes to arbitrary continuous maps and to higher
dimensions in the following way:

Proposition 21 Any continous map F : Tr → Tr admits a lift f : Rr → Rr

such that π ◦f = F ◦π. Moreover, there exists a unique linear map ` : Rr → Rr,
depending only on F and which is itself the lift of a map L : Tr → Tr, such that
any lift f of F is of the form f = `+ϕ, where for any z ∈ Zr, ϕ(x+ z) = ϕ(x)
which means that ϕ may be identified with a map from Tr to Rr. In particular,
F and L ar homotopic.

4.2 Poincaré’s rotation number

The rotation number of a homeomorphism of the circle was defined in 1885
by Poincaré in the third part of his series of papers on the curves defined by
differential equations.

We are interested in the behaviour of f ∈ D0(T1) under iteration. One
sees by induction that the k-th iterate fk of f can be expressed as a so-called
Birkhoff sum (see 6)

fn = Id+ ϕn = Id+
n−1∑
i=0

ϕ ◦ f i.

Theorem 22 For all f ∈ D0(T1), the sequence of periodic functions 1
n (fn−Id)

converges uniformly when n → ∞ to a real number ρ(f) ∈ R which is called
the rotation number of f . It follows that 1

nf
n converges to ρ(f) uniformly on

compact subsets.

The key to the proof is the following lemma, typical of dimension 1:

Lemma 23 Let f = Id+ϕ ∈ D0(T1). Let m = minx∈R ϕ(x), M = maxx∈R ϕ(x).
One has

0 ≤M −m < 1.

Proof. As ϕ is defined and continuous on the circle, there exist real numbers
xm and xM such that

ϕ(xm) = m, ϕ(xM ) = M, 0 ≤ xM − xm < 1.

Because f is a homeomorphism which sends an interval of length 1 onto an
interval of length 1, one has f(xM )−f(xm) < 1, i.e. M−m < 1−(xM−xm) < 1.
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Corollary 24 For all x ∈ R, the sequence

un = fn(x)− x+ 1, n ≥ 1,

is subadditive, that is: un+m ≤ un + um.

Proof. Applying the lemma to fn = Id+ϕn ∈ D0(T1) and using the fact that
fn is increasing, we get

∀x, y ∈ R, y − x− 1 ≤ fn(y)− fn(x) ≤ y − x+ 1.

Taking y = fm(x) we get

un + um − 2 ≤ un+m ≤ un + um.

The following lemma is classical and it will be used again in section 6.3.

Lemma 25 If (un)n≥1 is a subadditive sequence in R ∪ {−∞}, the sequence(
un

n

)
n≥1

converges in R ∪ {−∞} and

lim
n→∞

un

n
= inf

n≥1

un

n
.

Proof. Fix p ≥ 1. For every n ≥ p, write n = kp+ r, r < p and observe that

un

n
≤ ukp + ur

kp+ r
≤ ukp

kp
+

ur

kp+ r
≤ up

p
+
ur

n
·

This implies that

lim sup
n→∞

un

n
≤ up

p
and therefore lim sup

n→∞

un

n
≤ inf

p≥1

up

p
≤ lim inf

n→∞

un

n

.
Proof of theorem 22. From Corollary 24 and Lemma 25, one deduces that for
all x ∈ R, the sequence 1

n

(
fn(x) − x

)
converges in R ∪ {−∞}. Moreover, the

inequality used in the proof of the Corollary shows that the limit ρ(f) is inde-
pendent of x and that the convergence is uniform. Also, from the inequalities
un + um − 2 ≤ un+m ≤ un + um, one gets un−1 + u1 − 2 ≤ un ≤ un−1 + u1 and
by induction nu1 − 2n ≤ un ≤ nu1. It follows that u1 − 2 ≤ limn→∞

un

n ≤ u1,
that is

∀x ∈ R, f(x)− x− 1 ≤ ρ(f)) ≤ f(x)− x+ 1.

4.3 Rotation number and invariant measures

Let µ be a probability measure on T1 which is invariant under the homeomor-
phism f : T1 → T1 and let f = Id + ϕ ∈ D0(T1) be a lift of f . We have, for
any n ∈ N,

µ(fn − Id− nµ(ϕ)) = µ
(n−1∑

i=0

ϕ ◦ f i − nµ(ϕ)
)

= µ
(n−1∑

i=0

ϕ ◦ f i)− nµ(ϕ) = 0.
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It follows that the function fn − Id− nµ(ϕ) must vanish somewhere. Applying
lemma 23 to fn ∈ D0T1 one gets that

max (fn − Id− nµ(ϕ))−min (fn − Id− nµ(ϕ)) < 1,

and hence
|fn − Id− nµ(ϕ)|C0 < 1.

This gives another proof of the uniform convergence of the sequence 1
n

(
fn−Id)

)
to a constant. Summarizing, we have proved

Proposition 26 Let f ∈ Homeo+(T1) and let f = Id + ϕ ∈ D0T1 be a lift
of f . The rotation number ρ(f) of f satisfies ρ(f) = µ(ϕ) for any f-invariant
probability measure on T1. One has{

∀n, ∃xn ∈ R such that fn(xn)− xn − nρ(f) = 0,
∀x ∈ R, ∀n, −1 < fn(x)− x− nρ(f) < 1.

Moreover, changing the lift f of f does not change the class of ρ(f) in T1 = R/Z.
This class is called the rotation number ρ(f) of f .

Only the last part concerning the behaviour of ρ(f) under a change of the lift
f remains to be proved: for this one notices that, as fn(x+ k) = fn(x) + k, if
g = f+k, one has gn(x) = fn(x)+nk and hence ρ(g) = ρ(f)+k. Alternatively,
one notices that, as the total mas of µ is 1, µ(ϕ+ k) = µ(ϕ) + k.

Corollary 27 If p ∈ Z and q ∈ N, q ≥ 1,
ρ(f) = p/q ⇐⇒ ∃xq, f

q(xq) = xq + p,

ρ(f) > p/q ⇐⇒ ∀x ∈ R, fq(x) > x+ p,

ρ(f) < p/q ⇐⇒ ∀x ∈ R, fq(x) < x+ p,

Proof. If fq(xq) = xq + p, one has also fkq(xq) = xq + kp hence ρ(f) =
limk→∞

1
kq (fkq(xq) − xq) = p/q. If ρ(f) > p/q, one deduces from proposition

26 that ∀x ∈ R, fq(x) > x+ qρ(f)− 1 > x+ p− 1. If for some x ∈ R we have
x+p− 1 < fq(x) < x+p, the interval [x, x+1] is sent homeomorphically by fq

onto the interval [fq(x), fq(x) + 1]; hence by the intermediate value theorem,
there is some xq ∈ [x, x + 1] such that fq(xq) = xq + p which implies that
ρ(f) = p/q, a contradiction.
J.C. Yoccoz commented in a lecture that this Corollary gives a definition of the
rotation number in the spirit of the definition of real numbers by Dedekind,
while the definition by a limit is more in the spirit of Cauchy.

Lemma 28 A homeomorphism f ∈ D0(T1) with rotation number ρ(f) = p/q
is conjugate to the translation Rp/q if and only if fq = Rp.

Proof. If f = h−1 ◦ Rp/q ◦ h with h ∈ D0(T1), then fq = h−1 ◦ Rp ◦ h = Rp.

Conversely, if fq = Rp, one checks that h = 1
q

∑q−1
i=0

(
f i − ip

q

)
belongs to

D0(T1) and conjugates f to Rp/q.
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Proposition 29 (Structure implied by a rational rotation number) Let
f ∈ Homeo+(T1) be such that ρ(f) = p/q ∈ Q/Z (irreducible). 1)f has periodic
points of period q and every periodic point of f has minimal period q. 2) The
limit sets α(x) and ω(x) of any element x ∈ T1 are periodic orbits.

Proof. Let f ∈ D0(T1) be the lift of f whose rotation number is p/q ∈ R.
It follows from Corollary 27 that fq − p has a fixed point xq, and hence that
f

q
has a fixed point. If xq′ ∈ T1 is a periodic point of f of period q′, it lifts

to xq′ ∈ R such that fq′(xq′) = xq′ + p′; this implies that ρ(f) = p′/q′ = p/q,
hence that q′ = kq which shows that xq′ is a periodic point of g = fq − p of
period k. Now, the structure of elements g ∈ D0(T1) whose rotation number
is 0 is easily understood: the set Fix(g) of fixed points is closed and invariant
under integer translations. If ]a, b[ is a connected component of R \ Fix(g),
one deduces from the fact that g is increasing that if x ∈]a, b[, α(x) = a and
ω(x) = b (resp. α(x) = b and ω(x) = a) if g − Id is positive (resp. negative)
in the interval. This implies that the only periodic points are fixed points and
proves also the last part of the proposition.

Proposition 30 (Invariance under semi-conjugation) Let f, g ∈ D0(T1)
such that there exists a continuous map h = Id + ϕ ∈ C0(T1,R) (i.e. ϕ con-
tinuous and 1-periodic) satisfying h ◦ f = g ◦ h (one says that f and g are
semi-conjugated), then ρ(f) = ρ(g).

Proof. For any n, h ◦ fn = gn ◦ h, hence fn + ϕ ◦ fn = gn ◦ h and

1
n

(
fn − Id

)
+
ϕ ◦ fn

n
=

1
n

(gn − Id) ◦ h+
ϕ

n
,

hence the conclusion because ϕ is bounded. In particular, if f and g are
conjugated by h ∈ D0(T1), i.e. if g = h ◦ f ◦ h−1, they have the same rotation
number ρ(f) = ρ(g).

Exercise 24 If f and g are semi-conjugated in Homeo+(T1), that is if g =
h ◦ f ◦ h−1

, there exist lifts f, g, h to D0(T1) such that h ◦ f = g ◦ h.

Proposition 31 If f ; g ∈ D0(T1) commute, then ρ(f ◦ g) = ρ(f) + ρ(g).

Proof. It follows from theorem 18 that there exists a probability measure on
T1 which is invariant by both f and g. If f = Id+ ϕ and g = Id+ ψ, one has
f ◦g = Id+ψ+ϕ◦g, hence ρ(f ◦g) = µ(ψ+ϕ◦g) = µ(ψ)+µ(ϕ) = ρ(f)+ρ(g).

Exercise 25 Show that if f, g ∈ D0(T1) are lifts of two commuting elements
f, g ∈ Homeo+(T1), they also commute.
Hint: use that, if µ is a probability measure leaving both f and g invariant,
µ(f ◦ g − Id) = µ(g ◦ f − Id).
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Proposition 32 (Structure implied by an irrational rotation number)
Let f ∈ Homeo+(T1) be such that ρ(f) ∈ (R\Q)/Z. 1) There exists a surjective
continuous map h : T1 → T1 such that h◦f = Rρ(f)◦h, i.e. f is semi-conjugated
to the corresponding rotation. 2) If f is not actually conjugated to the corre-
sponding rotation, there exists an invariant Cantor set X ⊂ T1 which is the
unique closed invariant minimal (for the inclusion) set. 3) Moreover X is at
the same time the set Ω(f) of non wandering points and the α-limit set α(x)
and the ω-limit set ω(x) of every x ∈ T1.

Figure 7 : Typical behavior with irrational rotation number.
Proof. 1) Let µ be a f -invariant probability measure on T1. We shall still
use the notation µ for its lift to a positive Borel measure on R invariant under
integer translations (exercise: construct the lift); let f ∈ D0(T1) be a lift of f .
Let h(x) = µ([0, x[). As f has no periodic point, µ has no atomic mass hence
h : R → R is a continuous non decreasing function such that h(x+n) = h(x)+n
for any n ∈ Z. Hence it defines a continuous surjective map h : T1 → T1. The
f -invariance of µ implies that h(f(x))− h(f(0)) = h(x)− h(0), that is h ◦ f =
Rh(f(0))−h(0) ◦ h. Finally, proposition 30 insures that h(f(0))− h(0) = ρ(f).

2) The map h is a homeomorphism if it is strictly increasing, that is if the
support X of µ is the whole circle T1. If not, X is a closed invariant set without
isolated point (because µ has no atomic mass) whose image by h is T1; moreover,
the restriction h|X is injective except on the countable subset D ⊂ X formed
by the extremities of the connected components of the complement T1 ⊂ X.
Let M ⊂ T1 be a non empty closed f -invariant set. Because h is a semi-
conjugation of f to the rotation Rρ(f), h(M) is invariant under this rotation,
hence h(M) = T1; as h is injective on X \D and non decreasing, this implies
that M must contain X \D. As X has no isolated point, the closure of X \D
is X, hence M ⊃ X which proves that X is the unique f -invariant minimal
closed set. It follows that X has no interior (otherwise its boundary would be
invariant, contradicting minimality of X), hence X is Cantor set.

3) Let I0 be a connected component of T1 \X. Its iterates f
n
(I0) are also

connected components of T1 \X and hence are two by two disjoint because f
has no periodic point. This means that any x ∈ T1 \X is wandering, hence that
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Ω(f) is contained in X and hence equal to it because X is minimal. Finally,
being minimal, Ω(f) coincides with ω(x) and α(x) for any x ∈ T1 .
The behavior depicted in Proposition 32, is typical for homeomorphisms and
can occur even for some C1 diffeomorphisms (Denjoy examples) but it cannot
occur as soon as a litte more regularity of the map is granted. More precisely:

Theorem 33 (Denjoy) A C1 diffeomorphism of the circle R/Z whose deriva-
tive has bounded variation, and whose rotation number is irrational, is topologi-
cally conjugate to the corresponding rotation. In particular, it has no wandering
domains.

A fundamental strengthening of this theorem has been given in Herman’s thesis
[He1] with further development by Yoccoz: under an appropriate diophantine
hypothesis on the rotation number, the conjugacy is Cr−2 (resp. C∞, resp.
analytic) if f is Cr, r ≥ 3, resp. C∞, resp. analytic). A local version, for f
close to the corresponding rotation had been given first by Arnold in [A].

Again the devil staircase: 1-parameter families:

Proposition 34 The map f 7→ ρ(f) is non decreasing and continuous.

Proof. Both properties are easy consequences of the equality ρ(Id+ϕ) = µ(ϕ).

Exercise 26 (Arnold’s family, see [A]) For α ∈ [0, 1/2π], let

ft(x) = x+ a sin(2πx) + t.

Show that the graph of the map t 7→ ρ(ft) is a devil staircase (see figure 4).
This example is a good illustration of the types of dynamics encountered in a
“generic” family of analytic diffeomorphisms. For a fixed value of a, the set of
t for which the rotation number of ft is rational is big in the sense of topology,
namely it is open and dense, but its complement is big in the sense of measure,
namely, its measure tends to 1 when a→ 0.

280 

On peut tracer les lignes de niveau p = constante. 

P(Rto £a) = 0 s i e t  s eu lemen t  si  R t o  fa a u n p o i n t  f ixe  so i t  i t /  ~< l a /  • 

P o u r  chaque  p / q  E ~ ,  Fp/q = {(t ,a) l p(R t o fa ) = P/q} es t  un ferm6 d ' i n t 6 r i e u r  non 

v ide  ; e t ,  s i  a ° ~ 0, l a  f ron t i&re  de F p / q  e s t  coup6e en deux po in t s  p a r  l a  d r o i t e  

a = ao ,  qui sont  a i n s i  d e s  g r a p h e s  de  fonc t ions  con t inues  de a .  

Par 3.4 d), si ct E IN - ~,  l'ensemble Fa= {(t,a) i P(Rt? fa ) = c~} est le 

graphed' une fonction continue de a. 

R 

0=°~ Z/ P=P/q - -  / ¢  / 0=1 ~/2  p?O f 

7, 
t 

3.8 Les fonctions et probl~mes. 

(tousles ensembles consid6~s sont m-mesurables, voir 

3.8.1  Soit f E D°(T I) ; et posons 

Ml(f)  = m{t E [ O , ] ] t P ( R t % 0  E ~ - I ~ }  • 

( i . e .  ]a mesure de Lebesgue de l~ensemble consid6r~).  

On montre que M 1 

Evidemment, pour tout k 

p a r 3 . 4 . 1 ,  Ml(f)  < t .  

[ 4 ] ) .  

: D°(T 1) "~ [0 ,  1 ] e s t  s e m i - c o n t i n u e  s u p 4 r i e u r e m e n t .  

E JR, MI([ ) = MI(R l o f) .  S i f  n ' e s t  p a s  une r o t a t i o n ,  

Figure 8 : Typical behavior of a family of diffeomorphisms.

33



5 Introduction to ergodic theory

Ergodic theory originates in the works of Boltzmann on statistical mechanics.
Its mathematical form was shaped in the years 1930, with Von Neumann’s and
Birkhoff ’s theorems, which are strong dynamical versions of the law of large
numbers, but one can trace it back to Poincaré’s recurrence theorem [Po] where
the constraints imposed on dynamics by the preservation of a measure whose
total mass is finite were already exploited in a subtle way.

5.1 Poincaré recurrence theorem

This theorem, which was proved by Poincaré in his book “The New Methods of
Celestial Mechanics”, may be considered as the birth of ergodic theory, that is
the probabilistic side of the theory of dynamical systems. After the discovery
of an important mistake in the first version of his Memoir on the Three Body
problem (the one which won the prize of the King of Sweden), Poincaré put
a great emphasis on this theorem because it gave him an ersatz, which he
calls “”stability according to Poisson”, of the stability result he thought he had
proved: the result was the fact that the semi-major axes of the approximate
Keplerian ellipses described by the planets come back indefinitely arbitrarily
close to their initial values.

Theorem 35 Let (X,X , µ, T ) be a measured dynamical system. For A ∈ X ,
let Ã ⊂ A be the subset formed by the elements x ∈ A whose orbit {Tn(x)}n∈N
comes back to A an infinite number of times. Then Ã ∈ X and µ(Ã) = µ(A).

Proof. Let An = A \ ∪i≥nT
−i(A)

)
be the set of x ∈ A whose iterates of rank

higher than n never come back to A. As An ⊂ A, we have T−i(An) ⊂ T−i(A),
hence T−i(An) ∩ An = ∅ for all i ≥ n. This implies that for any k > l ≥ 0, we
have ∅ = T−nl

(
An ∩ T−n(k−l)(An)

)
= T−nk(An) ∩ T−nl(An). In other words,

the T−nk(An), k ∈ N, are pairwise disjoint. As they all have the same measure
µ(An), we conclude that µ(An) = 0. As A \ Ã = ∪n≥1An., this ends the proof.

Remarks. 1) The recurrence times (i.e. number of iterations) are very far from
being uniform. For an illustration, see theorem 44.

2) These recurrence times may be extremely long and this already cuts short
many philosophical discussions about the relation of this theorem to the second
principle of thermodynamics.

5.2 Invariant sets, invariant functions

In the category of probability spaces and measure preserving maps, the pertinent
notion of invariance is almost everywhere invariance:

Definition 14 (symmetric difference) Given two subsets U, V of a set X,
their symmetric difference U∆V is

U∆V = (U ∩ V c) ∪ (V ∩ U c).

34



Exercise 27 1) Show that for any three subsets U, V,W of X, one has U∆V ⊂
(U∆W ) ∪ (W∆V ) and hence µ(U∆V ) ≤ µ(U∆W ) + µ(W∆V ).

2) Show that if µ(A∆A0) < ε and µ(B∆B0) < ε, one has

µ
(
(A ∩B)∆(A0 ∩B0)

)
< 2ε and µ

(
(A∆B)∆(A0∆B0)

)
< 2ε.

Definition 15 Given a measure space (X,A, µ), two elements U, V ∈ A are
said to be almost everywhere equal (a.e.=) if µ(U∆V ) = 0.

Definition 16 Let (X,X , µ, T ) be a measured dynamical system (recall defini-
tion 12). One says that A ∈ X is T -invariant a.e. (or invariant by T a.e.)
if T−1(A) is almost everywhere equal to A. In case there is no ambiguity, one
simply says that A is T -invariant (or invariant by T ).

One can show that if A is invariant in this sense, there exists B invariant in
the strict sense, i.e. µ(A∆B) = 0 and T−1(B) = B, which coincides almost
everywhere with A.

Definition 17 (The (almost) invariant tribe) Let (X,X , µ, T ) be a mea-
sured dynamical system. The set of A ∈ X which are a.e. invariant by T is a
tribe (in the sense of definition 7) I = I(T ), called the (almost) invariant tribe
of the dynamical system.

The subset A is a.e. invariant if and only if the characteristic function XA of A
is almost everywhere equal to the characteristic function XT−1A of T−1A. More
generally

Exercise 28 Let (X,X , µ, T ) be a measured dynamical system. If the function
f : X → C is X measurable, the following properties are equivalent:

1) f ◦ T = f a.e. , i.e. µ
(
{x ∈ X, f ◦ T (x) 6= f(x)}

)
= 0;

2) f is I(T )-measurable.
Hint. 1) If B is a borelian, show that

T−1 ◦ f−1(B) ⊂ f−1(B) ∪ {y ∈ X, f ◦ T (y) 6= f(y)};

2) Recall that a measurable function is always a simple limit of functions which
are finite sums of characteristic functions of measurable sets.

Notice that one can replace f by a function which is defined only on a subset
of X whose complement has measure 0. In fact, as in the case of subsets, one
can show that if a A-measurable function f satisfies f ◦ T = f a.e., there exists
a X -measurable function g such that g ◦ T = g and g = f a.e.

5.3 Ergodicity

Independence of the coin tosses in a “heads or tails” game implies “forgetting
of the initial condition”: each toss ignores the result of all the former tosses; to
this corresponds a very strong property of the Bernoulli shifts, called ergodicity:
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Definition 18 (Ergodicity) Let (X,X , µ, T ) be a measured dynamical sys-
tem. One says that T (or that the dynamical system) is ergodic if every set
A ∈ X which is invariant by T satisfies µ(A) = 0 or µ(A) = 1. When T is
given, one says also that the invariant measure µ is ergodic.

Exercise 29 Show that the map T is ergodic if and only if any one of the
following properties is satisfied:

1) every measurable T -invariant function f : X → C is a.e. constant;
2) There exists p ≥ 1, such that every T -invariant function f ∈ Lp(X,C) is

a.e. constant.

Remark: an abstract characterization in the context of theorem 16.
If T is a continuous map from a compact space into intself, one shows that
the ergodic measures are precisely the extremal points of the compact convex
set MT (X) of T -invariant probability measures. In particular, such measures
always exist.

The analogue of theorem 3 in the world of measured dynamical systems is

Theorem 36 Let α = (α1, α2, · · · , αr) ∈ Rr. The real numbers 1, α1, · · · , αr

are rationally independent, i.e. there is no (r+1)-tuple (k0, k1, · · · , kr) ∈ Zr+1 \
{0} such that k0+k1α1+· · ·+krαr = 0, if and only if the rotation Rα : Tr → Tr

is ergodic.

Proof. A nice proof based on density of the orbits of such a rotation can be
found in Billingsley’s book. Here is a simpler but maybe less transparent proof,
in fact exactly the same as the one given of topological transitivity (Theorem
3): by exercise 29, it is enough to prove that, under the hypothesis on α, every
Rα-invariant function in L2(Tr,B,Haar) is a.e. constant. Such a function,
considered as Zr-periodic function on Rr, admits a Fourier expansion

f(x) =
∑
k∈Zr

cke
2iπ<k,x>

and computing f(Rαx) =
∑

k∈Zr cke
2iπ<k,α>e2iπ<k,x>, one gets the equations

∀k ∈ Zr, cke
2iπ<k,α> = ck.

The hypothesis on α being equivalent to e2iπ<k,α> 6= 1 if k 6= 0, all the ck except
c0 are equal to 0.

We end this section with a theorem which makes a link between ergodicity and
topological transitivity. As a corollary, we recover Theorem 6.

Proposition 37 Let (X,B, µ, T ) be a measured dynamical system such that
1) X is a metric space with a countable basis of open sets and T : X → X

is continuous ;
2) B is the Borel tribe and if U is a non empty open set, µ(U) > 0 ;
3) µ is ergodic.

Then, T is positively topologically transitive; more precisely, for µ almost every
x ∈ X, the closure O+

T of the positive orbit of x coincides with X.
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Proof. Given two non empty open subsets U, V ofX we need show that V ∩O 6=
∅, where O = (∪n∈NT

−nU) and for this it is enough to show that µ(O) = 1.
This is obvious because, on the one hand, as U ⊂ O, µ(O) ≥ µ(U) > 0, on the
other hand T−1O ⊂ O hence, as both sets have the same measure, O is a.e.
invariant; as T is ergodic, µ(O) = 1.
Now, if (Ui)i∈N is a countable basis of open sets and Oi = ∪nT

−nUi, the set
of points whose positive orbit is dense is precisely ∩i∈NOi (exercise). As a
countable intersection of subsets of measure 1, this set has measure 1.

5.4 Unique ergodicity

Let T : X → X be a continuous map of a compact topological space into itself.

Proposition 38 The following conditions are equivalent:
i) There is a unique probability measure on X which is invariant under T .
ii) For any continuous function f : X → C, the sequence 1

n

∑n−1
i=0 f ◦ T i

converges uniformly to a constant function.

Proof. Suppose there is a unique T -invariant probability measure µ and suppose
by contradiction that there is a real number ε > 0, a sequence

(
nk

)
k≥0

of integers
tending to +∞ and a sequence

(
xk

)
k≥0

of points of X such that for all k,∣∣∣∣∣ 1
nk

nk−1∑
i=0

f ◦ T i(xk)−
∫
f dµ

∣∣∣∣∣ > ε.

Let µk = 1
nk

∑nk−1
i=0 T i

∗δxk
, where δxk

is the Dirac measure at xk. By compacity
of the space M(X) of Borel probability measures on X in the weak∗ topology
(see section 3), one can suppose that the sequence

(
µk

)
k≥0

converges weakly to
a probability measure µ′ which is T -invariant because

||T∗µk − µk|| = || 1
nk

(
Tnk
∗ δxk

− δxk

)
|| ≤ 2

nk
.

This contradicts unicity because
∫
f dµ′ = limk→∞

∫
f dµk 6=

∫
f dµ. For the

converse, if L(f) is the uniform limit of the sequence 1
n

∑n−1
i=0 f ◦ T , each T -

invariant probability measure µ satisfies

L(f) =
∫
L(f)dµ = lim

n→∞

∫
1
n

n−1∑
i=0

f ◦ Tdµ =
1
n

n−1∑
i=0

∫
f dµ =

∫
f dµ.

Definition 19 (Unique ergodicity) A mapping T satisfying the above equiv-
alent properties is said to be “uniquely ergodic”.

Proposition 39 (Carleman, Denjoy, Furstenberg) If f ∈ Homeo+(T1) has
an irrational rotation number, it is uniquely ergodic.
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Proof. By lemma 19, a rotation with irrational rotation number is uniquely
ergodic and by proposition 32, there exists a semi-conjugation h of f to the
rotation Rρ(f). Let S ⊂ T1 be the set of points x such that h

−1
(x) is an

interval. S is countable hence of Haar measure 0. On the other hand, any f -
invariant probability measure µ satisfies µ(h

−1
(S)) = 0 because the wandering

open intervals are disjoint, hence they have measure 0, and their boundaries are
countable, hence also of measure zero because the absence of periodic points
implies that µ has no atoms. Finally, h : T1 \h−1

(S) → T1 \S is a bimeasurable
bijection, which proves that h : (T 1, µ) → T1,Haar) is a an isomorphism of
measured space, which defines uniquely the measure µ.

Corollary 40 Let f be a C1 diffeomorphism of T1 with an irrational rotation
number and let µ be its unique invariant probability measure. Then

lim
n→+∞

1
n

logDfn =
∫

T1
log(Df)dµ = 0.

In words, the derivative of the iterates of f has at most a subexponential growth.

Proof. As 1
n logDfn coincides with the Birkhoff sum 1

n

∑n−1
k=0 logDf ◦ fk, it

converges uniformly to
∫

T1 log(Df)dµ. This implies the result because, fn being
a diffeomorphism of T1, its average

∫
T1 Df

n = +1 (if f is orientation preserving)
but if

∫
T1 log(Df)dµ was strictly positive (resp. strictly negative), Dfn would

converge uniformly to +∞ (resp. to 0), which would be a contradiction. This
corollary plays a role in the proof of Denjoy theorem 33 .

5.5 Mixing

In order to prove ergodicity of the Bernoulli shifts, we shall prove that they are
mixing, a strictly stronger property:

Definition 20 (Mixing) Let (X,X , µ, T ) be a measured dynamical system.
One says that T is mixing if for any A,B ∈ X ,

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

Definition 21 (Weak mixing) Let (X,X , µ, T ) be a measured dynamical sys-
tem. One says that T is weak mixing if for any A,B ∈ X , µ(A ∩ T−n(B))
converges to µ(A)µ(B) in the sense of Cesaro, that is if

lim
n→∞

1
n

n−1∑
k=0

∣∣µ(A ∩ T−k(B))− µ(A)µ(B)
∣∣ = 0.

Exercise 30 Mixing implies weak mixing and weak mixing implies ergodicity.

38



Exercise 31 T is mixing if and only if for every f, g ∈ L2(X,X , µ),

lim
n→∞

∫
X

f · (g ◦ Tn)dµ =
(∫

X

fdµ

)(∫
X

gdµ

)
;

it is weak mixing if and only if for every f, g ∈ L2(X,X , µ),

lim
n→∞

1
n

n−1∑
k=0

∣∣∣∣∫
X

f · (g ◦ T k)dµ−
(∫

X

fdµ

)(∫
X

gdµ

)∣∣∣∣ = 0.

The following lemma shows that weak mixing is strictly stronger than ergodicity:

Lemma 41 Let α = (α1, · · · , αr) ∈ Rr/Zr be such that 1, α1, · · · , αr are ratio-
nally independent. The rotation Rα of the r-torus Tr = Rr/Zr is ergodic for
the Haar measure but it is never weakly mixing.

Proof. To prove that the system is not weakly mixing, it is enough to choose
the functions f(x) = e2iπx1 and g(x) = e−2iπx1 .

Theorem 42 Bernoulli shifts T on {0, 1}N∗ or {0, 1}Z are mixing (and hence
ergodic) for any one of the product probability measures µ = µp,q.

Proof. One deduces from lemma 12 and exercise 14 that it is enough to check
the defining property on the algebra G of finite unions of cylinders. Indeed,
if A,B ∈ X and A0, B0 ∈ G satisfy µ(A∆A0) < ε and µ(B∆B0) < ε, one
has, for all n, µ(T−n(A)∆T−n(A0)) = µ(A∆A0) < ε by preservation of the
measure and hence µ

(
Tf−n(A)∩B)∆(T−n(A0)∩B0)

)
< 2ε. One deduces that

|µ(T−n(A)∩B)− µ(T−n(A0)∩B0)| < 2ε and hence that lim sup and lim inf of
µ(T−n(A) ∩B) differ from those of µ(A0 ∩ T−n(B0)) at most by 2ε.
But, given two finite unions of cylinders A0 and B0, the set of indices associated
to A and T−n(B0) are disjoint as soon as n is big enough, and this implies that
µ(T−n(A0) ∩B0) = µ(A0)µ(B0). The end of the proof is left to the reader.

Corollary 43 The map x 7→ 2x(mod.1) : [0, 1] → [0, 1] and the baker map
τ : [0, 1]2 → [0, 1]2 are mixing, and hence ergodic, for the Lebesgue measure.

In [T] (page 142), Tao gives the following variant of theorem 35:

Theorem 44 Let (X,X , µ, T ) be a measured dynamical system and let A ∈ X
be a set of positive measure. Then

lim sup
n→∞

µ(A ∩ T−nA) ≥ µ(A)2.

Proof. Applying Cauchy-Schwarz inequality to the sum of the characteristic
functions of the sets T−i(A) and the constant function equal to 1, one gets∫

X

(
n∑

i=1

1T−iA

)2

dµ ≥ n2µ(A)2.
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The left hand side equals

n∑
i=1

n∑
j=1

µ(T−iA ∩ T−jA) =
n∑

i=1

n∑
j=1

µ(A ∩ T i−jA),

hence it admits a bound of the form

n2

(
lim sup

i→∞
µ(A ∩ T iA) + o(1)

)
≥
∫

X

(
n∑

i=1

1T−iA

)2

dµ,

where the term o(1) → 0 when n → ∞, and one concludes by combining both
inequalities and letting n tend to infinity.
Remark. Recall that given a family (Cn)n∈N of subsets of a set X, one defines
lim supAn = ∩n ∪k≥n Ak. Fatou’s inequality

µ(lim sup(A ∩ T−iA)) ≥ lim supµ(A ∩ T−i(A))

is in general strict: by theorem 35, µ(lim sup(A∩T−iA)) = µ(A). Comparing the
two theorems, one gets an idea of the non uniformity of return times in A, the
extreme cases being a periodic system, where lim supn→∞ µ(A∩T−nA) = µ(A)
and a mixing system, where lim supn→∞ µ(A ∩ T−nA) = µ(A)2.

6 The main ergodic theorems

6.1 The operator point of view: Von Neuman’s ergodic
theorem

Let H = L2(X,X , µ) be the (separable) Hilbert space of square µ-integrable
complex functions on X endowed with the scalar product

〈f, g〉 =
∫

X

f(x)ḡ(x)dµ(x),

and let UT : H → H be the operator defined by UT f = f ◦ T.

Lemma 45 If T is measure preserving, UT is an isometry of H; if moreover it
is invertible, UT is unitary.

Proof. As the L2 norm of f is the square root of the L1 norm of f2, it is
enough to notice that U = UT is an isometry of the normed space L1(X,X , µ).
If f is the characteristic function of a measurable set A ∈ A, the L1-norm
of Uf is ||Uf ||1 = µ(T−1A) = µ(A) = ||f ||1. By linearity, this is true for a
“simple function”, that is linear combinations of such charateristic functions; as
U preserves the order, the theorem of monotone convergence, implies that this
is true of simple limits of increasing sequences of positive simple functions. This
proves the assertion for real positive functions, hence for all functions (replace
f by |f |). Being an isometry is equivalent to U∗U = Id; if T is invertible, so is
U and U∗ = U−1, hence UU∗ = Id.
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Lemma 46 If (X1,X1, T1) and (X2,X2, T2) are measurably isomorphic, that
is if there exists an isomorphism of measurable spaces ϕ : (X1,X1) → (X2,X2)
such that ϕ◦T1 = T2◦ϕ, the corresponding operators UT1 and UT2 are conjugate:
Φ ◦ UT2 = UT1 ◦ Φ, où Φf = f ◦ ϕ. One says that T1 and T2 have the same
spectral type.

Exercise 32 1) Show that (X,X , T ) is ergodic if and only if 1 is a simple
eigenvalue of the operator UT

Caution. Same spectral type does not imply isomorphism !

Theorem 47 (Von Neuman’s ergodic theorem) Let (X,X , µ, T ) be a mea-
sured dynamical system. For any f ∈ L2(X,X , µ), the means

Sn(f) :=
1
n

n−1∑
i=0

f ◦ T i

converge in L2 to the orthogonal projection of f on the closed subspace formed
by the invariant functions (i.e. the ones such that f ◦ T = f a.e.).

Remark. The measure µ needs not be of finite volume and the transformation
T needs not be invertible.
This theorem follows from the following, purely geometric, property of isometries
of a Hilbert space:

Theorem 48 Let (H,<,>) and U : H → H be respectively a (separable)
Hilbert space and an isometry. For any f ∈ H, the sequence

SnU(f) :=
1
n

n−1∑
i=0

U i(f)

converges to the image π(f) of f by the orthogonal projector π on the closed
subspace HU := ker(Id− U) of invariant elements.

Proof. 1) If f belongs to HU , the SnU(f) are all equal to f ;
2) if f = g − Ug belongs to the (not necessarily closed) subspace

W := Im(Id− U),

one has ||SnUf || ≤ 2
n ||g||, hence limn→∞ SnUf = 0. This is also true if f ∈W ,

thanks to the uniform (in n) bound ||SnU || ≤ 1: indeed, if (fk)k∈N is a sequence
of elements of W converging to f ∈W , one has for any n, k,

||SnUf || ≤ ||SnU(f − fk)||+ ||SnUfk|| ≤ ||(f − fk)||+ ||SnUfk||.

Given ε > 0, choose k such that ||f − fk|| ≤ ε
2 , then n such that ||SnUfk|| ≤ ε

2 ;
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3) the orthogonal complement W⊥ of W is HU∗
: indeed, let h be an element

of W⊥; this is equivalent to 〈h, g − Ug〉 = 0, that is 〈h, g〉 = 〈h, Ug〉 = 〈U∗h, g〉
or 〈h− U∗h, g〉 = 0, for all g ∈ H, which is equivalent to h = U∗h;

4) U being an isometry, HU∗
= HU . In one direction, if Uf = f , then

U∗Uf = U∗f hence U∗f = f because U is an isometry if and only if U∗U = Id.
Conversely, if U∗f = f , one computes

||Uf−f ||2 = ||Uf ||2+||f ||2−〈Uf, f〉−〈f, Uf〉 = ||Uf ||2+||f ||2−〈f, U∗f〉−〈U∗f, f〉 ,

that is
||Uf − f || = ||Uf ||2 − ||f ||2 = 0.

5) it follows from 2) and 3) that (HU )⊥ = (W⊥)⊥ = W and hence that
H = HU ⊕W from which one concludes using 1) and 2).

6.2 Birkhoff’s ergodic theorem

Theorem 49 Let (X,X , µ, T ) be a measured dynamical system. For every func-
tion f ∈ L1(X,X , µ), the limit of “Birkhoff sums”

lim
n→∞

1
n

n−1∑
k=0

f
(
T k(x)

)
:= f∗(x)

exists for µ-almost every x ∈ X and it defines a function f∗ ∈ L1(X,X , µ)
satisfying f∗ ◦ T = f∗ (µ-a.e.) and

∫
X
f(x) dµ(x) =

∫
X
f∗(x) dµ(x). If T is

invertible, the functions f∗ and f̄∗ respectively defined by T and T−1 coincide
almost everywhere.

Corollary 59 will give a probabilistic interpretation of the limit.

Corollary 50 Under the same hypotheses, if moreover T is ergodic, f∗ is a
constant, equal to

∫
X
fdµ.

In words, this means that if T is ergodic, the time average, that is the limit of
the Birkhoff sums exists almost everywhere and is equal to the integral, that
is to the spatial average. If for example f is the characteristic function XA of
a measurable subset A ∈ X , the corollary asserts that, for almost every x, the
proportion of “time” the orbit of x spends in A coincides with the measure (the
probability) of A (n ∈ N∗ or n ∈ Z should indeed be interpreted as a discrete
time, the unit of time corresponding to one iteration of T ).

The proof of Birkhoff’s theorem will follow from the first part of the proof of
Kingman’s theorem. It remains to prove the last assertion, that is f∗ = f

∗
if T

is invertible. Suppose that the a.e. T -invariant set Y = {x ∈ X, f∗ > f
∗} has

positive measure. Applying Birkhoff’s theorem to the restrictions of T and T−1

to Y one gets ∫
Y

f∗dµ =
∫

Y

fdµ =
∫

Y

f
∗
dµ ,
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hence
∫

Y
(f∗− f∗)dµ = 0. But this is a contradiction because f∗− f∗ is strictly

positive on Y .

6.3 Kingman’s subadditive ergodic theorem

This is a generalization of Birkhoff’s theorem with important applications to co-
cycles and their Lyapunov exponents. Many proofs where given of this theorem
since Kingman’s original one. I follow closely the proof in [AB].

Sequences of Birkhoff sums fn =
∑n−1

i=0 f ◦T i, which are T -additive, that is such
that fm+n = fm + fn ◦ Tm, are replaced by sequences of functions which are
T -subadditive, that is such that

fm+n ≤ fm + fn ◦ Tm.

Example: coycles. If F : X ×E → X ×E is a cocycle above T , that is a map
of the form

F (x, v) =
(
T (x), A(x)v

)
,

where x 7→ A(x) is a family of linear endomorphisms of the vector space E, its
n-th iterate

Fn(x, v) =
(
Tn(x), An(x)v

)
, where An(x) = A(Tn−1(x)) · · ·A(T (x))A(x),

satisfies
Am+n(x) = An(Tm(x))Am(x).

It follows that the family of functions fn(x) = log ||An(x)|| is subadditive.

Theorem 51 Let (X,X , µ, T ) and let fn : X → R be respectively a measured
dynamical system and a T -subadditive sequence of measurable functions such
that

sup(f1, 0) := f+
1 ∈ L1 = L1(X,X , µ).

Then the sequence 1
nfn converges µ-almost everywhere to a function f : X → R

such that

f+ ∈ L1 and
∫

X

fdµ = lim
n→∞

1
n

∫
X

fndµ = inf
n

1
n

∫
X

fndµ ∈ [−∞,∞( .

Proof. By induction one sees that, for any n ≥ 1, f+
n ∈ L1. The sequence

un =
∫

X
fndµ ∈ R ∪ {−∞} is subadditive, that is un+m ≤ un + um; hence

lemma 25 insures that

lim
n→∞

1
n

∫
X

fndµ = L := inf
n

∫
X

fndµ ∈ [−∞,∞( .

Let
f[ = lim inf

n→∞

1
n
fn, f] = lim sup

n→∞

1
n
fn.
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Lemma 52 f[ and f] are measurable almost everywhere T -invariant functions.

Proof.

f[(x) ≤ lim inf
n→∞

f1(x) + fn−1(Tx)
n

= f[(Tx).

Hence

∀a ∈ R, f[(Tx) ≤ a =⇒ f[(x) ≤ a, i.e. T−1({x, f[(x) ≤ a}) ⊂ {x, f[(x) ≤ a}.

As T preserves the finite measure µ, this implies that

∀a ∈ R, T−1({x, f[(x) ≤ a}) = {x, f[(x) ≤ a},

the equality meaning always “almost everywhere equal”. The reasoning for f]

is analogous.
The fundamental lemma is the following:

Lemma 53 ∫
X

f[dµ = L.

Proof. Following an idea introduced by Katznelson and Weiss whose proof was
itself inspired by Kamae’s proof using non standard analysis, let us define, for
C ∈ R,

f (C)
n = sup(fn,−Cn).

The sequence f (C)
n is subadditive (exercise) and

f
(C)
[ := lim inf

n→∞

1
n
f (C)

n = sup(f[,−C), f
(C)
] := lim sup

n→∞

1
n
f (C)

n = sup(f],−C).

By the monotone convergence theorem applied to the decreasing sequences,
when C →∞,

f
(C)
[ → f[ = inf

C
f

(C)
[ and f (C)

n → fn = inf
C
f (C)

n ,

one gets ∫
X

f[dµ = inf
C

∫
X

f
(C)
[ dµ and

∫
X

fndµ = inf
C

∫
X

f (C)
n dµ,

hence

L := inf
n

1
n

∫
X

fndµ = inf
n

inf
C

1
n

∫
X

f (C)
n dµ = inf

C
inf
n

1
n

∫
X

f (C)
n dµ.

Hence, it is enough to prove that for C fixed,
∫

X
f

(C)
[ dµ = L(C) := infn

1
n

∫
X
f

(C)
n dµ.

In other words, one can suppose that there exists a constant C ∈ R such that

∀n, 1
n
fn ≥ −C.

Now let us recall the
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Lemma 54 (Fatou) Let (X,X , µ) be a measure space and let (Fn)n∈N be a
sequence of measurable non negative functions on X. Then∫

X

lim inf
n→∞

Fndµ ≤ lim inf
n→∞

∫
X

Fndµ.

The proof of this lemma consists in applying the monotone convergence theorem
to the increasing sequence Gp = infn≥p fn. Setting Fn = 1

nfn + C ≥ 0, we get∫
X
f[dµ+ C ≤ L+ C, hence

∫
X
f[dµ ≤ L.

We now prove the converse inequality: fixing ε > 0, we define for k ≥ 1,

Ek =
{
x ∈ X, ∃j ∈ {1, 2, · · · , k}, 1

j
fj < f[(x) + ε

}
.

This is an increasing sequence of sets such that ∪kEk = X. Now define

ψk(x) =

{
f[(x) + ε if x ∈ Ek,

f1(x) if x 6∈ Ek.

Notice that, if x 6∈ Ek, f1(x) ≥ f[(x) + ε, hence ψk ≥ f[ + ε.

Lemma 55 For all n ≥ k and almost all x ∈ X, the following key inequality is
satisfied:

fn(x) ≤
n−k−1∑

i=0

ψk(T ix) +
n−1∑

i=n−k

sup(ψk, f1)(T ix).

Proof of lemma 55. Let x ∈ X be such that ∀i, f[(T ix) = f[(x) (by lemma 52,
almost all x are such).
Now, let m0 = 0 and let n1 be the least integer greater or equal to m0 such that
Tn1x ∈ Ek. By definition, there exists m1 ∈ {n1 + 1, · · · , n1 + k} such that

1
m1 − n1

fm1−n1(T
n1x) < f[(Tn1x) + ε = f[(x) + ε.

Then let n2 be the least integer greater or equal to m1 such that Tn2x ∈ Ek. By
definition, there exists m2 ∈ {n2 + 1, · · · , n2 + k}, . . . In this way, one defines
inductively

m0 = 0 ≤ n1 < m1 ≤ n2 < m2 ≤ · · ·

where nj is the smallest integer greater or equal to mj−1 such that Tnj ∈ Ek

and mj is such that

1 ≤ mj − nj ≤ k and fmj−nj (T
njx) < (mj − nj)(f[(x) + ε).

Given n ≥ k, let l be the biggest integer such that ml ≤ n. Subadditivity of the
sequence fn implies that

fn(x) ≤ fn−1(x) + f1(Tn−1x) ≤ · · · ≤ fml
(x) + f1(Tmlx) + · · ·+ f1(Tn−1x)
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and also that

fml
(x) ≤ fnl

(x)+fml−nl
(Tnlx) and fnl

(x) ≤ fml−1(x)+f1(T
ml−1x)+· · ·+f1(Tnl−1x).

Hence, adding such inequalities, we get

fn(x) ≤
∑
i∈A

f1(T ix) +
l∑

j=1

fmj−nj (T
njx), where A = ∪l−1

j=0[mj , nj+1[∪[ml, n[.

Now, all the T ix such that i ∈ A, except possibly if i ∈ [nl+1, n[ in case n is
such that nl+1 < n− 1, are in the complement of Ek where ψk = f1. Hence

∑
i∈A

f1(T ix) =
l−1∑
j=0

∑
i∈[mj ,nj+1[

ψk(T ix)+
∑

i∈[ml,inf(nl+1,n−1)]

ψk(T ix)+
n−1∑

i=nl+1

f1(T ix),

where the last term is present only in case nl+1 < n− 1.
On the other hand, from the invariance of f[ along the orbit of x and the
definition of ψk one obtains

fmj−nj (T
nj (x)) ≤ (mj−nj)(f[(Tnjx)+ε) =

∑
i∈[nj ,mj [

(f[(T ix)+ε) ≤
∑

i∈[nj ,mj [

ψk(T ix).

Adding the estimates for
∑

i∈A f1(T
ix) and fmj−nj

(Tnj (x)), we get

fn(x) ≤
inf(nl+1,n−1)∑

i=0

ψk(T ix) +
n−1∑

i=nl+1

f1(T ix),

where the last term is present only in case nl+1 < n− 1.
Finally, as ml+1 > n and ml+1 − nl+1 ≤ k, one has always nl+1 > n− k, hence
the inequality stated in the key lemma 55.
Integrating lemma 55 and dividing by n gives

1
n

∫
X

fndµ ≤
n− k

n

∫
X

ψkdµ+
k

n

∫
X

sup(ψk, f1)dµ.

The function sup(ψk, f1) is integrable because, on the one hand f1 ≤ f+
1 which

is supposed to be in L1, on the other hand, ψk ≤ f[ + ε whose integral was
proved to be less or equal to L + ε. Letting n tend to +∞ we get that for all
k, L ≤

∫
X
ψkdµ. Letting k tend to +∞, as ψk converges simply to f[ + ε and

is dominated by the integrable function sup(f[ + ε, f+
1 ) we get L ≤

∫
X
f[dµ+ ε.

Letting ε tend to 0 we conclude that L ≤
∫

X
f[dµ. This proves lemma 53.

Proof of Birkhoff theorem. It follows directly from lemma 53: indeed, replacing
f1 by −f1 in the inequality L ≤

∫
X
f[dµ, we get

∫
X
f]dµ ≤ L which implies

46



f[ = f] almost everywhere. The following immediate corollary of Birkhoff’s
theorem will be used in the end of the proof of Kingman’s theorem:

If f ∈ L1(X,X , µ), then lim
n→∞

1
n
g ◦ Tn = 0 a.e.

End of the proof of Kingman’s theorem. We want to prove that f[ = f]. We
shall prove that

∫
X
f] ≤ L, which allows to conclude if L > −∞, hence in the

general case by a truncation argument.

Lemma 56
∀k ≥ 1, lim sup

n→∞

1
n
fkn = kf] a.e.

Proof. The inequality lim supn→∞
1

knfkn ≤ f] a.e. is obvious because the
(fkn)|n∈N, form a subsequence of (fn)|n∈N.
To prove the inequality in the other direction, let us write (Euclidean division)

n = kmn + rn, 0 ≤ rn < k,

By subdditivity,

fn ≤ fkmn + frn ◦ T kmn ≤ fkmn + g ◦ T kmn,, where g = sup(f+
1 , f

+
2 , · · · , f

+
k−1).

It follows that

kf] ≤
kmn

n
lim sup

1
mn

fkmn
+ k

kmn

n
lim sup

1
kmn

g ◦ T kmn .

The first term trends to lim sup 1
kmn

fkmn ≤ lim sup 1
nfkn, while the second one

tends to k lim sup 1
kmn

g ◦ T kmn ≤ k lim sup 1
ng ◦ T

n, which tends to 0 by the
corollary of Birkhoff’s theorem that we just mentioned because we have noticed
at the beginning that, as f+

1 ∈ L1, so are all f+
n , hence g ∈ L1.

To finish the proof that
∫

X
f]dµ ≤ L, we may first suppose as above that there

exists C ∈ R such that 1
nfn ≥ −C for all n., then use the argument used at

the beginning of the proof of lemma 53. Fixing the integer k, we consider the
Birkhoff sum

Fn =
n−1∑
i=0

(
−fk ◦ T jk

)
.

This is an additive sequence with respect to T k, which moreover is such that
F1 = −fk ≤ Ck, hence satisfies F+

1 ∈ L1 (remember µ(X) = 1). Now, let
F[ = lim supn→∞

1
nFn. From lemma 53 and the T k invariance of µ one deduces∫

X

F[dµ = lim
n→∞

1
n

∫
X

Fndµ = inf
n

1
n

∫
X

Fn = −
∫

X

fkdµ.
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On the other hand, by definition,

−F[ = − lim inf
n→∞

1
n
Fn = lim sup

n→∞

1
n

n−1∑
j=0

fk ◦ T jk.

Exchanging the roles of n and k, we deduce from the subadditivity that

fnk ≤ fk + fk ◦ T k + ·+ fk ◦ T (n−1)k,

hence, using lemma 56,

lim sup
n→∞

1
n

n−1∑
j=0

fk ◦ T jk ≥ lim sup
n→∞

1
n
fkn = kf].

Finally, ∀k, −F[ ≥ kf] that is∫
X

f]dµ ≤ −1
k

∫
X

F[dµ =
1
k

∫
X

fkdµ, hence
∫

X

f]dµ ≤ inf
k

1
k

∫
X

fkdµ := L.

This ends the proof of Kingman’s subadditive ergodic theorem.
Applied to the example of a cocycle above an ergodic transformation, this the-
orem implies the existence of the largest Lyapunov exponent.

6.4 Conditional expectation and the ergodic theorems

In this section we interpret the limit of Birkhoff’s sum given by the Birkhoff
theorem in terms of probabilistic notions.

Let (X,X , µ) be a probability space and f ∈ L1(X,X , µ) be a random
variable (this is just a fancy name used in general for measurable maps from a
probability space to R endowed with its Borelian tribe B). The expectation of f
is by definition its integeral E(f) =

∫
X
fdµ. Given a sub-tribe Y of X , one can

define the conditional expectation of f given Y. The definition is particularly
transparent in case the sub-tribe Y is generated by a partition because it is then
directly related to the notion of conditional probability:

Definition 22 (conditional expectation given a partition) The conditio-
nal expectation E(f ||Y) of the random variable f : X → R given the tribe
Y generated by a partition X = B1 + B2 + . . . + Bn is the random variable
E(f ||Y) : X → R which takes the constant value

E(f ||Y)(x) =
1

µ(Bi)

∫
Bi

fdµ if x ∈ Bi.

on each of the pieces Ai of the partition.

If f = XA is the characteristic function of some event A ∈ X , the value of
E(XA||Y) on Bi is just the conditional probability of A given Bi:

µ(A||Bi) =
1

µ(Bi)
µ(A ∩Bi).

In the general case, the definition relies on the Radon-Nikodym theorem:
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Theorem 57 (Radon-Nikodym) Let µ, ν be two positive and finite measures
defined on the same tribe X of a set X. If ν is absolutely continuous with respect
to µ, i.e. if every subset of µ measure 0 is also of ν measure 0, there exists a
X -measurable function ϕ : X → [0,+∞[ (the density of ν with respect to µ)
such that

∀A ∈ X , ν(A) =
∫

A

ϕdµ.

Moreover, two such densities are equal almost everywhere.

Corollary 58 (conditional expectation given a general sub-tribe)
Let (X,X , µ) be a probability space and Y be a sub-tribe of X . There exists a
well defined linear projector f 7→ E(f ||Y) from L1(X,X , µ) to L1(X,Y, µ) such
that

∀B ∈ Y,
∫

B

E(f ||Y)dµ =
∫

B

fdµ.

Proof. A function in L1(X,X , µ) being a linear combination of positive func-
tions, one can assume that f ≥ 0. Then the map B 7→

∫
B
fdµ defines a positive

measure on Y which is absolutely continuous with respect to the restriction of
µ to Y, hence the Radon-Nykodim theorem insures the existence of the Y mea-
surable function E(f ||Y). In case f = XB is the caracteristic function of B ∈ Y,
the conditional expectation is still related to the conditional probability by the
formula µ(B||Y) = E(XB ||Y),

Corollary 59 The limit f∗ of a Birkhoff sum whose existence is asserted by
Theorem 49 is the conditional expectation of f with respect to the invariant
tribe I(T ):

f∗(x) = lim
n→∞

1
n

n−1∑
k=0

f
(
T k(x)

)
= E

(
f ||I(T )

)
.

Proof. f∗ is a.e. T -invariant, hence I(T ) measurable (Exercise 28) and its
integral is equal to the integral of f .

6.5 Applications: law of large numbers, entropy

6.5.1 Strong law of large numbers

Applied to the Bernoulli shifts, corollary 50 says that the statistical structure of
almost all sequences is the same, which is a strong form of the so-called strong
law of large numbers. In what follows, we consider only the case of random
variables with finite values.
To a random variable f : (X,X , µ) → (R,B), one associates the direct image
(see Definition 10) f∗µ of the probability measure, which is often the only thing
we have access to. If f takes only a finite set {α1, · · · , αn} of values, it is
associated to the finite partition X = A1 + · · · + An of X, where Ai = f−1αi,
and the image probability f∗µ is defined by {p1, · · · , pn}, where pi = µ(Ai):
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the measure of an interval I ∈ R (or more generally of a Borelian) is the sum∑
i,αi∈I pi. The expectation of f is E(f) =

∫
X
fdµ =

∑
i piαi.

Remark on the notations. In measure theory one uses in general the nota-
tions f∗µ(I) or

∫
I
d(f∗µ) while in probability theory one rather writes µ{f ∈ I}

or Pr{f ∈ I}.

Definition 23 Two random variables f, g with the same image measures are
said to be identically distributed.

Definition 24 Random variables f1, · · · , fn with finite values on the probability
space (X,X , µ) are said to be independent if the corresponding partitions of X,

X = A
(i)
1 + · · ·+A(i)

ri
, i = 1, · · · , n,

are independent, that is if they satisfy

∀ki ∈ {1, · · · ri}, i = 1, · · · , n, µ
(
A

(1)
k1
∩ · · · ∩A(n)

kn

)
= µ

(
A

(1)
k1

)
· · ·µ

(
A

(n)
kn

)
.

Warning. Three partitions can be pairwise independent without being inde-
pendent ! (Exercise, find an exemple).
A typical, and indeed universal, example of a family of independent identically
distributed (i.i.d.) random variables is

fi : ({0, 1}N∗ ,B, µp,q) → R, fi(a1a2 . . .) = ai, i = 1, 2, · · ·

More generally, one can replace the alphabet with two letters 0,1 by an alphabet
{α1, · · · , αr} with an arbitrary number r of letters, for example r = 26 as in
the french alphabet. I leave to the reader the task of defining the probability
laws µp1,··· ,pr

and the Borelian tribe B on {α1, · · · , αr}N∗ and show that they
are invariant by the shift and ergodic.

Theorem 60 (Stong law of large numbers in the independent case) If
f1, · · · , fn, · · · : (X,X , µ) → R are independent and identically distributed ran-
dom variables whose values are α1, · · · , αr with probabilities p1, · · · , pr, one has

Pr

{
lim

n→∞

1
n

(f1 + · · ·+ fn) =
r∑

i=1

piαi

}
= 1.

Proof. We apply corollary 50 to the generalized shift )

T : ({α1, · · · , αr}N∗ ,B, µp1,··· ,pr ) →: ({α1, · · · , αr}N∗ ,B, µp1,··· ,pr )

and to the functions fi(a1 · · · an · · · ) = ai = f1(T i−1(a1, · · · , an, · · · )), which are
a universal model of i.i.d. random variables. The conclusion follows because,
on the one hand f1(x) + · · ·+ fn(x) =

∑n−1
k=0 f1(T

k(x)), on the other hand the
integral of f1 on {α1, · · · , αr}N∗ is equal to

∑r
i=1 piαi.

Remark. In the same way, Von Neumann’s ergodic theorem 47 is related to
the so-called weak law of large numbers.
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An example of more precise results In ({0, 1}N∗ ,B, µp,q) consider the cylin-
derA defined by a1 = a2 = . . . = a1000 = 0. The Birkhoff sum 1

n

∑n−1
k=0 XA

(
T k(x)

)
,

where T is the shift, represents the frequency with which one has ak+1 = ak+2 =
. . . = ak+1000 = 0 when k varies from 0 to n. The theorem affirms that for al-
most every sequence, this frequency tends to a limit equal to p1000, when n
tends to +∞. The same is true for every cylinder, that is for any finite config-
uration of 0’s and 1’s but this does not exhaust the richness of the theorem as
the function f may depend of an arbitrary number of coordinates.

Exercise 33 Apply the ergodic theorem to the same example under the disguise
to the map T (x = 2x (mod 1) of the interval [0, 1] endowed with its Borelian
tribe and the Lebesgue measure in itself. Deduce the proof that the set of normal
numbers in the sense of Borel has measure 1.

Notice that, from the definition of ergodicity, one could only conclude that the
measure of normal numbers was 0 or 1.

6.5.2 Shannon’s entropy (see [C3, CT])

Let us apply the strong law of large numbers to the independent identically
distributed random variables

fi : {α1, · · · , αr}N∗ ,B, µp1,...pr ) → R, fi(a1a2 · · · ) = log
1

p(ai)
,

where the log is taken in the basis r and p(ai) = pk if ai = αk. As the probability
of the cylinder Aa1···an

1···n is p(a1 · · · an) = p(a1) · · · p(an), one gets the

Theorem 61 (AEP) If f1, · · · , fn, · · · : (X,X , µ) → R are i.i.d. random vari-
ables with values {A1, · · · , Ar} and probabilities (p1, · · · , pr), one has

Pr

{
lim

n→∞

1
n

log
1

p(a1 · · · an)
=

r∑
i=1

pi log
1
pi

}
= 1.

The real number h =
∑r

i=1 pi log 1
pi

is Shannon’s entropy. The interpretation of
this theorem is that, if n is large enough, the probability to encounter sequences
(=messages) a1 · · · an whose probability is close to r−nh is very high, hence the
name Asymptotic Equipartition Property (AEP). Note that there are only about
rnh such very probable sequences among the rn possible sequences of length n.
If h = 1/2, this represents 100 sequences among 10000! Figure 9, where the size
of elements indicates their probability, illustrates this assertion.
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Figure 9 : Shannon’s first theorem.

7 A glimpse into dynamical entropies

The aim of this section is simply to give the reader the desire to understand
this subtle invariant of dynamical systems. For a complete historical survey, see
[K].

7.1 The entropy of a finite probability space

Depending only on the image measure ξ∗µ = (p1, · · · , pr) on the finite set of
values A = {A1, · · · , Ar}, the quantity

∑r
i=1 pi log 1

pi
introduced in the last

section as Shannon’s entropy, is naturally attached to a class of identically dis-
tributed (see definition 23) random variables ξ : Ω → A. In other words, it can
be thought of as attached to the finite set A = {A1, · · · , Ar} endowed with the
probability measure {p1, · · · , pr}. One interprets it is a measure of the infor-
mation gained from an experiment yielding a value of ξ or, this is equivalent,
from picking at random one element of the finite set A : it is maximal if all
the pi are equal (maximal uncertainty before picking), it is minimal equal to
0 in case the probability is concentrated on a single element (the result of the
picking is known in advance). In the same way, suppose we make an experi-
ment yielding successively the values of n not necessarily independant random
variables ξi : Ω → A, i = 1, · · · , n , that is picking successively at random a
sequence of n successive symbols a1, a1, · · · an. A measure of the information
gained from such an experiment can be defined by a similar formula as soon
as the set An is endowed with a probability measure (the image of µ by the
random variable (ξ1, ξ2, · · · , ξn) : Ω → An). In case, as in theorem 61, the n
random variables are independent and identically distributed (iid), An is en-
dowed with the product probability measure defined by giving to the sequence
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Aj1 , Aj2 , · · · , Ajn the probability pj1 · · · pjn , which gives for the entropy the
value

∑
pj1 · · · pjn log 1

pj1 ···pjn
= n

∑
i pi log 1

pi
·

7.2 The entropy of a discrete source

Allowing n to be infinite, we are led to the

Definition 25 (Discrete source) A discrete source consists in the data of a
finite alphabet A = {A1, . . . Ar} and a probability measure µ on Ω = AZ (or
AN∗). If µ is invariant under the shift T , the source is said to be stationary.

The name “source” comes from information theory where an element of AZ or
AN∗ is identified with a message whose length is infinite. The corresponding
random variables are the ξi(· · · a−2a−1a0a1, a2 · · · ) = ai. In general, the proba-
bility law of ξi depends on the value of the preceding ones ξi−1, ξi−2, ... (think
of the probability of the letters in some language). As in full generality the
probability of ξi depends on the whole past history, we need consider arbitrarily
long sequences in order to define an entropy.
Let µ be a probability measure on AN∗ (or AZ) which is invariant under the
shift. Let H<n>

µ be the entropy of the finite set An endowed with the probability
measure defined by the measure of cylinders (recall definition in section 2.2),
that is the direct image under the canonical projection πn : AZ → An (or
AN∗ → An), π(· · · ai · · · ) = a1a2 · · · an of the measure µ :

H<n>
µ =

∑
j1j2...jn∈{1,2,...,r}n

µ(Aj1j2...jn

12...n ) log
1

µ(Aj1j2...jn

12...n )
·

The entropy H<n>
µ is a measure of the information obtained from the emission

of a sequence of n successive symbols (or n successive experiments).

Lemma 62 (McMillan) The “mean information content by symbol” 1
nH

<n>
µ

tends to a limit Hµ = Hµ(T ) when the length n of the sequence (the message)
tends to infinity :

Hµ(T ) = lim
n→∞

1
n
H<n>

µ = inf
n

(
1
n
H<n>)

is by definition the entropy of the (stationary discrete) source2.

The proof, which is given in ([C3] par. 8.3), consists in proving the subadditivity
of the sequence un = H<n>

µ . For this, one decomposes the emission of a sequence
of n + m symbols into the emission of the n first symbols followed by the one
of the m last symbols and one applies Shannon’s inequality for the conditional
entropy (see [C3] proposition 10).

2The notation Hµ(T ) emphasizes the dependence on the shift T which comes from the
stationarity. It is compatible with the more general definition of Kolmogorov entropy, given
in the next section.
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Theorem 61, which in the iid case is a direct consequence of the law of large
numbers, admits a far reaching generalization to any stationary discrete ergodic
measure; this is the so called Shannon-McMillan-Breiman AEP theorem a short
proof of which can be found in [B2]:

Theorem 63 (Shannon-McMillan-Breiman) The entropy of an ergodic sta-
tionary discrete source (T, µ) satisfies the strong Asymptotic Equipartition Prop-
erty: for µ-almost every ω = . . . a1a2 . . . ak . . . ∈ AZ,

lim
n→∞

1
n

log
1

µ(a1a2 . . . an)
= Hµ(T ).

In the next section, I briefly allude to the remarkable generalization of Shannon
– McMillan’s entropy given by Kolmogorov in case the shift T is replaced by
any measure preserving transformation of a probability space into itself.

7.3 Kolmogorov’s entropy

The key to Kolmogorov’s definition of the entropy of an arbitrary measure
preserving map T : (Ω,F , µ) → (Ω,F , µ) from a probability space to itself is
the translation of what we have just done into the language of finite measurable
partitions: indeed, a random variable with finite values, a finite probability
space and a finite measurable partition of a probability space are essentially the
same object: this is illustrated on figure 10 where the partition

(E) : Ω = Ω1 + Ω2 · · ·+ Ωr

is defined by Ωi = ξ−1(Ai) and the formula for entropy becomes

Hµ(E) =
r∑

i=1

µ(Ωi) log
1

µ(Ωi)
·

Figure 10 : finite partitions and random variables.
Now, to a measurable partition of Ω one can associate a coding of any map
T by replacing an orbit {Tn(ω)}n∈N by the sequence {Ain}n∈N of pieces of the
partition which it visits, that is such that ω ∈ T−n(Ain). The finer the partition,
the more faithful the coding. Such a coding replaces the transformation T by
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a stationary random process with finitely many states whose entropy is defined
by Shannon’s formula.
Notations. Given a transformation T : Ω → Ω and a partition E , we note
T−1E the algebra of subsets formed by the T−1(Ωi), Ωi ∈ E . Given finite
partitions E(1), . . . , E(m) of Ω, we note ∨m

i=1E(i) the partition whose atoms are
the intersections Ω(1)

k1
∩ Ω(2)

k2
∩ . . . ∩ Ω(m)

km
, where Ω(i)

ki
is an atom of E(i).

In particular, if T : AZ (or AN) is the shift, the partition into cylinders Aj1j2...jn

12...n

can be written ∨n−1
k=0T

−kE , where the atoms of the partition E are the cylinders
whose atoms are the cylinders Aj1

1 , that is

Ω = {ω = . . . a1a2 . . . | a1 = A1}+ {ω| a1 = A2}+ . . .+ {ω| a1 = Ar}

The best approximation to the definition of Hµ(T ) for the shift contained in
Lemma 62 is then

Definition 26 The entropy Hµ(E , T ) of a partition E with respect to a measure
preserving transformation T : (Ω,F , µ) → (Ω,F , µ) and the entropy Hµ(T ) of
the transformation T are respectively defined by

Hµ(E , T ) = lim sup
n→∞

1
n
Hµ

(
∨n−1

k=0T
−kE

)
, Hµ(T ) = sup

E
Hµ(E , T ),

where the sup is taken among all finite partitions E of Ω.

Explanation (see [B2]) : an element A(1)
k1
∩ A(2)

k2
∩ . . . ∩ A(m)

km
of the partition

∨m
i=1E(i) may be considered as the realization of m experiments, corresponding

to the m partitions E(i). Given a partition E , let us denote by A = {A1, . . . , Ar}
the set of atoms of the partition and by x : Ω → A the random variable which, to
an element ω ∈ Ω, associates the atom Ai to which it belongs. As T preserves
the measure µ, the image measures of µ by the random variables x ◦ Tn are
all the same (n is an integer or a relative integer if T is invertible). In other
words, the experiments corresponding to the partitions T−n(E) have all the
same probabilistic structure and hence they can be considered as realizations,
a priori not independent, of one and the same experiment.
When T : AZ → AZ is the shift, the partition into cylinders is generating, which
means that the sequence of partitions ∨n

i=−nT
−i(E), n = 1, · · · ,∞, generate

the borelian σ-algebra, which explains why the consideration of other partitions
is not necessary. Indeed, more generally, the following theorem was proved by
Kolmogorov and Sinai:

Theorem 64 If T : (Ω,F , µ) is invertible and if there exists a finite partition E
which is generating in the sense that the partitions ∨n

i=−nT
−i(E), n = 1, · · · ,∞,

genrate the σ-algebra F , one has

Hµ(T ) = Hµ(E , T ).

An analogous statement holds true in the non invetible case if one replaces
∨n

i=−nT
−i(E) by ∨n

i=0T
−i(E).
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7.4 Topological entropy

Replacing partitions by open covers, the expectation of log 1
p by the log of a

minimum number of pieces, it is possible by copying Kolmogorov’s definition of
metric entropy to define the topological entropy of a continuous map Φ : X → X
from a compact topological space to itself (see [AKM]) : the entropy Hµ(E) of
a measurable finite partition is replaced by the entropy of an open cover U :

H(U) = log inf{k| ∃ a subcover of U with k elements, }

and

Htop(Φ,U) = lim
n→+∞

1
n
H(
(
∨n−1

k=0Φ−kU
)
, Htop(Φ) = sup

U
H(Φ,U),

where existence of the limit follows, as in the metric case, from subadditivity.
The so-called variational principle asserts that the topological entropy Htop(T )
is the sup over all T -invariant Borel probability measures µ of the metric en-
tropies Hµ(T ).
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cercle à des rotations, Pub. math. de l’I.H.É.S., tome 49 (1979).
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1960 (première édition, en allemand en 1933 sous le titre Grundbegriffe
der Wahrscheinlichkeitrechnung)

[Ku] S. Kullback, Information theory and statistics, Wiley 1959, Dover 1968

[LC] P. Le Calvez, Introduction to dynamical systems, Tsinghua (2014).
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