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Abstract. A well-known result – going back to Lagrange in 1772 in the case of 3 bodies – asserts

that a homographic solution of the n-body problem in 3-space must live in a fixed plane. Recent progress

in the analysis of the “action minimizing” method, reported in [C4], proves the existence of a “simple”

non-planar periodic solution for any set of at least 4 masses.

1 - Homographic motions and central configurations.

The only “explicit” solutions of the Newtonian n-body problem in IR3 are the so-called
homographic (or Kepler-like) solutions: the configuration which the bodies define at each
instant changes only by similitudes and each body follows a similar Keplerian orbit. When
the common eccentricity of these orbits is equal to 0 (resp. 1), one speaks of a relative
equilibrium (resp. homothetic) solution: each body rotates uniformly on a circle centered
on the center of mass of the system (resp. the whole configuration homothetically collapses
towards its centre of mass). Only very special configurations, the central configurations,
may support this kind of motion. Central configurations are very poorly understood the-
oretically as soon as the number of bodies exceeds 3, but whatever they be, the following
result holds:

Theorem 1 -[L] [Pi]. A homographic motion in IR3 which is not homothetic takes place
in a fixed plane.

Proving that a relative equilibrium motion must take place in a fixed plane is a simple
exercise. On the contrary, proving that any homographic motion which is not homothetic
must lie in a fixed plane is difficult. For 3 bodies, it is, according to Lagrange himself, one
of the main achievements of his great “Essai sur le problème des trois corps” [L], based on
the systematic use of mutual distances as coordinates. A proof for any number n of bodies
in IR3 is given in [W] (par. 371 to 374) and in [AC], where the n-body problem is studied
in a space of arbitrary dimension (in which case the result is that a homographic motion
must take place in a fixed subspace of even dimension). On the other hand, any central
configuration, planar or not, supports a homothetic motion and

Theorem 2 -[Pa][M]. For any n ≥ 4, there exists a central configuration of n bodies in
R3 which is non-planar.

To explain the idea of the proof, we must recall briefly the equations of the n-body problem
in IR3 (for more, see [C1][C3]). A configuration is an n-tuple x = (~r1, ~r2, . . . ~rn) ∈ (IR3)n.
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A non-collision configuration is one such that no two ~ri coincide. The configuration space
is the quotient of the set of non-collision configurations by the action of translations (see
[AC]). We shall identify it as in [C3] with the set X̂ of non-collision configurations whose
center of mass ~rG = (

∑n
i=1mi)

−1
∑n
i=1mi~ri is at the origin. The closure X of the con-

figuration space (which includes the collision configurations) is endowed with the “mass
scalar product”

(~r1, . . . , ~rn) · (~s1, . . . , ~sn) =

n∑

i=1

mi 〈~ri, ~si〉,

where 〈, 〉 is the standard euclidean scalar product in IR3.
The basic isometry-invariants, defined on the phase space (=tangent space X̂ × X of the
configuration space) whose elements are noted (x, y), are

I = x · x, J = x · y, K = y · y.

They are respectively the moment of inertia of the configuration with respect to its center
of mass, half its time derivative and twice the kinetic energy in a galilean frame which
fixes the center of mass. The potential function (opposite of the potential energy), the
Hamiltonian (=total energy) and the Lagrangian are respectively defined by

U =
∑

i<j

mimj ||~ri − ~rj ||−1, H =
1

2
K − U, L =

1

2
K + U.

The equations of the n-body problem

mir̈i(t) =
∑

j 6=i
mimj

~rj(t)− ~ri(t)
|~rj(t)− ~ri(t)|3

, i = 1, . . . , n,

can be written ẍ = ∇U(x), where the gradient is for the mass scalar product.

The central configurations may be defined (see [AC]) as those which admit homothetic
motions, that is homographic motions with eccentricity equal to 1. This means that, at
each instant, the forces ∇U(x) must be proportional to the configuration x = 1

2∇I(x). In
other words, the configuration x must be a critical point of the restriction of the potential
function U to the “spheres” I = constant. It is more convenient to introduce the scaled
potential Ũ =

√
IU , homogeneous of degree 0. A central configuration is simply a critical

point of Ũ on X̂ . As Ũ is positive and tends to +∞ at collisions, it possesses at least a
minimum on X̂ . What is proved in [Pa] for equal masses and in [M] for the general case is
the following theorem, which implies Theorem 2:

Theorem 2’. Let x0 be a planar central configuration. There exists a normal variation
z0 = (z1, · · · , zn) (that is for any i, zi is orthogonal to the plane spanned by the configu-
ration x0) such that d2Ũ(x0)(z0, z0) < 0. Hence x0 is never a local minimizer of Ũ .
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2 - The variational method and the “italian” symmetry.

The equations of the n-body problem are the Euler-Lagrange equations of the action, which
to a path x(t) associates the real number

AT
(
x(t)

)
=

∫ T

0

L
(
x(t), ẋ(t)

)
dt.

This implies that periodic solutions of the n-body problem of a given period T are critical
points of the action, considered as a function on the space of all regular enough (say,
belonging to the Sobolev space H1) loops of period T [C3]. Since the Lagrangian is positive,
the action is positive and its minimum is attained “at infinity” by bodies moving infinitely
slowly infinitely far from each other. To force coercivity of the action functional, i.e. to
get rid of critical points at infinity, the following constraint on the loops was introduced by
the italian school [C-Z][DGM][SeT]. The bodies were forced to occupy after half a period,
a position symmetrical of the original one with respect to the center of mass of the system:

x(t+ T/2) = −x(t).

Note that this selects relative equilibrium motions among elliptic homographic motions. To
please at the same time analysts and geometers, I proposed in [C3] to call (anti)symmetry
this constraint.

It happens that the (anti)symmetry constraint not only solves the problem of coercivity
but also the much more serious problem of collisions posed by the weakness of the Newton
force [C3]. Indeed, if x(t) is a minimizer in this class, and if t0 ∈ [0, T ] is arbitrary, the
restriction of x to the time interval [t0, t0 + T/2] (we consider here x as defined on IR and
T -periodic) minimizes the action among paths defined on [t0, t0 + T/2], which start and
end at the same configurations as x does (the fixed-ends problem). If this was not the case,
the (anti)symmetrization of a path with lesser action would lead to an (anti)symmetric
loop with lesser action than x.

Now, the absence of collision is a direct consequence of the following theorem, whose main
step was given by Christian Marchal (for a complete proof, see [C4]):

Theorem 3 [Ma1][C4]. A minimizer of the action in the space of H1 paths joining two
given configurations (eventually with collisions) between times T1 and T2 is collision-free
on the whole open interval ]T1, T2[.

This leaves only the possibility of collisions at the ends t0 or t0 +T/2 of a minimizing path.
But this is ruled out by the freedom in the choice of t0.

We shall see now that the minimizers are not the same in the planar and the spatial
problem as soon as n ≥ 4.

(i) The planar problem. The absence of collision was already known as a consequence
of the identification of minimizers. The following theorem is proved in [CD] (corrected in
[C3]):
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Theorem 4. For the planar n-body problem, a relative equilibrium solution whose con-
figuration minimizes Ũ is always a minimizer of the action among (anti)symmetric loops;
moreover all minimizers are of this form provided there exists only a finite number of
similitude classes of n-body central configurations.

Remark (not needed for what follows). If similitude classes of central configurations
minimizing Ũ were not isolated, other minimizers among (anti)symmetric loops could
possibly exist [C3]. They would necessarily correspond to a uniform motion on a round
circle in the metric configuration space X , that is x(t) = x1 cos 2πt

T + x2 sin 2πt
T , with two

orthogonal configurations x1, x2 of the same norm
√
I. This implies the constancy of I and

K along the solution. As ẍ(t) = − 4π2

T 2 x(t), each x(t) has to be a central configuration, that

is ∇Ũ(x(t)) = 0, from which the constancy of Ũ follows (it has in fact to be equal to the
minimum of this function on X ). Hence, if an affine straight line (D) of non-similar central
configurations minimizing Ũ did exist in X , a minimizer of the action would be provided by
a circle of well-chosen radius in the 2-dimensional vector subspace containing (D). In the
corresponding solution, necessarily without collision, each body would be running around
an ellipse centered at the center of mass.

(ii) The spatial problem. If n = 2 or n = 3, it follows from [CD] that a minimizer of the
action among (anti)symmetric loops is necessarily a (planar) relative equilibrium motion
(with equilateral configuration if n = 3). On the contrary, for n ≥ 4,

Theorem 5. For the spatial problem, if n ≥ 4, a minimizer of the action among (anti)-
symmetric loops is a collision-free non-planar solution.

Proof. We have already seen that a minimizer is collision-free as a consequence of
Theorem 3. The non-planarity assertion is a consequence of Theorem 2’ and Theorem
4. Let us choose a relative equilibrium motion x(t) which minimizes the action among
(anti)symmetric loops of period T . We identify the plane where the motion takes place

with the complex line CI , which allows to write x(t) = x0e
2πit
T . We compute the value

d2A(x(t))
(
z(t), z(t)

)
of the Hessian of the action at x(t) on a variation z(t):

d2A(x(t))(z(t), z(t)) =

∫ T

0

[
|ż(t)|2 + d2U(x0)(z(t), z(t))

]
dt.

If z(t) = z0 cos 2πt
T , where z0 is normal to x0 in the sense introduced in Theorem 2’

(x(t) · z(t) = 0 for any t) and if I0 = x0 · x0, one gets

d2Ũ(x0)(z, z) = I
1
2
0 d

2U(x0)(z, z) + I
− 1

2
0 U(x0)|z|2.

Finally,

d2A(x(t))(z(t), z(t)) =

∫ T

0

(
|ż(t)|2 − I−1

0 U |z(t)|2 + I
− 1

2
0 d2Ũ(x0)(z(t), z(t))

)
dt.

But x(t) = x0e
2πit
T is a solution of ẍ = ∇U(x), hence − 4π2

T 2 x = ∇U(x) and taking the
scalar product with x,

4π2

T 2
I0 = −x · ∇U(x) = U(x) = U(x0).
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Hence (Kepler’s third law)

I−1
0 U(x0) =

4π2

T 2
.

As z(t) = z0 cos 2πt
T , this gives

d2A(x(t))(z(t), z(t)) = I
− 1

2
0

∫ T

0

d2Ũ(x0)(z(t), z(t)) = I
− 1

2
0 d2Ũ(x0)(z0, z0)

∫ T

0

cos2 2πt

T
dt.

Now, Theorem 2’ asserts that one can always choose z0 such that d2Ũ(x0)(z0, z0) < 0.
Hence, a relative equilibrium which minimizes in IR2 ceases being a minimizer in IR3. This
ends the proof because other possible planar minimizers would have the same action as a
relative equilibrium (thanks to A. Venturelli for this remark).

Comments.

1) I proposed in [C4] to call generalized Hip-Hops these minimizers. They somehow replace
in IR3 the non-existing relative equilibria of non-planar central configurations minimizing
Ũ . Recall [AC] that in IR4, such relative equilibria would exist.

2) The actual determination of these non-planar minimizers is certainly a very difficult
question. They should consist in well-chosen vertical oscillations of the bodies superim-
posed to a more or less rigid rotation (with a little periodic variation of the size as in
the Hip-Hop) of a planar configuration which minimizes Ũ . The idea is that such a min-
imizer should be a compromise between a planar relative equilibrium motion which does
not minimize the action and a deformation in the direction of a non-planar central con-
figuration which does minimize Ũ but cannot rotate in IR3. But even in the case of 4
equal masses, where one may conjecture that a minimizer is necesarily the Hip-Hop with a
ZZ/4ZZ -symmetric configuration at each instant [CV], no proof is in sight. This makes the
situation a little worse than for the determination of central configurations, where Albouy’s
symmetry theorem [A1] leads to a complete classification of 4-body central configurations
[A2].

3) Among the few assertions about central configurations minimizing Ũ , we have:
(i) a configuration which minimizes Ũ among planar configurations cannot be collinear.

Indeed, the collinear central configurations are local maxima in the directions normal to
the set of collinear configurations [M] ;

(ii) for 2n ≥ 6 equal masses, the regular 2n-gon is not a local minimizer among planar
central configurations [SW] ;

(iii) the limit distribution of a minimizer for n→ +∞ nearly equal masses among planar
or spatial configurations is studied in [Li].

4) Previous studies of “simple” non-planar periodic solutions for n ≥ 4 bodies make es-
sential use of the symmetries attached to the equal-mass case: the generalized Lagrange
solutions of [DTW], the “rosettes” and “pelotes” of [H], the Hip-Hop and its generalizations
in [CV] [V], all belong to this case. In [MeS], the equal masses surround a much bigger
central mass. Reference [G] deals only with the equal-mass n-ion problem: the masses
are the same but not all the charges have the same sign. In this case, non-planar relative
equilibria do exist. In [V] one proves the existence of a non-planar 4-body choreography,
that is a solution such that all bodies stay on a given non-planar curve.
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3 - Non-planar periodic solutions for 3 bodies.

It is noticed in [CV] that the proof given there of the absence of collision in the Hip-Hop
solution for 4 equal masses works in exactly the same way for the isosceles spatial 3-body
problem where the central mass is supposed to stick to the vertical line containing the
center of mass. It is well known [M] that, if x0 is the Euler collinear central configuration
and z0 a deformation among isosceles triangles in the direction of the Lagrange central
configuration, the Hessian d2Ũ(x0)(z0, z0) is negative. As the only planar solution among
(anti)symmetric loops of a given period in the configuration space of the isosceles problem
considered above is a relative equilibrium solution with Euler configuration, one concludes
that a minimizer of the action among such loops is a non-planar periodic solution. Note
that, using Liapunov theorem, one can prove the existence of non-planar periodic orbits
of long periods near the collinear relative equilibrium solution [Ca]; they differ from the
action minimizers in that 1) the mutual inclinations are small, 2) the two bodies of equal
masses make a high number of revolutions around the symmetry axis.

In the planetary problem, simple enough non-planar solutions were found by Poincaré (his
“solutions de la troisième sorte” [P] vol. I, chap. III, par. 48). For 3 general masses, simple
non-planar periodic solutions do exist – for example, an almost Keplerian binary with a
third body very far away [Ma2] – but I do not know how to characterize the “simplest”
ones which should continue those found above in the isosceles case.

Aknowledgements

1) The present work has its origin in my reading the title of the lecture proposed by Shiqing
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