
A note by Poincaré

On November 30th 1896, Poincaré published a note entitled “On the periodic solutions

and the least action principle” in the “Comptes rendus de l’Académie des Sciences”. He

proposed to find periodic solutions of the planar Three-Body Problem by minimizing the

Lagrangian action among loops in the configuration space which satisfy given constraints

(the constraints amount to fixing their homology class). For the Newtonian potential,

proportional to the inverse of the distance, the “collision problem” prevented him from

realizing his program; hence he replaced it by a “strong force potential” proportional to the

inverse of the squared distance.

In the lecture, the nature of the difficulties met by Poincaré is explained and it is shown

how, one century later, these have been partially resolved for the Newtonian potential,

leading to the discovery of new remarkable families of periodic solutions of the planar or

spatial n-body problem.

The Three-Body Problem: a topic dear to Poincaré.
In 1883, Poincaré publishes his first short note dedicated to the Three-Body
Problem, entitled On some particular solutions of the Three-Body Problem.
He applies a generalisation, due to Kronecker, of the intermediate value the-
orem to the proof of the existence of the three kinds of relative periodic
solutions* of the planetary Three-Body Problem. Results will then follow
each other, culminating in the three volumes of the New Methods of Celestial
Mechanics (1892,1893,1899). In this outstanding book, Poincaré develops the
memoir On the Three-Body Problem and the equations of Dynamics, which
had won in 1889 the prize of the king of Sweden **; he founds a great part of
the theory of Dynamical Systems (existence and stability of the periodic so-
lutions, integral invariants, the recurrence theorem, homoclinic solutions, ...).
Although he uses some global arguments, these works are mostly dedicated
to the perturbative theory, planetary or lunar, in which one of the masses
dominates the other two, or even to the “restricted problem” in which one
of the masses vanishes. The search for periodic solutions plays an important
part: as early as in 1884, in the conclusion of the paper in the Bulletin as-
tronomique entitled On some particular solutions of the Three-Body Problem
which expands the 1883 note, he explains the importance of periodic solu-
tions as “intermediate orbits”: an arbitrary solution will stay close to such
a solution during a long time if it corresponds to close enough initial condi-
tions. This assertion is made more precise in 1892 in the famous conclusion
of section 36 in the first volume of the New Methods of Celestial Mechanics:

“There is even more: here is a fact that I could not prove rigorously,
but which nevertheless seems very likely to me.

* i.e. modulo rotation or, what amounts to the same, in a rotating frame.

** see the book by June Barrow-Greene “Poincaré and the Three Body Problem”, American

Mathematical Society and London Mathematical Society, 1997.
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Given equations of the form defined in n013 and an arbitrary solution of
these equations, one can always find a periodic solution (with a period
which,admitedly, may be very long), such that the difference between the
two solutions be arbitrarily small. In fact, what makes these solutions
so precious to us, is that they are, so to say, the only opening through
which we can try to penetrate in a place which, up to now, was supposed
to be inaccessible.”

The principle of least action: a great principle of physics.

“Now, what does the principle of least action tell us ? It teaches us that
in order to move from the initial situation it occupies at time t0 to the
final situation it occupies at time t1, the system must follow a path such
that, in the time interval from t0 to t1 the mean value of the “action”
(i.e. of the difference between the two energies T and U) be as small
as possible. The first of these two principles [energy conservation] is
indeed a consequence of the second. If one knows the two functions T
and U , this principle is sufficient to determine the equations of motion.”
(Science and Hypothesis, chapter XII, 1902.)

As Poincaré just said, each solution x(t) =
(
�r1(t), �r2(t), �r3(t)

)
, t ∈ [t0, t1]

of the Three-Body Problem , and more generally each solution of a prob-
lem in conservative mechanics, is an extremum of the Lagrangian action∫

L(x(t), ẋ(t))dt (in this formula, the Lagrangian is the difference L(x, ẋ) =
T (ẋ)−U(x) between kinetic and potential energies). Extremum and not min-
imum as we are reminded of by this delightful sentence of the New Methods:

“Until now, when I said, this integral is minimum, I used an abridged
but incorrect way of speaking, which of course could not fool anybody; I
wanted to say, the first variation of this integral vanishes; this condition
is necessary for a minimum, but it is not sufficient.” (New Methods of
Celestial Mechanics, volume III, chapter XXIX, no 341, 1899.)

In The value of Science, Poincaré puts this principle together with the great
conservation principles (energy, mass, action-reaction), the principle of degra-
dation of energy and the relativity principle. Due to its global character it
may appear at first sight nearer to theology than to physics. I do not resist
quoting some sentences from chapter VIII of Science and Hypothesis which
show up to what point Poincaré was as much a physicist as a mathematician:

“The very statement of the principle of least action has something shock-
ing to the mind. To go from one point to another one, a material
molecule, taken away from the action of any force, but constrained to
move on a surface, will follow the geodesic line, i.e. the shortest path.
It seems that this molecule knows the point where one wants it to go,
that it anticipates the time needed to reach it along such or such path,
and then chooses the most convenient path. In a sense, the statement
presents this molecule as a free animated being. It is clear that it would
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be better to replace it by a less shocking statement where, as philosophers
would say, the final causes would not appear to replace the efficient
ones.”

... and echoing it, Feynman’s questioning in [Fe1] (volume I, Chap. 26, par.
5: A more precise statement of Fermat’s principle) with this time the answer
given by quantum electrodynamics, that is the principle of stationary phase
(see also the superb Light and Matter [Fe2] by the same author):

“Instead of saying it is a causal thing, that when we do one thing, some-
thing else happens, and so on, it says this: we set up the situation, and
light decides which is the shortest time, or the extreme one, and chooses
that path. But what does it do, how does it find out ? Does it smell the
nearby paths, and check them against each other ? The answer is, yes,
it does in a way.”

The C.R.A.S. note of November 30th 1896.

This note is somewhat exotic with respect to the main stream of researches
of Poincaré on the Three-Body Problem. Dedicated to the search for global,
non perturbative, solutions, it takes the principle of least action in its lit-
teral meaning: one looks for minima and not only for extrema of the action
among paths in the configuration space which satisfy given constraints ! More
precisely, Poincaré proposes to find relative periodic solutions of the planar
Three-Body Problem (with arbitrary masses) with the following property:
after time T (the period) the first side of the triangle defined by the three
bodies has turned by some total angle θ, the second one has turned by an
angle θ + 2kπ and the third by an angle θ + 2lπ, where k and l are signed
integers. For this, he minimizes the Lagrangian action among all paths in
the configuration space with given period T and the said behaviour. With
an appropriate choice of k and l, he obtains an infinity of solutions, most of
which are new, not for the Newtonian force, proportional to the inverse of
the squared distance, but for a “strong force” proportional to the inverse of
the cube of the distance. Note that fixing the period T is harmless because
the homogeneity of the potential implies the existence of a scaling symmetry:
if x(t) =

(
�r1(t), �r2(t), �r3(t)

)
is a solution of the Three-Body Problem with a

force in 1/rα+1, the same is true of λβx(λt) =
(
λβ�r1(λt), λβ�r2(λt), λβ�r3(λt)

)
,

where β = −2/(α + 2), whatever be the positive real number λ. But if the
period of x is T , the period of xλ is 1

λT .

To impose constraints was necessary of course : the unconstrained minimum
is trivially realized “at infinity” by motionless bodies infinitely remote one
from the other. To fix k and l non zero forbids that at some time the bodies
be too far from each other because this would force the path to be very long,
hence the kinetic part of the action would be very large without compensa-
tion from the potential part. This makes the minimization problem coercive.
Another advantage of such a constraint is to garantee that, if (k, l) �= (0, 0),
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the corresponding solutions will be “non trivial”; in particular, they will be
different from the only explicit solutions, the homographic ones (curiously, it
seems that Poincaré was never interested in these homographic solutions).

Figure 1 (A relative loop of Hill type: k = −1, l = 0
and a homographic solution: k = l = 0)

What Poincaré does amounts to recognizing that a triangle has a“shape”. This
is a fundamental distinction between the three (and more)-body problem and
the two-body problem: a segment has no shape, just a size. Fixing k and l is
indeed equivalent to fixing the homology class of the loops defined in the space
of oriented triangles by the paths among which one minimizes the action. By
space of oriented triangles, I mean here the configuration space of the planar
Three-Body Problem “reduced” by the oriented isometries of the plane. This
space is obtained from (IR2)3 deprived from three four-dimensional collision
subspaces (triples (�r1, �r2, �r3) of distinct points in the plane) by two successive
quotients: the first, by the translations, which can be realized for example
by the choice of Jacobi coordinates (�r2 − �r1 and �r3 − 1

2 (�r1 + r2)), results
in IR4 deprived from three planes; the second, by the diagonal action of the
rotations, can be realized by the Hopf map from IR4 ≡ CI 2 to IR×CI : (z1, z2) �→
(|z1|2 − |z2|2, 2z̄1z2). One obtains IR3 deprived from three half-lines. The
homology (or the homotopy) of this space is the same as the one of the sphere
minus three points, the set of oriented triangles with “fixed size” (and with
distinct vertices, i.e. without collision). Hence, the first homology group of
the space of oriented triangles is isomorphic to ZZ 2, each component being
represented by the algebraic number of turns accomplished in one period by
two sides of the triangle with respect to the third.
Remarks. If one is interested in absolute periodic solutions (Poincaré is not),
this homology becomes ZZ 3 and it is represented by the algebraic number of
turns accomplished in one period by the three sides of the triangle. Moreover,
Poincaré contrains the homology but he could well have chosen to constrain
the homotopy, i.e. the type of the braid described by the three bodies in space-
time: he had invented the fundamental group in 1895; this group, isomorphic
to the free group on two generators ZZ ∗ ZZ , is indeed much richer. Finally,
if one considers the Three-Body Problem in space, the notion of orientation
of a triangle disappears and with it all this topology: the sphere minus three
points is replaced by a disk deprived of three points on its boundary, that is by
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Figure 2 (The space of oriented triangles: the loops of figure 1
correspond respectively to the loop γ and the point L+)

a contractible space. Notice that if the number of bodies is greater than three,
the “space of forms” becomes singular (in the case of the planar problem, it
is the cone over a complex projective space).

Poincaré’s boldness is clear in this note:
1) first he admits without discussion the existence of a minimum; but, as

was shown by later history, this is not without risk. In fact, it is in 1925
that this existence will be rigorously proved by par Leonida Tonelli to be
a consequence of coercivity. At this occasion, Tonelli discovers the key role
of the lower semi-continuity of the action functional (a well-known property
of the length: it can suddenly decrease at the limit – as in the exemple of
a broken line which converges uniformly to a straight line – but it cannot
suddenly increase at the limit !);

2) on the other hand, he discovers the true problem, that is collisions: an
elementary computation* shows that when two bodies �ri(t) and �rj(t), which
interact according to Newton’s law, collide at time t0, they satisfy estimates
of the form: |�ri(t)− �rj(t)| ∼ α|t− t0|

2
3 and |�̇ri(t) − �̇rj(t)| ∼ β|t − t0|−

1
3 . Mor-

ever, about fifteen years later, Sundman will show that the same estimates
hold for collisions of an arbitrary number of bodies in a space of arbitrary
dimension. But these estimates imply the convergence of the action integral
in the neighborhood of collisions. Hence a minimizing path could a priori
consist in the concatenation of a – possibly infinite – number of segments of
solutions linked one to the next through a collision;

3) Finally, not being able to conclude in the Newtonian case, he does not
hesitate “cheating” by replacing the Newtonian force in 1/r2 by a “strong
force” in 1/r3 for which the action integral diverges at collisions. Some eighty
years will go by before this direction of research is resumed.

Here we have a beautiful illustration of the way Poincaré works: he clears the
way, he goes on and he leaves aside questions to which he will come back ...
if time allows.

* even more elementary if one considers the Kepler problem (one fixed centre) with zero

energy on a line.
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Beyond Poincaré: first results for the Newtonian potential.

The first results on minimization with fixed homology for the Newtonian po-
tential are obtained by William Gordon [G] in 1977 in ignorance of Poincaré’s
note. They concern absolute (i.e. in the fixed frame) periodic solutions of
the Kepler problem (i.e. the problem of one fixed center, to which one can
reduce the two-body problem) in the plane. They were generalized in 2001
by Andrea Venturelli [V] to the planar Three-Body Problem. The statements
are parallel: the first homology group of the configuration space is isomorphic
to ZZ for Gordon, and to ZZ 3 for Venturelli. In both cases, one notes that, as
Poincaré feared, collisions may appear for the Newtonian potential when the
action is minimized under some homological constraint: if imposing to the
homology the value ±1 in Gordon’s case (resp. ±(1, 1, 1) in Venturelli’s case),
leads to the elliptical solutions (resp. the equilateral homographical solutions)
of the given period, every homology class different from 0 and ±1 in the first
case (resp. from ±(1, 1, 1) or from a class with one zero component in the
second one), admits collision orbits as the sole minima (homothetic collapse
of an equilateral triangle on its centre of mass in the second case).

Venturelli’s work says nothing on the homology classes with one zero compo-
nent; in particular, even in a case apparently as simple as the class (1, 0, 1),
the minima have not yet been identified in spite of the fact that a serious
candidate is known, a solution found numerically in the seventies by Roger
Broucke [B] and (independantly) Michel Hénon [He]. On the other hand, Ven-
turelli’s proof is based on the decomposition of the three-body action as the
sum of three two-body actions and hence cannot be generalized to a larger
number of bodies.

Finally, as we already noted, one can try to fix homotopy instead of homology.
This amounts to fixing the braid type which the solution describes in space-
time. This is what Cris Moore proposed to do in 1993 [Mo], also in ignorance of
Poincaré’s note. He found a great number of periodic solutions by numerically
minimizing the action. Among those was the Eight, which we evoke in the
next paragraph. His achievement was made possible by the strong symmetry
constraints he was imposing to the paths from which he was starting the
minimization process and by the fat that these symmetries were preserved by
the process. In the absence of such choices, the minima should have presented
collisions most of the time.

Beyond Poincaré: symmetry constraints.

First introduced by the italian school ([D-G-M], [CZ]) in order to insure the
coercivity of the action functional, symmetry constraints are the key of he
recent successes in the application of the variational method to the search for
periodic solutions of the Newtonian n-body problem. Already in the Kepler
problem, imposing the Italian symmetry x(t+T/2) = −x(t) selects the circle
among ellipses and hence excludes collision orbits. For three bodies in the
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plane or in space, the minimizing solutions for this symmetry are the equilat-
eral relative equilibria but I showed in 2002 [C1] that, as soon as the number of
bodies is at least four, one obtains non trivial (because non planar) solutions
of the spatial problem. The first example of these generalized Hip-Hops (four
bodies with the same mass) had been obtained with Venturelli in 2000 [C-V].
In a way these solutions are the simplest non planar solutions of the n-body
problem.

The Eight [C-M], whose existence was proved with Richard Montgomery at the
end of 1999, is another example of minimization under symmetry constraints.
Here the symmetry group is that of the space of oriented triangles which was
described in the latter paragraph, that is the dihedral group D6, with 12
elements. The equilateral relative equilibrium and the Eight are the first ex-
amples of a family of periodic solutions of the equal mass n-body problem in
which the bodies chase each other on one and the same closed curve with con-
stant time shift. Admiring their evolutions on the screen of his computer, Car-
les Simó, their main discoverer[S1], named them choreographies. Animations
can be contemplated on his website http://www.maia.ub.es/dsg/nbody.html

That the minimization under symmetry constraints often leads to collision-
free solutions is explained by the absence of collision in the minimization with
fixed ends (Marchal’s theorem) [Ma]: indeed, one gets back to this question by
restricting a symmetric loop to a time interval which is a fundamental domain
of the action of the symmetry group on the time circle. For an overview, see
[C3]; for more details, see my lectures at ICM (Beijing 2002) [C1], at ICMP
(Lisbon 2003) [C2] and the references given there.

Back to Poincaré: the strong force potential and the Jacobi-Mau-
pertuis metric.

The 1/r2 potential, introduced by Poincaré in order to avoid the collision
problem, plays a very special role among potentials of the form 1/rα. It is the
only one for which the scaling symmetry originating from the homogeneity
is symplectic, and this implies the existence of an additional first integral of
the n-body problem. The Lagrange-Jacobi identity, also a consequence of
the homogeneity of the potential, reads Ï = 4H (I is the moment of inertia
of the configuration with respect to its center of mass and H is the energy,
normalized to zero when the bodies are at rest at infinity). In particular, a
bounded collision-free solution – e.g. a periodic solution, a relative periodic
solution or more generally a quasi-periodic solution – must satisfy I=constant
and H = 0. This implies a reduction of the Jacobi-Maupertuis metric (the
form given by Jacobi to the Maupertuis principle, i.e. the least action principle
with fixed energy) to the sphere of oriented triangles of given size (or inertia).
Montgomery [M2] recently showed that, in case the three masses are equal,
the curvature of the corresponding metric on the sphere minus three points
is everywhere negative, except at the Lagrange points where it vanishes. In
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particular he deduces that each homotopy class for which the minimum length
of a loop is not attained at infinity* contains exactly one relative periodic
solution. This implies the unicity of the Eight for this potential, while this
unicity, even if very likely, is not proved for the Newtonian potential.

Figure 3 (The space of oriented triangles with the Jacobi metric)

The 1/r2 potential contains more surprises: the works of Fujiwara et al. [Fu]
have revealed a surprizing triangle geometry associated to the correpsonding
Eight solution; one can admire beautiful animations at the address
http://www.clas.kitasato-u.ac.jp/ ˜ fujiwara/nBody/IeqConstLeq0/centers
GIF.html
At each instant, the tangents to the curve at the positions of the three bodies
meet at a common point and the same is true of the three normals. The
intersection of the tangents, which follows from the vanishing of the angular
momentum, is still true for the Newtonian potential; it is connected to the
existence of what Aurel Wintner calls a center of force for the Three-Body
Problem with Newtonian attraction: at each instant the forces applied to
the three bodies meet at a common point (Hargrave 1858, Schiaparelli 1864);
as the angular momentum vanishes, one can replace the accelerations by the
velocities in the computation. On the contrary, the intersection of the normals,
which follows from the constancy of the moment of inertia I, holds only for
the 1/r2 potential.

Back to Poincaré: the question of stability.
The instability of the periodic solutions which locally minimize the action is
announced by Poincaré in a note (C.R.AS., vol. 124, pages 713-716) untitled
Periodic solutions and least action principle. The details of the proof are given
in 1899 in the Chapter XXIX of volume III (Various forms of the principle of
least action) of the New Methods. Poincaré distinguishes to kinds of unstable
solutions according to whether or not the neighboring solutions intersect the
given solution. He announces that only the first case happens for minima and
that this property is characteristic.

“To summarize, in order that a closed curve corresponds to an action
smaller than the one of any closed curve which is infinitely close, it is

* These classes are identified in [M1].
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necessary and sufficient that this closed curve corresponds to a periodic
solution which is unstable of the first category.” (New Methods, end of
paragraph 358.)

This assertion holds only in Poincaré’s setting, that is for a mechanical system
with two degrees of freedom. Indeed, examples found by Marie-Claude Arnaud
in 1998 [A] show that in the higher dimensions a locally action minimizing
periodic solution may possess only “two directions of instability ” transverse
to the flow in its energy level.

Symmetry constraints modify the stability question. It came as a surprize
when Simó [S2] numerically showed the stability of the Eight in the plane
but with other symmetry constraints, action minimizers appear to be mostly
unstable.

Conclusion. Few directions of investigation of the Three-Body Problem
have been left aside by Poincaré: this note is a good example as the methods
proposed there were rediscovered independantly only much later on, with the
works of Gordon and those of the Italian school. Poincaré recognizes the main
obstacle – that collision orbits have finite action — and he was only in need
of more time. In section XVIII “Three-Body Problem; qualitative properties”
of his analysis of his own scientific works, he writes:

I came back to these periodic solutions and I studied them in detail.
The methods I used to prove their existence are very simple and can be
reduced to the calculus of limits.
But one can arrive at this proof by a completely different path, which it
will be often useful to follow, but from which I did not yet draw all the
conclusions. Let us suppose for example that one looks for the geodesics
of an indefinite surface which presents the same general shape as a
one-sheeted hyperboloid. One can be sure that there exists a closed
geodesic (corresponding to a periodic solution) because among all the
closed curves which can be drawn on the surface and which go around,
one must be shorter than the others.
The same principles may be applied to various problems of Mechanics
thanks to the principle of least action. This principle can be used under
the form it was given by Hamilton, or under the one given by Jacobi. I
have only sketched this method from which there is still probably much
to get.

In fact, Poincaré came back at least once to this method. He did that, not
directly about the Three-Body Problem, but in a problem both simpler, be-
cause there is no collision problem, and harder, because it concerns the sphere,
which possesses no “hole” around which one can go. In the 1905 paper On
the geodesic lines of convex surfaces, Transactions AMS 6, p. 237-274, he
studies the problem of periodic geodesics on convex surfaces as a caricature
of the corresponding problem in the Planar Circular Restricted Three-Body
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Problem. Having probably in mind the periodic solutions of the planetary or
lunar type, in particular the Hill solutions of the lunar problem, and having
maybe forgotten his 1896 note, he writes in the introduction that

“...it is not to the geodesics of the surfaces with opposite curvatures that
the trajectories of the Three-Body Problem may be compared; it is on
the contrary to the goedesics of convex surfaces.
Hence I took up studying the geodesics of convex surfaces; unfortunately,
the problem is much harder than the one solved by Mr. Hadamard [the
case of surfaces with opposite curvatures]. I had to be content with some
partial results, essentially on closed geodesics, which play here the role
of the periodic solutions of the Three-Body Problem”.

These “partial” results are nevertheless impressive: applying in a daring man-
ner the continuation method, Poincaré obtains the existence of at least one
closed geodesic which is embedded (i.e. without self-intersection) on any con-
vex surface in IR3 endowed with the metric induced by the euclidean one. At
the end of the paper, he sketches a second proof of this existence in a very
“physical” way with fluids and ribbons. He then uses this new proof to dis-
cuss stability: as both homology and homotopy are trivial and hence cannot
be used as constraints for the minimization of the length (i.e. of the action),
he introduces the Gauss-Bonnet constraint: one minimizes the length among
all embedded closed curves which part the surface into two pieces on each of
which the integral of the curvature is the same (this is exactly the assertion
of the Gauss-Bonnet theorem for a geodesic). A complete (and nice) proof
along the lines suggested by Poincaré was only given in 1994 by Joel Hass and
Frank Morgan [H-M].
René Garnier, one of the editors of volume VI of the complete works (the one
which contains this paper), recalls in his commentary the spectacular advances
accomplished in the Calculus of Variations by Morse, Birkhoff, Lusternik,
Schnirelmann. He writes:

“The researches of all these authors constitute without doubt one of the
most important accomplishments of the modern technique in the Calcul
of Variations; but acknowledging that, one shoud not forget that, accord-
ing to M. Morse’s word, H. Poincaré was one of the first geometers who
have anticipated the existence of a macro-analysis and, without doubt,
the one who contributed the most efficiently to the constitution of such
a subject.”

I shall close with a sentence of Hadamard. In my opinion, it describes very
accurately the works of Poincaré. This sentence is quoted from the text –
collected by E. Terradas and B. Bassegoda – of a conference [H] given at the
“Institute of catalan studies”:

“Faced with a discovery of Hermite, one is inclined to say:
– Admirable to see how a human being could arrive at such an extraor-
dinary way of thinking !
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But, reading a memoir of Poincaré, one says:
– How is it possible that one has not arrived much earlier to things so
deeply natural and logical ?.”

Thanks to Robert McKay who taught me the existence of Poincaré’s note during a con-

ference in Rio de Janeiro where I was presenting the Eight; thanks to Anne Robadey for

clarifications on the 1905 paper of de Poincaré; thanks to Alain Albouy for a discussion on

the center of forces and to Jacques Laskar for the Schiaparelli reference. Thanks at last

to Sebastià Xambó and Amadeu Delhsams for having invited me to speak on Poincaré in

their beautiful city of Barcelona, and to Tere Seara for having helped me to do it, not,

unfortunately, in catalan, but at least in castillan.
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ticiens (ICM 2002), Pékin, vol. III, 279-294 (2002)

[C2] A. Chenciner Symmetries and “”simple solutions of the classical n-body
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