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Fig. 1.

If N = 4, we shall use the same notations as in [7], that is,

s13 = a, s14 = b′, s12 = b′′, s34 = d′, s23 = d′′, s24 = f.

A convenient basis of D∗, orthonormal for the standard Euclidean structure of R
4, is

u1 =
1
2
(1,−1, 1 − 1), u2 =

1√
2
(1, 0,−1, 0), u3 =

1√
2
(0, 1, 0,−1);

Borchart’s criterium then becomes the positivity of the symmetric matrix

B =

⎛
⎜⎜⎜⎝

u z y

z v x

y x w

⎞
⎟⎟⎟⎠ , where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u =
1
4
(b′′ + d′′ + b′ + d′ − a − f), v =

1
2
a, w =

1
2
f,

x =
1
4
(d′′ − d′ + b′ − b′′),

y =
1

4
√

2
(b′ − b′′ + d′ − d′′), z =

1
4
√

2
(b′′ − d′′ + b′ − d′).

Definition. If the condition of the theorem is not satisfied, we shall say that the sij are the squared
mutual distances of a virtual N -body configuration.

Remark. In case the vectors �ri, i = 1, . . . , 4, represent unit point masses, the matrix B contains
the same spectral information as the classical inertia matrix of the configuration (see [5] where
it is called a subjective inertia matrix), in particular, its trace is the moment of inertia of the
configuration with respect to its center of mass; more generally (see [4]), if voli1...ik is the volume
of the (k − 1)-dimensional parallelotope generated in E by the vectors �r2 − �r1, �r3 − �r1, . . . , �rk − �r1,
that is, (k − 1)! times the volume of the simplex defined by the points �r1, . . . , �rk, one has

det(IdD∗ − λB) = 1 − η1λ + η2λ
2 − η3λ

3, where ηk−1 =
1
4

∑
i1<...<ik

vol2i1...ik
.

1.2. Balanced Configurations

Given a law of attraction defined by a homogeneous potential function U =
∑

1�i<j�N mimjΦ(r2
ij),

depending only on the mutual distances rij between N point masses mi, balanced configurations
were defined in [4] as the ones for which there exists a choice of initial velocities giving rise to a
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relative equilibrium motion of the configuration in some Euclidean space whose dimension is not
specified (which means up to 2(N − 1)).

Using the notations introduced in the former paragraph, the equations of balanced configurations
of four point masses take the following form, where P123 − P124 + P134 − P234 ≡ 0 (see [7]).

(P123)

⎧⎪⎨
⎪⎩

m1(d′′ − a − b′′)
[
ϕ(a) − ϕ(b′′)

]
− m4(d′′ + b′)

[
ϕ(f) − ϕ(d′)

]
+m2(a − b′′ − d′′)

[
ϕ(b′′) − ϕ(d′′)

]
− m4(a + f)

[
ϕ(d′) − ϕ(b′)

]
+m3(b′′ − d′′ − a)

[
ϕ(d′′) − ϕ(a)

]
− m4(b′′ + d′)

[
ϕ(b′) − ϕ(f)

]
= 0,

(P124)

⎧⎪⎨
⎪⎩

m1(f − b′ − b′′)
[
ϕ(b′) − ϕ(b′′)

]
− m3(f + a)

[
ϕ(d′′) − ϕ(d′)

]
+m2(b′ − b′′ − f)

[
ϕ(b′′) − ϕ(f)

]
− m3(b′ + d′′)

[
ϕ(d′) − ϕ(a)

]
+m4(b′′ − f − b′)

[
ϕ(f) − ϕ(b′)

]
− m3(b′′ + d′)

[
ϕ(a) − ϕ(d′′)

]
= 0,

(P134)

⎧⎪⎨
⎪⎩

m1(d′ − b′ − a)
[
ϕ(b′) − ϕ(a)

]
− m2(d′ + b′′)

[
ϕ(d′′) − ϕ(f)

]
+m3(b′ − a − d′)

[
ϕ(a) − ϕ(d′)

]
− m2(b′ + d′′)

[
ϕ(f) − ϕ(b′′)

]
+m4(a − d′ − b′)

[
ϕ(d′) − ϕ(b′)

]
− m2(a + f)

[
ϕ(b′′) − ϕ(d′′)

]
= 0,

(P234)

⎧⎪⎨
⎪⎩

m2(d′ − f − d′′)
[
ϕ(f) − ϕ(d′′)

]
− m1(d′ + b′′)

[
ϕ(a) − ϕ(b′)

]
+m3(f − d′′ − d′)

[
ϕ(d′′) − ϕ(d′)

]
− m1(f + a)

[
ϕ(b′) − ϕ(b′′)

]
+m4(d′′ − d′ − f)

[
ϕ(d′) − ϕ(f)

]
− m1(d′′ + b′)

[
ϕ(b′′) − ϕ(a)

]
= 0.

In these equations, the function ϕ(s) of one real variable s is the derivative of the function Φ(s)
defining the potential. It is convenient to use the following normalizations for the potential:

ϕ(x) = −x−1 (Log), ϕ(x) = −x−3/2 (Newtonian), ϕ(x) = −x−1 (Strong).

Remark. These configurations also admit a variational characterization (see [4]), which in the
case of four equal masses becomes the following: they are the critical points of the restriction of the
potential function, considered as a function of the subjective inertia matrix B, to the isospectral
manifold, that is, to the set of (isometry classes of) configurations with a given moment of inertia
with respect to the center of mass, a given sum of the squared areas of the faces and a given
volume. This generalizes the definition of central configurations as critical points of the potential in
restriction to the (isometry classes of) configurations with a given moment of inertia with respect
to the center of mass.

2. BALANCED CONFIGURATIONS WITH A SYMMETRY

The precise result of [1] was that planar central configurations of four equal masses necessarily
possess a symmetry axis containing two of the bodies. In contrast, spatial balanced configurations
may either have a symmetry plane containing two of the bodies or a symmetry axis. With the above
notations, both cases can be reduced, after possible renumbering of the bodies, to the equality
b′ + d′ = b′′ + d′′, the first case corresponding to b′ = b′′, d′ = d′′ and the second to b′ = d′′, d′ = b′′.

2.1. Equations in the Case of a Symmetry Plane

Let xS be a four-body configuration with a symmetry plane and squared mutual distances

a = r2
13, b = r2

12 = r2
14, d = r2

23 = r2
34, f = r2

24.

Note that this excludes the colinear configurations.
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Fig. 2. Symmetry with respect to a plane.

The four equations above reduce to a single one: P234 and P124 are identically satisfied, while
1
mP123 = − 1

mP134 = 0 becomes

−

⎛
⎜⎜⎜⎝

1 1 1

(d − a − b) (a − b − d) (b − d − a)

ϕ(d) ϕ(a) ϕ(b)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

1 1 1

d + b) a + f b + d

ϕ(b) ϕ(f) ϕ(d)

⎞
⎟⎟⎟⎠ = 0,

that is, (
ϕ(b) − ϕ(d)

)
(3a + f − 2b − 2d) +

(
2ϕ(a) − ϕ(b) − ϕ(d)

)
(d − b) = 0. (2.1)

This defines a subset of R
4
+ (see [6]), parts of which do not depend on ϕ:

The rhombus configurations: the equation of symmetric balanced configurations is trivially
satisfied (both terms equal 0) if b = d; The projection of the configuration on a plane parallel
to the sides 13 and 24 is then a rhombus and the configuration has a Z/4Z symmetry. These
configurations were more generally studied in [7].
The equilateral configurations: the equation is also trivially satisfied if

a = d, b = f, or a = b, d = f.

The unique spatial central configuration: whatever the masses are, there is a unique truly
(N − 1)-dimensional central configuration of N bodies, the regular simplex. This is because
the mutual distances are independent coordinates for the space of isometry classes of such
configurations.

2.2. Equations in the Case of a Symmetry Axis

We use the following notations for the squared mutual distances:

r2
13 = a, r2

14 = r2
23 = b, r2

12 = r2
34 = d, r2

24 = f.

Note that a and f now play similar roles. With the above notations, each of the four equations Pijk

of balanced configurations reduces to the single equation

2(b − d)
(
ϕ(a) − ϕ(f)

)
+ (f − a)

(
ϕ(b) − ϕ(d)

)
= 0, (2.2)

that is,

(b − d)(a − f)
(
2ψ(a, f) − ψ(b, d)

)
= 0, where ψ(x, y) =

ϕ(x) − ϕ(y)
x − y

·
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Fig. 3. Symmetry with respect to a line.

Solutions are b = d or a = f or 2ψ(a, f) = ψ(b, d). The first two correspond, respectively, to rhombus
configurations, already encountered, and twisted rectangle configurations (which project onto
rectangles); the last one, which contains the colinear balanced (and hence central) configurations
becomes particularly simple for the log potential (ϕ(s) = −s−1): indeed, it reduces to 2bd = af ,

the colinear case corresponding to
b

d
= 2 ±

√
3.

Note that the only intersection with the solutions previously studied, which are symmetric with
respect to a plane containing some side, are the rhombus configurations.

3. LOOKING FOR NONSYMMETRIC BALANCED CONFIGURATION OF FOUR
EQUAL MASSES IN THE NEIGHBORHOOD OF SYMMETRIC ONES

Let B be the set of balanced configurations (up to similarity) of 4 equal masses and let S ⊂ B
be the subset of the symmetric ones.

In this section, we compute the derivative of the equations of B along every branch of S. The only
places where branches of nonsymmetric balanced configurations could possibly bifurcate are the
ones where the rank of this derivative is strictly lower than its maximum, that is, 3. This, of course,
occurs at the singularities of S, but also at smooth points, which are then the natural candidates
for being the sought-for bifurcation points. Hence our first task is to identify the singularities of S,
paying attention to the intersections of branches corresponding to a permutation of the vertices.

3.1. Singularities of the Set S of Symmetric Balanced Configurations

1) Sets Pi or Li of balanced configurations with, respectively, a given plane or line symmetry:

(P ′
1) b′ = b′′, d′ = d′′, (P ′′

1 ) b′ = d′, b′′ = d′′, (L1) b′ = d′′, b′′ = d′;

(P ′
2) a = b′′, d′ = f, (P ′′

2 ) a = d′, b′′ = f, (L2) a = f, b′′ = d′;

(P ′
3) a = b′, d′′ = f, (P ′′

3 ) a = d′′, b′ = f, (L3) a = f, b′ = d′′.

2) Singularities coming from intersections of the sets corresponding to different symmetries:

(P ′
1 ∩ P ′′

1 ) = (P ′
1 ∩ L1) = (P ′′

1 ∩ L1) b′ = b′′ = d′ = d′′,

(P ′
1 ∩ P ′

2) = (P ′
1 ∩ P ′

3) b′ = b′′ = a, d′ = d′′ = f,

(P ′
1 ∩ P ′′

2 ) = (P ′
1 ∩ P ′′

3 ) b′ = b′′ = f, d′ = d′′ = a,

(P ′
1 ∩ L2) = (P ′

1 ∩ L3) b′ = b′′ = d′ = d′′, a = f.

It turns out that the intersections correspond only to rhombus or equilateral configurations.
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3.2. The Derivative at a Configuration Symmetric w.r. to a Plane (b := b′ = b′′, d := d′ = d′′)

2(d − b)ϕ′(a) +
3(ϕ(b) − ϕ(d))

(a + f −
b − d)ϕ′(b) +
ϕ(d) − ϕ(f)

2(a − d)ϕ′(b) +
2(ϕ(d)−ϕ(a)) +

ϕ(f) − ϕ(b)

(d + b −
a − f)ϕ′(d) +
ϕ(f) − ϕ(b)

2(b − a)ϕ′(d) +
2(ϕ(a)−ϕ(b)) +

ϕ(d) − ϕ(f)
ϕ(b) − ϕ(d)

0
2(f − b)ϕ′(b) +
2(ϕ(b)−ϕ(f)) +

ϕ(a) − ϕ(d)

2(b − f)ϕ′(b) +
2(ϕ(f)−ϕ(b)) +

ϕ(d) − ϕ(a)

(f + a −
b − d)ϕ′(d) +
ϕ(d) − ϕ(a)

(b + d −
f − a)ϕ′(d) +
ϕ(a) − ϕ(d)

0

2(b − d)ϕ′(a) +
3(ϕ(d) − ϕ(b))

2(d − a)ϕ′(b) +
2(ϕ(a)−ϕ(d)) +

ϕ(b) − ϕ(f)

(b + d −
a − f)ϕ′(b) +
ϕ(f) − ϕ(d)

2(a − b)ϕ′(d) +
2(ϕ(b)−ϕ(a)) +

ϕ(f) − ϕ(d)

(a + f −
d − b)ϕ′(d) +
ϕ(b) − ϕ(f)

ϕ(d) − ϕ(b)

0
(d + b −

f − a)ϕ′(b) +
ϕ(a) − ϕ(b)

(f + a −
d − b)ϕ′(b) +
ϕ(b) − ϕ(a)

2(d− f)ϕ′(d) +
2(ϕ(f)−ϕ(d)) +

ϕ(b) − ϕ(a)

2(f − d)ϕ′(d) +
2(ϕ(d)−ϕ(f)) +

ϕ(a) − ϕ(b)
0

Using appropriate line and column operations, one finds that the rank of the derivative of the
equations of balanced configurations at a configuration symmetric with respect to a plane of type
(P ′

1) (i. e., b′ = b′′, d′ = d′′) is strictly less than 3 if and only if one of the following conditions holds:

b = d and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3a + f − 4b)ϕ′(b) + 2
(
ϕ(b) − ϕ(a)

)
= 0, (I1)

or

(3f + a − 4b)ϕ′(b) + 2
(
ϕ(b) − ϕ(f)

)
= 0, (I2)

or

(a − f)ϕ′(b) + 2
(
ϕ(f) − ϕ(a)

)
= 0, (I3)

or det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(b − f)ϕ′(b) + 2
(
ϕ(f) − ϕ(b)

)
+ϕ(d) − ϕ(a)

(a + f − d − b)ϕ′(d)

+ϕ(d) − ϕ(a)

−−−−−−−−− −−−−−−−−−

(a + f − b − d)ϕ′(b)

+ϕ(b) − ϕ(a)

2(d − f)ϕ′(d) + 2
(
ϕ(f) − ϕ(d)

)
+ϕ(b) − ϕ(a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (3.1)

The first case corresponds to singularities of the set S of balanced configurations with a symmetry,
namely, of intersections of the submanifold of rhombus configurations b′ = b′′ = d′ = d′′ with other
branches of S as depicted in Fig. 4.

Fig. 4.
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In the second case one must add Eq. (2.1):(
ϕ(b) − ϕ(d)

)
(3a + f − 2b − 2d) +

(
2ϕ(a) − ϕ(b) − ϕ(d)

)
(d − b) = 0 and b �= d.

3.3. The Derivative at a Configuration Symmetric w.r. to a Line (b := b′ = d′′, d := d′ = b′′)

2(b − d)ϕ′(a) +
ϕ(d) − ϕ(b)

(a + f −
2d)ϕ′(b) +

ϕ(d) − ϕ(f)

2(a − b)ϕ′(d) −
2ϕ(a) + ϕ(b) +

ϕ(f)

(2b − a −
f)ϕ′(d) +

ϕ(f) − ϕ(b)

2(d − a)ϕ′(b) +
2ϕ(a) − ϕ(d) −

ϕ(f)

2(d − b)ϕ′(f) +
ϕ(b) − ϕ(d)

2(b − d)ϕ′(a) +
ϕ(d) − ϕ(b)

2(f − d)ϕ′(b) +
ϕ(a) + ϕ(d) −

2ϕ(f)

2(b − f)ϕ′(d) +
2ϕ(f) − ϕ(a) −

ϕ(b)

(f + a −
2b)ϕ′(d) +
ϕ(b) − ϕ(a)

(2d − f −
a)ϕ′(b) +

ϕ(a) − ϕ(d)

2(d − b)ϕ′(f) +
ϕ(b) − ϕ(d)

2(b − d)ϕ′(a) +
ϕ(d) − ϕ(b)

2(d − a)ϕ′(b) +
2ϕ(a) − ϕ(d) −

ϕ(f)

(2b − a −
f)ϕ′(d) +

ϕ(f) − ϕ(b)

2(a − b)ϕ′(d) −
2ϕ(a) + ϕ(b) +

ϕ(f)

(a + f −
2d)ϕ′(b) +

ϕ(d) − ϕ(f)

2(d − b)ϕ′(f) +
ϕ(b) − ϕ(d)

2(b − d)ϕ′(a) +
ϕ(d) − ϕ(b)

(2d − f −
a)ϕ′(b) +

ϕ(a) − ϕ(d)

(f + a −
2b)ϕ′(d) +
ϕ(b) − ϕ(a)

2(b − f)ϕ′(d) +
2ϕ(f) − ϕ(a) −

ϕ(b)

2(f − d)ϕ′(b) −
2ϕ(f) + ϕ(a) +

ϕ(d)

2(d − b)ϕ′(f) +
ϕ(b) − ϕ(d)

Using appropriate line and column operations, one finds that the rank of the derivative of the
equations of balanced configurations at a configuration symmetric with respect to a line of type
(L1) (that is, b′ = d′′, b′′ = d′) is strictly less than 3 if and only if one of the following conditions
holds (we disregard the case b = d already studied):

a = f and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(b − d)ϕ′(a) + ϕ(d) − ϕ(b) = 0, (J1)
or

2(a − d)ϕ′(b) + ϕ(d) − ϕ(a) = 0, (J2)
or

2(a − b)ϕ′(d) + ϕ(b) − ϕ(a) = 0, (J3)

or det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2a + 2f − 4b)ϕ′(d)

+2ϕ(b) − ϕ(a) − ϕ(f)

(a − f)ϕ′(b)

+ϕ(f) − ϕ(a)

−−−−−−−−−− −−−−−−−−−−

(a − f)ϕ′(d)

+ϕ(f) − ϕ(a)

(2a + 2f − 4d)ϕ′(b)

+2
(
ϕ(d) − ϕ(a)

)
− ϕ(f)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (3.2)

The first case corresponds to the intersection of the component f = a with the three branches of
line symmetric balanced configurations:
In the second case one must add Eq. (2.2):

2(b − d)
(
ϕ(a) − ϕ(f)

)
+ (f − a)

(
ϕ(b) − ϕ(d)

)
= 0.

4. THE CASE OF A LOGARITHMIC POTENTIAL

When the potential is logarithmic (ϕ(u) = −u−1), it is well known that the equations of central
configurations become simpler: for example, the isosceles and equilateral central configurations
coalesce into a unique equilateral one. Equations of balanced configurations also become simpler in
the sense that they factorize:
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Fig. 5.

4.1. Singularities of B at a Configuration with Plane Symmetry

The Equation (2.1) of balanced configurations with plane symmetry (such that b′ = b′′, d′ = d′′)
becomes:

(b − d)
[
2bd − 3a(b + d) + a(3a + f)

]
= 0.

We have seen in Section 3.2 that, independently of the potential, the singularities of the set B of
balanced configurations at a configuration of rhombus type (b′ = b′′ = d′ = d′′) are also singularities
of the set S of symmetric balanced configurations (either b′ = b′′, d′ = d′′ or b′ = d′′; d′ = b′′). Hence
we shall suppose that b′ = b′′ := b �= d := d′ = d′′. After scaling the configuration by setting a = 1,
the equation of balanced configurations becomes

2bd − 3(b + d) + f + 3 = 0. (4.1)

As we have already understood the case f = a, we need deal only with condition (3.1) of Section 3.2,
which becomes

(4bdf − 2df2 − 2b2d + b2df − b2f)(4bdf − 2bf2 − 2bd2 + bd2f − d2f)

−bdf2(b2 + f − d − 2b + 1)(d2 + f − b − 2d + 1) = 0.
(4.2)

The equilateral solutions b = a = 1, d = f or b = f, d = a = 1 are factored out in the following way:
Eqs. (4.1) and (4.2) can be written

(2d − 3)(b − 1) + (f − d) = 0, or equivalently (2b − 3)(d − 1) + (f − b) = 0, (4.3)

and [
−2d(b − f)2 + b2f(d − 1)

]
×

[
−2b(d − f)2 + d2f(b − 1)

]
−bf

[
(b − 1)2 + (f − d)

]
× df

[
(d − 1)2 + (f − b)

]
= 0.

(4.4)

Using (4.1) in order to eliminate f , one transforms Eq. (4.2) into

6(b − 1)2(d − 1)2A = 0, (4.5)

where
A = 4b2d2(b + d)2

− 4bd(3b3 + 8b2d + 8bd2 + 3d3)

+ 9b4 + 36b3d + 82b2d2 + 36bd3 + 9d4

− (9b3 + 63b2d + 63bd2 + 9d3)
+ 48bd.

4.2. Singularities of B at a Configuration with Line Symmetry

After scaling the configuration by setting a = 1, the Eq. (2.2) of balanced configurations with
line symmetry (b′ = d′′ and d′ = b′′) becomes

2bd = f, (4.6)
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