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These notes contain almost no proofs. Their purpose is simply to be a guide

to the oral lectures and the reading of the quoted papers. I choosed to stress

the more algebraic aspects of Celestial Mechanics : reduction, homographic

motions, comparisons to two-body problems, collisions, · · · a sort of sketchy

rewriting of a substantial part of Wintner’s classical book [W1]. This is

based on a common paper with Alain Albouy [AC1] and many more ideas

from Albouy’s beautiful works. I end with a description of Xia’s proof of the

existence of non-collision singularities for the five-body problem in three-

space [X1]. Many fundamental aspects of the N -body problem are not

even mentioned, for instance the topology of integral manifolds, the proofs

of non-integrability, existence of various types of solutions, stability · · ·
Neither are the more astronomical aspects of Celestial Mechanics – periodic

and quasi-periodic motions, secular systems and long term evolution of

planetary systems.

To the title of each paragraph is appended the main reference used to write

it (not necessarily the main historical one). Other references are quoted in

the text [between brackets] or just given in the bibliography.

1-1. The shape of N points in a normed space [AC1]

The equivalent formulas

β
(
(ξ1, · · · , ξn), (η1, · · · , ηn)

)
:=
∑

i,j

< ~ri, ~rj >E ξiηj =
∑

i,j

(−1

2
r2
ij)ξiηj

define a quadratic form on the hyperplane

D∗ :=
{

(ξ1, . . . , ξn) ∈ IRn |
n∑

i=1

ξi = 0
}

of IRn. The vectors ~r1, · · · , ~rn are elements of a finite dimensional euclidean

space E, whose scalar product and norm are written <>E and ‖ ‖E , and

the positive numbers rij = ‖~ri − ~rj‖E are the mutual distances.
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This form defines the configuration of the n points up to a common rigid

motion (translation and rotation) in E. The hyperplane D∗ is to be consid-

ered as the dual of the space D = IRn/(1, · · · , 1) of dispositions, that is the

space of n-uples of points on a line up to translation. The n(n−1)/2 num-

bers r2
ij are the coordinates of β in a natural basis of the space of quadratic

forms on D∗. Considered as a homomorphism of D∗ to D, β = tx◦ε◦x,

where the isomorphism ε : E → E∗ defines the euclidean structure of E

and x : D∗ → E, x(ξ1, · · · , ξn) =
∑n
i=1 ξi~ri, defines the configuration up to

translation. This is nothing but the Gram construction. One checks that

Kerβ = Kerx and Imβ = Im tx. A necessary and sufficient condition that

the r2
ij be indeed the squares of the mutual distances of n elements of a

normed space E is that β be positive (compare to Blumenthal [Bl1]).

1-2. Masses as an euclidean structure on the dispositions [AC1]

¿From the euclidean structure ‖(x1, . . . , xn)‖2 =
∑n
i=1mix

2
i on IRn associ-

ated with n positive masses mi, we define an euclidean structure on D by

‖(x1, . . . , xn)‖µ = 1
M

∑
i<jmimj(xi−xj)2. One checks that the associated

isomorphism µ : D → D∗ is defined by µ−1(ξ1, . . . , ξn) =
(
ξ1
m1
, . . . , ξnmn

)
and

µ(x1, . . . , xn) =
(
m1(x1 − xG), . . . ,mn(xn − xG)

)
, where xG = (m1x1 +

· · ·+mnxn)/M is the center of mass of the xi (M = m1 + · · ·+mn is the

total mass).

Notice that one can now represent the quotient space D by the section

xG = 0 orthogonal to (1, · · · , 1), with the induced metric : reducing the

translational symmetry amounts to fixing the center of mass. All this is

in germ in Jacobi; for example, the classical Jacobi coordinates amount

to choosing a particular orthogonal basis of D∗. The quadratic form on

E∗ associated to b := x◦µ◦tx is called the inertia form of the configuration.

The forms β and b are closely related : b being on the side of ambient space

turns with the bodies under an isometry of E, while β being on the side of

the bodies is invariant under isometries of E. The common trace I of the

endomorphisms µ◦β and b◦ε is the moment of inertia of the configuration

with respect to its center of mass :

I =
1

M

∑

i<j

mimj‖~ri − ~rj‖2 =
n∑

i=1

mi‖~ri − ~rG‖2.

Let voli1···ik be the volume of the (k − 1)-dimensional parallélotope gene-

rated in E by the vectors ~i1i2, . . . , ~i1ik, that is (k − 1)! times the volume

of the simplex defined by the points i1, . . . , ik. One checks that

det(IdD∗ − λµ◦β) = det(IdE − λb◦ε) = 1− η1λ+ · · ·+ (−1)n−1ηn−1λ
n−1,

where ηk−1 = 1
M

∑
i1<···<ik mi1 · · ·mikvol2i1···ik .
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2-1. Lagrange equations : absolute motions [AC1]

Since Lagrange[L2], the equations of the newtonian n-body problem are

written

mi~̈ri =
∂U

∂~ri
, U =

∑

i<j

mimjΦ(r2
ij), Φ(s) = Gsκ,

with κ = − 1
2 in the newtonian case. U is the force function, opposite to the

potential energy. “Reducing” the translations one can write this equation

as the following equality of homomorphisms from D to E∗ :

(N) ε◦ẍ◦µ = dU(x) .

We have identified U with a real function on the space Hom(D∗, E) and

Hom(D, E∗) with the dual of this space via the bilinear mapping (φ, ψ) 7→
trace (tφ◦ψ). The isomorphism x 7→ ε◦x◦µ defines an euclidean structure

on Hom(D∗, E) in terms of which (N) becomes

ẍ = ∇U(x),

where ∇ is the gradient. We shall denote by a dot · the scalar product :

x · y = trace (µ◦tx◦ε◦y) =
n∑

i=1

mi < ~ri − ~rG, ~si − ~sG >E ,

if x and y are respectively represented by (~r1, · · ·~rn) and (~s1, · · ·~sn). For

instance, I = x · x is just the squared norm of x.

Writing U(x) = Û(β), one obtains dU = 2ε◦x◦dÛ , which puts the equations

of motion in the form

(N) ẍ = 2x◦A,

where the Wintner-Conley endomorphism A = dÛ◦µ−1 : D∗ → D∗ depends

linearly on the masses. We call “absolute” the corresponding motions,

which are usually obtained by fixing the center of mass.

2-2. Lagrange equations : relative motions [AC1]

After reduction of the translations, the phase space of the n-body pro-

blem can be taken as the tangent space to the Hom(D∗, E) and identified

with Hom(2D∗, E) where 2F means the product of two copies of F . The

elements will be written z = (x, y), x for the positions (~r1, · · · , ~rn), y for

the velocities (~̇r1, · · · , ~̇rn). The space of motion is the image Im z of z and

the equations of motion are

(N) ẋ = y, ẏ = 2x◦A.
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By the Gram construction we get E ∈ Hom+(2D∗, 2D) (the + sign means

symmetric positive)

E := tz◦ε◦z =

(
tx◦ε◦x tx◦ε◦y
ty◦ε◦x ty◦ε◦y

)
:=

(
β γ − ρ

γ + ρ δ

)
.

So, after reduction of both translations and rotations, the state of the

system is described by four elements β, γ, δ, ρ of Hom(D∗,D), whose first

three are symetric (β and δ are moreover positive) and the last antisymetric.

Computing Ė with the help of (N) we get the reduced equations which

generalize systems obtained by Lagrange[L1] and Betti[Be1] and whose

solutions are called “relative” motions :

(NRel)

β̇ = 2γ,

γ̇ = tA◦β + β◦A+ δ,

δ̇ = 2(tA◦γ + γ◦A)− 2[A, ρ),

ρ̇ = [A, β).

Given a bilinear form θ on D∗, we have written [A, θ) = tA◦θ − θ◦A. For

instance, due to the symmetry of A◦µ, the endomorphism µ◦[A, β) is the

usual commutator A◦B −B◦A of the endomorphisms A and B = µ◦β.

2-3 Invariants and first integrals [AC1]

The traces I, J et K of endomorphisms B = µ◦β, C = µ◦γ and D = µ◦δ
of D∗ can be written

I = x · x, J = x · y, K = y · y.

On the level of traces, what is left of the equations of motion is

J̇ =
Ï

2
= K + 2κU, Ḣ = 0,

where H = 1
2K − U is the total energy, sum of the kinetic energy in

a galilean frame fixing the center of mass and of the potential energy.

The first is the Lagrange-Jacobi relation (or virial relation, see Jacobi[J1],

Poincaré[Po1] p. 90,91) and the second is the conservation of energy. As

the Lagrange-Jacobi relation can also be written Ï
2 = 2H + 2(κ+ 1)U , we

see that, as I controls the size of the system, that is supi,j rij, its second

derivative Ï or equivalently the potential function U , controls the clustering

infi,j rij.

One already notices the particular case of the potential of Jacobi-Bana-

chiewicz (κ = −1) [Ba1,W2] for which Ï = 2H is constant, which implies
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the new first integral G = 2IH−J2. We shall describe later the symmetry

due to the homogeneity of the potential function. The Lagrange-Jacobi

relation is basic to our understanding of the global behaviour of solutions

of the n-body problem : if we write it J̇ = 2H + 2(κ+ 1)U , we see that, in

the newtonian case or more generally if κ > −1, the positivity of U implies

that J is increasing along any solution whose total energy H is ≥ 0. The

existence of such a Lyapunov function precludes any non trivial recurrence,

in particular it forbids any periodic motion. It is well known that things

are much more complicated in negative energy. The basic tool replacing J

will then be Sundman’s function (see 6-2).

Finally, we discuss the angular momentum
∑n
i=1mi~ri ∧ ~̇ri, which is a bivec-

tor of E. Considered as an antisymetric form on E∗, that is an antisymetric

homomorphism from E∗ to E, it can be written

C = z◦ωµ◦
tz = −x◦µ◦ty + y◦µ◦tx,

where ωµ : 2D → 2D∗ is defined by ωµ(u, v) =
(
−µ(v), µ(u)

)
. One readily

computes its derivative Ċ = 2x◦(−µ◦tA + A◦µ)◦tx = 0. This proves C
is invariant. The support of the bivector C, that is the image of C ∈
Hom(E∗, E), is called the fixed space. Its dimension, always even, is the

rank of C. One finds in Albouy[A1] the proof by elementary symplectic

geometry of the estimates

rank C ≤ rank E ≤ 1

2
rank C + n− 1

which generalize a theorem of Dziobek saying that for three bodies with

zero angular momentum, the motion necessarily takes place in a fixed plane.

We set

[C] =
√
−(C◦ε)2, JC = [C]−1◦C◦ε, ΩC = ε◦JC , |C| =

1

2
tr[C] =

1

2
〈C,ΩC〉

(of course, in the definition of JC , we invert [C] only on the fixed space).

As ΩC = ε◦JC and J 2
C = −Id on the fixed space, the triple (ε,ΩC ,JC)

endows the fixed space with a hermitian structure (compatible euclidean,

symplectic and complex structures). A similar structure (κ,Ω,J ) is ob-

tained on Hom(D∗, E) by setting κ(x) = ε◦x◦µ (compare to 2-1), J (x) =

JC◦x and Ω = κ◦J . It defines a hermitian structure on the subspace of

x = (~r1, · · · , ~rn) ∈ Hom(D∗, E) such that each ~ri belongs to the fixed

space. When dimE = 2, C can be thought of as a real number c whose

norm is |C|. If c 6= 0, the said subspace is the whole space and the complex

structure is defined by the rotation of each ~ri by ±π2 according to whether

c is positive or negative. When dimE = 3, C can be thought of as a vector
~C of length |C|, the operator being the “vectorial product” by this vector.
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If C 6= 0, the fixed space is the plane orthogonal to this vector and the com-

plex structure is defined by J
(
(~r1, · · · , ~rn)

)
= (

~C
|~C| ∧~r1, · · · , ~C

|~C| ∧~rn). Even

without restricting to the fixed space, we shall consider J as a (eventually

non invertible : ‖J (x)‖ ≤ ‖x‖) complex structure and call the set of all

elements of the form λ1x+λ2J (x), λ1, λ2 ∈ IR, the complex line generated

by x.

The space Hom+(2D∗, 2D) of relative states is endowed with a Poisson

structure whose symplectic leaves are the intersections of the submanifolds

obtained by fixing the rank of E and of those obtained by fixing the rotation

invariants of the angular momentum. One fixes these invariants by fixing

the traces of the iterates (of even order, those of odd order are equal to

zero) of ωµ◦E , which are equal to those of the iterates of C◦ε.

3-0. The newtonian two-body problem with C = 0 [MS1]

As C = 0, y is proportional to x and every motion takes place on a fixed line,

so that one can suppose E = R and x, y ∈ Hom(D∗, R) = D. Moreover,

as x won’t change its sign, we shall suppose that x = r > 0. The total

energy is H = 1
2‖y‖2−U(x) = 1

2‖ṙ‖2− k
r , where k = Gm1m2. The actual

integration of the differential equations of motion is well known. A solution

either ends with a collision at time t0 – in which case r = O
(
(t0 − t)

2
3

)

independently of the value h of H – or it escapes to infinity (in infinite

time). This last possibility occurs only in the case when the energy is non

negative. When t → +∞, one then has r = 0
(
t

2
3

)
if h = 0 (parabolic

motion) or r = 0(t) if h > 0 (hyperbolic motion). To characterize the

motions which lead to escape, it is convenient to introduce the function

G(r, t) = r
3
2 − 3

2

√
2k t.

Its time-derivative along a solution is d
dtG

(
r(t), t

)
= 3

2r
1
2

(
ṙ −

√
2k
r

)
, so

that G is non-decreasing if and only if h > 0 AND ṙ > 0. For easy visua-

lisation, especially of limit velocities, it is good to use coordinates (ṙ, 1
r )

(compare 3-1) in the phase plane, so that constant energy curves become

parallel parabola. Finally, let us recall how one regularizes the collision “à

la Levi Civita” [LC1], replacing it by an elastic bounce after reducing the

velocity to keep it finite : one sets r = z2 and dt = 2z2dτ . In the new time

τ , the differential equation of regularized motion becomes

(
dz

dτ

)2

− 2hz2 = 2k.

When the energy h is negative, this is just a harmonic oscillator.
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3-1. The newtonian two-body problem with C 6= 0 : absolute

motions [A1]

One can suppose that E = IR2 and denote by x = (x′, x′′) an element of

the configuration space Hom(D∗, IR2) = D2. In terms of the euclidean

structure on D, the energy and angular momentum integrals become

1

2
(‖y′‖2 + ‖y′′‖2)− U(x′, x′′) = h; < x′, y′′ > − < x′′, y′ >= c.

Following Smale and Albouy, one understands the topology of the sets

defined by these equations by fixing x up to homothety and determining

compatible velocities and sizes. In the case when c 6= 0, Albouy noticed that

this determination is most conveniently done by replacing the equations by

the following ones, homogeneous of degree 0 in x :

1

2
(‖y′‖2 + ‖y′′‖2)− U(x′, x′′)

c
< x′, y′′ > − < x′′, y′ >= h,

< x′, y′′ > − < x′′, y′ >= c,

which he writes

‖y′ + x′′U
c
‖2 + ‖y′′ − x′U

c
‖2 =

IU2

c2
+ 2h,

< x′, y′′ > − < x′′, y′ >= c.

After fixing x up to homothety, the velocities satisfying these equations

belong to the intersection of the sphere S in D2 of center
(
−x′′Uc , x

′U
c

)
and

radius IU2

c2 + 2h and of the half-space (< x′, y′′ > − < x′′, y′ >) > 0 (if

c > 0). Albouy also noticed that the sphere S is orthogonal to the virial

sphere of equation ‖y′‖2 + ‖y′′‖2 = −2h, so called because the Lagrange-

Jacobi relation implies that its equation can be written Ï = 0. All this holds

for the general case of n newtonian bodies in the plane. But only in the case

of two bodies is the radius of the sphere S independant of the configuration.

In this case, the invariant sets are tori (h < 0) or cylinders (h ≥ 0). The

determination of the actual integral curves (conics) is obtained by fixing the

Laplace vector ~L = −U~r12 + ˙~r12 ∧ ~C , defining the direction of perihelium

of the orbit and its excentricity, which, in this setting, becomes after a

rotation of π
2 and a division by c the vector

~L =

(
y′ +

x′′U
c
, y′′ − x′U

c

)

joining the center of the sphere S to the point y = (y′, y′′). To actually

solve the equations of motion it is convenient to work with the size r = I
1
2 .

In the basis of the plane D2 defined by the vectors (x′, x′′) and (−x′′, x′),
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the coordinates of y are ṙ and c
r , so that K = ṙ2 + c2

r2 , or equivalently

IK − J2 = c2, and the Lagrange-Jacobi equation becomes

r̈ =
∂Ũ

∂r
, where Ũ = U − c2

2r2
.

Considered as a function of r, Ũ is the amended potential function. To this

equation should be added the law of areas

θ̇ =
c

r2
,

where (x′, x′′) = (r cos θ, r sin θ). From now on, one can perform the com-

plete integration as usual by taking c
r as a new variable.

Remark. Exactly as we did on the line, we can regularize the collision by

setting x = z2 and dt = |z2|dτ . Of course, the variables z and x = x′+ ix′′

are now complex numbers (see also [Mi1]).

3-2. The two-body problem : relative motions [AC1]

This is the only case where a configuration is determined by its size, i.e. by

I = m1m2

m1+m2
r2
12. In particular, U = G(m1m2)1−κ(m1 +m2)κIκ = kIκ. The

endomorphisms B,C,D of the 1-dimensional space D∗ are homotheties of

respective ratios their traces I, J,K and there are no antisymetric forms,

so that the equations of relative motion reduce to the ones on the traces.

The integrals of the reduced system are the energy H = 1
2K − kIκ and

the squared norm c2 = |C|2 = IK − J2 of the angular momentum. Fixing

these, one determines an integral curve. The corresponding motion takes

place on a line if and only if IK − J2 = 0 (this is just the case of equality

in Cauchy-Schwarz).

Note the two ways of reducing the problem : one can first go the quotient

by the symmetry group and then fix the invariants of the first integrals, or

first fix the integrals as we did in 3-1 and then go to the quotient by the

subgroup fixing these integrals (elimination of θ). Of course the difference

is really meaningful if the dimension of E is strictly bigger than 2. In

dimension 3, the last way leads to the reduction of the node.

Remark. There are other cases where the potential function U depends

only on the moment of inertia I. Apart from the trivial case of harmonic

oscillators (κ = 1) where U is proportional to I, there is the curious case of

the colinear three-body problem with equal masses and κ = 2. The reader

will check the algebraic identity
(
(x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2

)2

2
=(x1−x2)4+(x2−x3)4+(x3−x1)4

which implies that U is proportional to I2. Actually, apart from these

cases, the colinear three-body problem is “integrable” only when κ = −1

(Jacobi-Banachiewitz) or κ = 1
2 (constant force).
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4. Generalized two-body motion : homographic solutions [AC1]

One calls homographic a solution z(t) =
(
x(t), y(t)

)
of equations (N) such

that there exists a real function ν of the time and a relative configuration

β0 with β(t) = ν(t)2β0, where β(t) = tx(t)◦ε◦x(t). Intimately linked with

the symetries of newtonian-like hamiltonians, the homographic solutions

are the only solutions one is able to explicitely compute for the general

n-body problem. They comprise two important particular cases :

– homothetic solutions solutions z(t) =
(
x(t), y(t)

)
such that there exists a

real function ν of time and an absolute configuration x0 with x(t) = ν(t)x0.

–rigid solutions z(t) such that the relative configuration β(t) does not de-

pend on time.

The setting introduced in the first two chapters allows giving nice and short

proofs of all the affirmations and propositions which follow :

–The configuration x of a homothetic solution at any time is characterized

by the fact that it is central : there exists a real number λ such that

dU(x) = 2λε◦x◦µ (this number is necessarily equal to κU
I ).

–A motion is rigid if and only if it is a motion of relative equilibrium,

defining an equilibrium of the relative equations (NRel) : it is characterized

by the equation Ė = 0, that is

γ = 0, δ + tA◦β + β◦A = 0, [A, ρ) = [A, β) = 0.

In particular, the relative configuration of a rigid motion satisfies the equa-

tion

[A, β) = 0.

Such configurations are said to be equilibrated (in French équilibrées).

Their name comes from the fact that they are exactly the configurations

which admit a relative equilibrium motion in a space of big enough di-

mension (2n− 2 is of course sufficient for n bodies) : the attracting forces

can be exactly “equilibrated” by the centrifugal forces. A central con-

figuration is equilibrated because one deduces from the definition that

β◦A = λβ = t(λβ) = tA◦β.

Proposition. The configuration of a homographic motion is equilibrated.

It is even central, except possibly in dimension higher than two if the degree

of homogeneity 2κ of U is −2, or if the motion is rigid.

One can give a fairly good description of what is a homographic motion

but describing the possible configurations, for example the central ones, is

a very difficult problem as soon as there are more than three bodies (see

5-2). Let us start with solutions of relative equilibrium :
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Proposition. A motion of relative equilibrium is a uniform rotation of

the absolute state z (not periodic in general as soon as the dimension of E

is at least 4) i.e. there exists a constant antisymetric form Ω on the space

of motion such that ż = ε−1◦Ω◦z. In the newtonian case the motion takes

place in a space of even dimension.

If we put aside the Jacobi-Banachiewitz potential, the remaining cases have

central configuration. The description of homothetic solutions is easy : for

any normalized (I = 1) central configuration x0 and any real solution ζ(t)

of the differential equation ζ̈ = 2κU(x0)|ζ|2κ−2ζ (essentially (N) in the

one-dimensional case), x(t) = ζ(t)x is a homothetic solution. Moreover,

every homothetic solution is of this type.

The following proposition shows that non homothetic ones are indeed com-

plex homothetic :

Proposition. The space of motion Im z of a homographic, non homo-

thetic, solution with central configuration, coincides with the fixed space.

For the complex structure on Hom(D∗, Im z) induced by the angular mo-

mentum, y is at any time a complex multiple of x : if x0 = ‖x(0)‖−1x(0)

is the normalized initial configuration, x(t) = ζ(t)x0 where ζ is a complex

function of the time satisfying ζ̈ = 2κU(x0)|ζ|2κ−2ζ. Inversely, any com-

plex solution of this differential equation gives rise to a complex homothetic

solution.

One deduces from this proposition that a homographic motion with central

configuration, in particular any non rigid homographic motion, is a gen-

eralized Keplerian motion : all bodies describe similar conics around the

center of mass.

5-1. Equilibrated and central configurations : equations and easy

results [AC1]

To write down usable equations of these configurations it is convenient

to represent bilinear forms on D or on D∗ by n × n matrices. Such a

representation is unique in the case of D but ambiguous in the case of D∗
where we have to chose an extension of the form to IRn. Representing β

by the matrix of general term − 1
2sij :=− 1

2r
2
ij , dÛ by the matrix of general

term − ∂Û
∂sij

and µ−1 by the diagonal matrix of the m−1
i , one finds that

Π = β◦dÛ◦µ−1 = β◦A ∈ Hom(D∗,D) is represented by the matrix whose

coefficients are the

Pij =
1

2mj

∑

l 6=j
(sil − sij)

∂Û

∂slj
.

To get convenient coordinates for the antisymetric part of Π, one notices

that the exterior product by (1, · · · , 1) factorizes through an embedding of
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∧2D in
∧3

IRn. The coordinates of the image of the bivector Π − tΠ by

this injection are the

Pijk = Pij + Pjk + Pki − Pik − Pkj − Pji
= −1

2
∇ijk +

1

2

∑

l 6=ijk
Y lijk,

with i < j < k, where

∇ijk =

∣∣∣∣∣∣

1/mi 1/mj 1/mk

sjk − ski − sij ski − sij − sjk sij − sjk − ski
∂Û/∂sjk ∂Û/∂ski ∂Û/∂sij

∣∣∣∣∣∣
,

and

Y lijk =

∣∣∣∣∣∣∣∣

1 1 1
sjk + sil ski + sjl sij + skl

1

mi

∂Û

∂sil

1

mj

∂Û

∂sjl

1

mk

∂Û

∂skl

∣∣∣∣∣∣∣∣
.

The equations Pijk = 0, i < j < k, define the equilibrated configurations.

Of course, if n is strictly greater than three 3, we get too many equations

but this is nevertheless the best way of writing down the equations.

In the newtonian case, Û =
∑

1≤i<j≤nmimjΦ(sij), where Φ is defined by

Φ(s) = Gs−1/2, and the above equations become linear in the masses ! A

most important property of Φ is the concavity of its derivative ϕ. For three

bodies, it implies immediately the following proposition :

Proposition. In the newtonian case, a configuration of three bodies of

equal masses is equilibrated if and only if it is isoceles.

On the other hand, iii) of the following proposition shows that the equa-

tions of central configurations depend only on the symetric part of Π :

Proposition. The following conditions are equivalent and they character-

ize the relative central configurations (i.e. the relative configurations of

central configurations).

i) there exists a real number λ such that (tA− λId)|Im β = 0,

ii) there exists a real number λ such that β◦A− λβ = 0,

iii) there exists a real number λ such that tA◦β + β◦A− 2λβ = 0,

These properties imply that λI = tr(µ◦β◦A) = κU .

The coordinates of the symetric part of Π on the natural basis of the

space Homsym(D∗,D) of symetric bilinear forms on D∗, are the invariant

combinations

Pii + Pjj − Pij − Pji = sijΣij +
∑

h 6=i,j
mh(Sih − Sjh),
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where

Σij = 2(mi +mj)Sij +
∑

h 6=i,j
mh(Sih + Sjh), Sij = ϕ(sij).

(in the same way, the r2
ij = − 1

2sii − 1
2sjj + 1

2sij + 1
2sji are the coordinates

of β as asserted in paragraph 1-1). Following Albouy [A4], we shall write

the equations of central configurations setting η = 0, where the definition

of η is the same as the one of Π with A replaced by A − λ Id, that is U

replaced by Uλ = U − λI (one can fix λ; the only effect of this will be to

determine the “size” I of the configuration).

We give now a variational characterization of the equilibrated and central

configurations : For a relative configuration β, let us define its isospectral

manifold as the set

Sβ =
{
θ ∈ Hom+(D∗,D) | spectrum (µ◦θ) = spectrum (µ◦β)

}
.

It is also the set of relative configurations defined by configurations having,

up to rotation, the same inertia form b.

Proposition. 1) A relative configuration β is équilibrated if and only if

it is a critical point of the restriction of Û to its isospectral manifold. 2)

Let E be an euclidean space. A configuration x ∈ Hom(D∗, E) is central if

and only if ‖x‖−1x is a critical point of the restriction of U to the sphere

of equation I = 1. 3) A relative configuration β of rank p is central if and

only if β is a critical point of the restriction of Û to relative configurations

of the same rank p and moment of inertia I = trace (µ◦β).

Comparing 1) and 3), one checks again that central configurations are

equilibrated : indeed, fixing I is just fixing the spectral invariant η1, and

fixing to p the rank is equivalent to setting 0 = ηp+1 = ηp+2 = · · ·.

Central configurations are well understood in only two cases : for n bodies

on a line or for 3 bodies. In the first case, say for Newton’s potential,

Moulton’s theorem asserts that for a given order of the bodies on the line

there exists exactly one central configuration [Mou1, A4]. This general-

izes a result of Euler for 3 bodies [E1, E2] and is based on an argument

of convexity. In the second, Lagrange’s theorem asserts that whatever be

the masses, the equilateral triangle is the only non colinear central con-

figuration of 3 bodies [L1]. This last result is easy to prove in our set-

ting : we have just to look for a critical point of the potential function

Û(β) = m1m2Φ(r2
12) + m1m3Φ(r2

13) + m2m3Φ(r2
23) on the set of normal-

ized (say I = 1
M (m1m2r

2
12 +m1m3r

2
13 +m2m3r

2
23) = 1) non flat triangles.

Taking the derivatives with respect to the r2
ij ’s we get that the three quan-

tities ϕ(r2
ij) must be equal, where ϕ = Φ′. This gives the result as soon as

ϕ is injective, which is true in the newtonian case.

12



          

5-2. Albouy’s theorem on central configurations of four equal

masses in the plane [A2, A3, A4]

This case is dual to Moulton’s case : in place of dim Imβ = 1, one has

dim Kerβ = 1. It is called the Dziobek’s case by Albouy.

Let (∆1,∆2,∆3,∆4), ∆1 + ∆2 + ∆3 + ∆4 = 0, represent an element of D∗
which generates Kerβ = Kerx (see 1-1) :

∑4
i=1 ∆j~rj = 0. In other words,

the −∆j

∆i
are the barycentric coordinates of the i-th body with respect to th

three others. According to Mœbius, who by the way was an astronomer,

one can normalise the ∆i’s so that (−1)i∆i be the oriented area of the

triangle obtained by forgetting the i-th body. Interpretating the square of

the volume of a simplex as we did in 1-2, one can get the following identity,

originally used by Dziobek in his studies of central configurations :

∂ vol21234

∂r2
ij

= k∆i∆j ,

where k is a constant. From the homogeneity of vol2, this transforms the

coplanarity condition vol = 0 into the condition∑

1≤i<j≤4

∆i∆jr
2
ij = 0.

According to the variational characterization given in 5-1, the relative cen-

tral configurations are the critical points β of the potential Û considered

as a function on the set of normalised (I = 1) configurations such that

vol21234 = 0 :

∂Û

∂r2
ij

= ν
∂ vol21234

∂r2
ij

+ ξ
∂I

∂r2
ij

,

that is for any couple i < j :

mimj

(
ϕ(r2

ij)−
ξ

M

)
= kν∆i∆j .

Recall from 5-1 that one can always adjust the size of the configurations

we are looking for so that ξ
M = 1. We shall then set ϕ̃ = ϕ − 1 and ∆′i =

∆i

mi
, kν = ν′, so that the equations become ϕ̃(r2

ij) = ν′∆′i∆
′
j . Recall also

from 5-1 the equations of equilibrated configurations, which are satisfied by

central configurations, and notice that replacing ϕ by ϕ̃ in these equations

makes no harm.

Theorem. If ϕ is increasing (ϕ′ > 0) and concave (ϕ′′ < 0), any central

configuration of four equal masses in the plane has a symmetry.

Corollary. Up to homothety, there are exactly three central configurations

of four equal masses in the plane : one convex, the square, and two non

convex, the equilateral triangle with a mass at the center of mass and a

certain isoceles triangle with a mass somewhere on the axis of symmetry

inside the triangle.
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The main idea of the proof of the theorem is that the order of the real

numbers ∆i∆j dictates the order of the mutual distances r2
ij . If there is no

symmetry, we can rename the bodies and eventually change the orientation

of the plane so that

∆1 < ∆2 < ∆3 < ∆4 and ∆1 + ∆4 < 0 < ∆2 + ∆3,

and obtain a sign contradiction in the equations

P123 = P124 = P134 = P234 = 0

of equilibrated configurations given in 5-1. The convex case, defined by

∆1 < ∆2 < 0 < ∆3 < ∆4, is easier to handle than the non convex one where

∆1 < 0 < ∆2 < ∆3 < ∆4. For the corollary one needs the assistance of a

formal calculus program. The shape of the isoceles triangle is determined

by the unique real root of a real polynomial of degree 37. It may be worth

recalling that before this work appeared one did not even know that the

number of central configurations of four equal masses in the plane was

finite ! The reader should now give a look at Albouy’s paper [A4] which

puts in a particularly nice conceptual setting most of the significant results

on central configurations, in particular those of Dziobek, Moulton, Conley,

Mœckel and Albouy himself.

6-1. Comparison of the general problem to a one dimensional

two-body problem : asymptotic estimations of the size via cluster

decompositions [MS1]

The only general method to get asymptotic estimates for the solutions of an

n-body problem is to compare it to the only case which is fully understood,

that is the two-body problem. The most famous such comparison goes back

to Sundman and is decribed in the following paragraph. We start here with

a simpler comparison, to a one-dimensional problem, where, contrarily to

Sundman’s, neither the total energy nor the angular momentum of the two

problems are comparable. This method in described in detail in the paper

of Marchal and Saari.

To a partition of the set {1, 2, · · · , n} into two components, there corres-

ponds a partition of an n-body configuration into two disjoint clusters. It is

not hard to prove that the maximum Λ, among all these partitions, of the

distances of the centers of masses of two clusters, possesses the following

properties (newtonian case):

1) Along a motion, the moments where Λ is not analytic are isolated.

2) There exists a positive constant k, depending only on the masses, such

that at each point where Λ is not analytic one has

Λ̈ ≥ −k/Λ2.
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3) If t0 is a value of non analyticity of Λ,

lim
t→t−0

Λ̇(t) ≤ lim
t→t+0

Λ̇(t).

These estimates amount to comparing a given n-body problem to a coli-

near two-body problem whose Hamiltonian is f = Λ̇2−2k/Λ. One deduces

from 2) and 3) that along a motion, the function f(Λ, Λ̇) increases along

the parametrized curve t 7→
(
Λ(t), Λ̇(t)

)
if Λ̇ > 0, decreases if Λ̇ < 0. The

possible asymptotic behaviours of Λ follow easily from this comparison

which is better understood in the plane (Λ̇, 1/Λ) :

1) Bounded motion : Λ and Λ̇ stay bounded,

2) Parabolic motion : Λ goes to ∞ and Λ̇ goes to 0,

3) Hyperbolic motion : Λ goes to ∞ and Λ̇ goes to a non zero limit,

4) Super-hyperbolic motion : Λ and Λ̇ go to ∞.

The last possibility cannot occur for less than four bodies (see 7-1) but it

does indeed occur for more than four bodies (see 8 and [SX1]).

Caution. When t → ∞ the asymptotic behaviours of I and Λ2 are the

same but this is definitely not true of their derivatives.

6-2. Comparison of the general problem to a planar two-body

problem : Sundman’s inequality and Sundman’s function [Ch1]

After fixing the center of mass, the motion of a two-body problem takes

place on a fixed line if C = 0, in a fixed plane otherwise. In the first case

x and y are proportional and Cauchy-Schwarz inequality IK − J2 ≥ 0

becomes an equality. In the second case, y is always a complex multiple of

x for the complex structure defined by the angular momentum (see 2-3).

One easily deduces from this the identity IK − J2 = |C|2 as a complex

Schwarz equality (compare 3-1).

For more bodies, this equality becomes Sundman’s inequality

IK − J2 ≥ |C|2,

which one obtains by replacing the norm ‖y‖ of the velocities configuration

y by the norm of its orthogonal projection on the complex line (i.e. real

plane) generated by x. Eliminating K with the help of Lagrange-Jacobi

relation in case κ 6= −1, one transforms Sundman’s inequality into the

differential inequality

IÏ − 2IH − 1

4
İ2 − |C|2 ≥ 0

which expresses that the second derivative of I is always greater or equal

to the value it would have for a two-body problem in the plane with same
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energy, same angular momentum and same values of I and İ. Once H and

|C| given, the integral curves of the corresponding differential equation are

the level curves in the plane of coordinates (I, J = İ/2) of Sundman’s

function S, defined on the phase space by

S = I−
1
2 (J2 + |C|2)− 2I

1
2H,

and Sundman’s inequality is equivalent to saying that the derivative

Ṡ = I−
3
2 J(IK − J2 − |C|2)

of S along a solution has the same sign as J = 1
2 İ, which means that

I and S are at the same time increasing or decreasing ! In the case of

two bodies, Sundman’s function is but a constant which depends only on

the two masses. As we already noticed in 3-1, it is natural to replace as

coordinates I and J by |C|r and ṙ when |C| 6= 0 : the integral curves of Sund-

man’s function become circles orthogonal to the circle of centre (0, 0) and

radius
√
−2H, each one being characterized by its center, with coordinates

(0,
√
IU/|C|). Contemplating Ṡ one sees that the n-body motions along

which S remains constant are on the one hand those for which the mo-

ment of inertia I remains constant, on the other hand those such that the

equality IK − J2 = |C|2 remains constantly satisfied, that is the complex

homothetic ones (see 4). Notice that in the homographic motions with non

central configuration, IK − J2 remains equal to a constant strictly greater

than |C|2.

Problem. Does the constancy of I imply that the motion is rigid ?

Let us give a simple but fondamental consequence of the existence of Sund-

man’s function : in the case of two bodies, a collision can occur only if the

motion takes place on a line, that is if the angular momentum is zero.

Let us say that a motion of n bodies undergoes a total collision (or total

collapse) at time t0 if limt→t0 I(t) = 0.

Lemme (Sundman). A total collision of n bodies can occur only if the

angular momentum C is equal to 0.

The proof is very simple : one checks that close enough to the total collision,

the function I is decreasing, which implies that Sundman’s S function is

also decreasing. But if C does not vanish, the term I−
1
2 |C|2 forces S to go

to +∞.

For Sundman, triple collisions were just an obstacle to the analytical contin-

uation of the solutions of the three-body problem. According to Painlevé,

the only “singularities” of the three-body problem are collisions (compare

8); as double collisions can be regularized as branch points (generalize 3-

0 and 3-1), it only remained to Sundman to prove the non-accumulation
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of double collisions to get his famous description of each solution of the

three-body problem with non vanishing angular momentum by a conver-

gent series in a new time. By the way, it is well known that this decription

is of no use at all for understanding the problem.

Remark. At each point (x, y) of the phase space, the velocities config-

uration y is the orthogonal sum of a component yh, proportional to x,

which causes a purely homothetic deformation of the configuration, a com-

ponent yr of pure rotation and a component yd which is the only one

to induce a deformation of the normalized relative configuration I−1β.

One checks immediately that ‖yh‖2 = I−1J2, so that in terms of this

Saari’s decomposition of y, Sundman’s inequality amounts to replacing in

K = ‖y‖2 = ‖yh‖2 + ‖yr‖2 + ‖yd‖2, the rotation term ||yr||2 (indeed the

squared norm of its projection on the complex line generated by x) by

I−1|C|2, and ignoring the deformation term ||yd||2.

7-1. Non-zero angular momentum : the theorems of Sundman,

Birkhoff and Marchal-Saari [Bi1, MS1]

The signication of Sundman’s theorem can be precised as follows : suppos-

ing C 6= 0 and H < 0, we consider the time evolution of the couple
(
ṙ, |C|r

)

in the upper half-plane foliated by the level circles of Sundman’s function

(see 6-2 and recall that r =
√
I measures the size of the system). The evo-

lution curve follows one of these circles if there are two bodies; otherwise, it

goes towards bigger circles if ṙ > 0 and towards smaller ones if ṙ < 0. This

behaviour leaves open two possibilities : either after changing sign a finite

number of times, ṙ finally stays positive, either it oscillates indefinitely. In

the first case, I cannot go to 0. In the second, it could only after an infinite

number of oscillations which, due to Sundman’s theorem would necessarily

take infinite time. Actually, this last possibility was already ruled out in

1912 by Sundman [Su2] in the case of three bodies : he proved that along

any motion with non vanishing angular momentum, the size of the system

stays bounded away from zero. Fifteen years later, Birkhoff [Bi1] showed

more precisely that whenever the system reaches a size smaller than a cer-

tain limit, one body must escape : the system asymptotically decouples

into two clusters, a single body and a close couple, having each either a

parabolic (r = O(t
2
3 )) or a hyperbolic (r = O(t)) motion with respect to

the center of mass of the system. Actually, the fact that superhyperbolic

motion is impossible with only three bodies was already proved by Chazy

in 1922 [Cha1]. This is intuitive, as the two clusters asymptotically behave

as two bodies on a line (compare to 8). Finally a similar but necessarily

less precise result was proved in 1974 by Marchal and Saari :
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Theorem. For given values of the total energy H < 0 and angular mo-

mentum C 6= 0 of an n-body problem, there exists a lower bound rmin of

the size of any bounded motion : as soon as the size of the system becomes

smaller, one of the bodies at least escapes to infinity.

The proof consists in controlling the quantity Λ introduced in 6-1 and prov-

ing it eventually goes to infinity. The simplest way woud be to get control

on its derivative and show it gets bigger than the escape velocity for the one

dimensional two body problem, but this turns out to be possible directly

only in the case of three bodies where the system eventually decomposes

stably into two clusters, so that Λ̇ is equivalent to ṙ. When the number

of bodies is greater than three, Marchal and Saari succeed in proving that

if, after reaching at time t1 a too small value, the size of the system grows

again to a maximum at time t2, the function G introduced in 3-0 satisfies

G(t2) − G(t1) > 0. This integral estimation implies that there exists at

least one value of the time t for which d
dtG(t) is positive. Using 6-1 this

proves that Λ goes to infinity.

7-2. Zero angular momentum : the symmetry of homothety and

the collision manifold [Ch1]

We saw in 6-2 that C = 0 is a necessary condition for a total collision to

occur. The simplest example of such solutions are the homothetic ones

which exist as soon as the potential function is homogeneous. The sym-

metry due to this homogeneity is actually the key to the analysis of total

collisions (I → 0) and also of totally parabolic solutions (K → 0) which

play a dual role. If the potential function U(x) is homogeneous of degree

2κ, this symmetry is materialized on the phase space by the vector-field

Y = (x, κy),

that is by the differential equation ẋ = x, ẏ = κy (compare to Elie Cartan

[Ca1] par. 93), whose flow defines a homothety of the configuration and a

cleverly scaled one of the configuration of velocities. This is indeed quite a

poor symmetry : it does not preserve the symplectic form ω except when

κ = −1 (LY ω = (κ + 1)ω), it does not commute with the integrals of

motion (LYH = ∂YH = 2κH, LY C = ∂Y C = (κ + 1)C) unless these are

equal to zero and even worse it does not commute with the vector-field

XH = (y,∇U(x)) wich defines the motions except when κ = 1 (LYXH =

[Y,XH ] = (κ−1)XH). Nevertheless, this last equation implies by Frobenius

theorem that the phase space is foliated by integral manifolds of the field

of planes generated by Y and XH . The singular leaves of this foliation are

precisely the homothetic solutions. To be able to go to the quotient by the

symmetry field Y , it is wiser to generate this foliation by Y and a vector
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field X̃H which commutes with it. This is the case of X̃H = φXH as soon

as the “integrating factor” φ(x, y) satisfies LY φ = (1 − κ)φ. One possible

choice is φ = I
1−κ

2 and we shall make it. The integral curves of X̃H are

those of XH with a different parametrization (a solution ending in finite

time for one vector-field may continue indefinitely for the other). Notice

that only the components of the normalised angular momentum |H|−κ+1
2κ C

are invariant by Y . It is only when C = 0 and H = 0, both invariant under

Y , that we really reduce the dimension of the problem by going to the

quotient. Euler [E1] was the first to use this symmetry to reduce the three-

body problem on the line with H = 0. In the sequel it will be convenient

to work with the following invariant functions :

J̃ = I−
1+κ

2 J, K̃ = I−κK, Ũ = I−κU, H̃ = I−κH, C̃ = I−
1+κ

2 C.

The hypersurface I = 1 turns out to be a good representative of the quo-

tient by Y of the phase space. Let

Z̃ = X̃H − J̃Y = I
1−κ

2 XH − I−
1+κ

2 JY

be the unique vector field which has the same image as X̃H in the quotient

and is tangent to the level hypersurfaces of I. We denote by Z and call the

reduced vector-field the restriction of Z̃ to I = 1. Going to the quotient

can be done by replacing X̃H by Z and J̃ , K̃, Ũ , H̃, C̃ by J,K,U,H, C. The

flow of Z in the region I = 1, H < 0 (resp. I = 1, H > 0) reproduces

the dynamics of any one of the hypersurfaces of negative (resp. positive)

constant energy.

Definition. The collision manifold is the quotient by Y of the set of states

with zero energy and zero angular momentum. It can be identified with

the set of (x, y) such that I = 1, H = 0, C = 0.

It follows from the Lagrange-Jacobi relation (see 2-3) that the function J̃

is a Liapunov function for the restriction to the collision manifold of the

reduced vector field Z. As a consequence, there is no recurrence in the

collision manifold.

Remark. The flow of Y commutes with the natural action (x, y) 7→
(Ax,Ay) of the isometries A of E. The vector-field Z and the collision man-

ifold go to the quotient by this action as do the functions I, J,K,U,H, |C|.
We shall use the same notations after this quotient.

The following lemma and its corollary are easy to prove :

Lemme. The singularities of the reduced vector-field Z belong to the col-

lision manifold : they are the states (x0, y0) which define a homothetic

motion of zero energy and verify J0 = x0 · y0 6= 0. The integral curves of
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Z which are asymptotic (positively or negatively) to these are contained in

the union of the subsets C = 0 and H = 0. They correspond to motions of

the n bodies along which either I → 0, K → ∞ in finite time : total col-

lision), or K → 0, I →∞ (in infinite time : completely parabolic motion).

Moreover, if C = 0 and H 6= 0 (resp. H = 0 and C 6= 0) it is I (resp. K)

which goes to zero.

Corollary. Under the hypotheses of the above lemma, if I goes to 0 when

t goes to t0, one has J0(t − t0) > 0 and, near t0, I is equivalent to
[
(1 −

κ)J0(t−t0)
] 2

1−κ , J is equivalent to J0

[
(1−κ)J0(t−t0)

] 1+κ
1−κ , K is equivalent

to J2
0

[
(1−κ)J0(t− t0)

] 2κ
1−κ and U to 1

2J
2
0

[
(1−κ)J0(t− t0)

] 2κ
1−κ ; in the same

way, if I goes to infinity when t goes to infinity, one has J0t > 0 and,

near infinity, I is equivalent to
[
(1 − κ)J0t

] 2
1−κ , J to J0

[
(1 − κ)J0t

] 1+κ
1−κ ,

K to J2
0

[
(1 − κ)J0t

] 2κ
1−κ and U to 1

2J
2
0

[
(1 − κ)J0t

] 2κ
1−κ . This implies that

no subclusters are formed : each mutual distance between bodies is of the

order of |t− t0|
1

1−κ if I goes to 0 at time t0, and |t| 1
1−κ if I goes to infinity.

The following converse of the above results puts together results of Sund-

man, McGehee, Saari [Su1, Su2, Mc1, Sa2].

Theorem. A total collision solution (resp. a completely parabolic solu-

tion) can exist only if the angular momentum (resp. the energy) vanishes.

In both cases, the corresponding integral curve of Z converges to the set of

singularities of this vector-field. In particular, the normalized configuration

s = I−
1
2x tends to the set of central configurations and all the estimates of

the above corollary are valid.

In both cases, the key technical points are on the one side the existence of

a finite non zero limit J0 of J̃ , which gives time estimates, on the other

hand the existence of a finite non zero limit U0 of Ũ , a compacity result

which insures one stays far from partial collisions and allows proving the

existence of a limit set towards which the orbit of Z converges. These two

points correspond to the classical asymptotic estimates of İ and Ï which

are found in Wintner’s classical book : in case a total collision occurs at

time t0, I is of the order of |t− t0|
4
3 , because the temporal derivative of I

3
4 ,

which is equal to 3
2 J̃ , tends to 3

2J0 6= 0; the estimations of İ and Ï are the

ones one would obtain by formal differentiation but no Tauberian theorem

is needed. The only true difference between the two cases is the necessity in

the completely parabolic case to a priori estimate the asymptotic behaviour

of I using 6-1.

8. Going to infinity in finite time [Ch2]

The qualitative study of motions getting close to the simultaneous collision
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of three or more bodies is one key to unveiling the extraordinary complex-

ity which can be displayed by solutions of the n-body problem. This is

not surprising in view of the Thom’s principle that to get hold of a global

topology or a global dynamics one should first understand the singularities.

The BASIC FACT is the existence of solutions of the three-body problem

which after avoiding a total collision, eject one of the bodies at a velocity

arbitrarily higher than any former velocity in the system. It is this phe-

nomenon which was used by Mather and Mc Gehee (for four bodies on

the line [MM1]), Xia (for five bodies in space [X1]), and Gerver (for 3N

bodies in the plane, N big enough [G1]) to prove the existence of (non

physical : one needs really punctual bodies) solutions of the n-body prob-

lem along which some bodies “go to infinity” in finite time. In the first

case, the solution has an infinite number of regularized double collisions;

in the two last ones it has no collision at all but passes closer and closer to

triple collisions an infinite number of times. This answers a question asked

by Painlevé at the end of last century in his famous Leçons de Stockholm

[Pa1], about the existence of “non collision singularities” which could ob-

struct the prolongation of a solution. Painlevé’s question has given rise to

many important works : those of Painlevé himself, who proved on the one

hand that the lim inf of the minimal distance of two bodies must go to

zero in a system tending to a singularity, on the other hand that the sin-

gularities of the three-body problem are all due to collisions; those of Von

Zeipel [Z1, Mc3], who proved that the size of a system tending to a “non

collision singularity” goes necessarily to infinity; those of Mc Gehee [Mc1,

Mc2] at last, who unveiled the BASIC FACT. The late discovery of this

fact is somewhat amazing when one sees how obvious it is, at least in the

colinear case : the conservation of energy implies that at a double collision,

the velocity of each body with respect to their center of mass be infinite; if

the third mass m3 hardly misses the triple collision with m1 and m2, and

collides with m2 immediately after the collision of m2 with m1, it will take

advantage of the arbitrarily high velocity of m2 to rebound itself with a

arbitrarily high velocity. Technically, one studies the flow of the reduced

vector-field Z (see 7-2) in the neighborhood of the collision manifold. In

the Mather-McGehee solutions, m3 rebounds on a fourth mass m4 and the

same scenario repeats itself indefinitely in an arbitrarily small span of time.

The three first bodies are each time closer to a triple collision and, when far

from m3, the couple m1,m2 has an essentially elliptic (regularized) motion

(with excentricity 1, of course) each time faster and with semi-axis smaller.

What makes possible this repetition is that 1) provided the mass m3 is

small enough, it does come back near m2 after rebouncing on m4; 2) the

number of collisions between m1,m2 (or the frequency of the essentially el-

liptic motion) between two returns of m3 tends to infinity when one starts

closer and closer to a triple collision of the first three masses. This last
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fact allows to actually get closer and closer to this triple collision at each

return for a Cantor set of initial conditions.

To get rid of the collisions it seems natural to seek for solutions of the four-

body problem in the plane close to the Mather-McGehee ones. But till now,

nobody has succeeded in doing that. In the spatial solutions of Xia, the

isolated mass m4 is replaced by a second couple m4,m5 and the maximum

symmetry is supposed, to keep the dimension of the phase space reasonable

(12 after fixing the center of mass) and to take advantage of the very precise

studies by C. Simó [Si1] of the flow on the collision manifold of the isoceles

three-body problem : the messenger m3 moves on a fixed line which is a

symmetry axis of the system and each one of the triplets (m1,m2,m3) and

(m3,m4,m5) remains all the time isoceles. When far from m3, each couple

has around its own center of mass an essentially elliptic motion whose

excentricity is bigger and bigger and semi-axis smaller and smaller after

each interaction. At each step one gets closer to a simultaneous double

and triple collision and finally the centers of mass of these two couples go

to infinity in finite time. Checking the possibility of such motions without

collision is not easy because, as one gets closer and closer to a simultaneous

triple and double collision, the total angular momentum must be equal to

zero. A clever argument shows this is garanteed asymptotically provided

the limit directions (one has to show they do exist !) of the axis of the

two couples are neither parallel nor orthogonal. Another difficulty is that

the simple reboncing on m4 must be replaced by a careful shooting close

to a triple collision : if the synchronisation is not good enough, m3 may

just go through the couple m4,m5 and get definitively lost ! Finally, let

us mention Gerver’s solutions [G1] where a planar regular polygone, the

N (big) vertices of which are the centers of mass of N couples, all of the

same mass, explodes in finite time under the influence of N small and quick

messengers which visit each couple in turns in a synchronized way.

9 Reading : the three-body problem in the plane

The reader is urged to open the wonderful review article [Mo1] by Rick

Mœckel. He will recognize many of the topics studied in this course and

discover how weird already is the simplest non-integrable N -body problem.
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[L2] J.L. Lagrange Remarques générales sur le mouvement de plusieurs

corps, œuvres v.4, p. 401–418 (1777)

[LC1] T. Levi Civita Sur la régularisation du problème des trois corps, Acta

Math 42 p. 44 (1920)

[MS1] C. Marchal, D. Saari On the final evolution of the n body problem,

Journal of Differential Equations 20 p. 150–186 (1976)

[MM1] J. Mather, R. McGehee Solutions of the collinear four body Problem

which become unbounded in finite time, Lecture Notes in Physics 38 (J.

Moser editor) p. 573–597 Springer (1975)

[Mc1] R. McGehee Triple collision in the collinear three body Problem,

Inventiones Mathematicæ 27 p. 191–227 (1974)

[Mc2] R. McGehee Singularities in Classical and Celestial Mechanics, Pro-

ceedings of the Int. congress of Math. Helsinki p. 827–834 (1978)

[Mc3] R. McGehee Von Zeipel’s theorem on singularities in celestial me-

chanics, Expo. Math. 4 p. 335–345 (1986)

[Mi1] J. Milnor On the geometry of the Kepler problem, American Mathe-

matical Monthly p. 353–365 (1983)

[Mo1] R. Mœckel Some qualitative features of the Three-body problem,

Contemporary Mathematics 81 p. 1–22 (1988)

[Mou1] F.R. Moulton The straight line solutions of the problem of N bodies

Annals of Mathematics 12 p. 1–17 (1910)
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