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1 Introduction

Perturbing the germ at the origin of a planar rotation re2πiθ 7→ re2πi(θ+ω) leads
to two celebrated results which describe geometrically the dynamical behaviour
of the iterates of the perturbed diffeomorphism F , that is the structure of the
orbits O(z) = {z, F (z), F 2(z), . . . , Fn(z), . . .}: the Andronov-Hopf-Neimark-
Sacker bifurcation of invariant curves under a generic radial hypothesis of weak
attraction (or repulsion) and the Moser invariant curve theorem under an an-
gular twist hypothesis in the area preserving case. The invariant curves whose
existence is proved are normally hyperbolic with generic induced dynamics in
the first case, with a dynamics smoothly conjugate to a diophantine rotation in
the second one.
Statements and proofs illustrate the notion of normal form, introduced by
Poincaré in his thesis in 1879. Closely related to the “averaging of pertur-
bations” used by astronomers since the eighteenth century, it generalizes the
Jordan normal form of a matrix to the nonlinear world. Namely, by intro-
ducing local coordinates which reveal an approximate geometry underlying the
situation, it sets the scene for the application of refined analytic tools to the
determination of which features of this geometry do really exist.
After recalling these two classical contexts, say the one of nonlinear self-sustained
oscillations (Lord Rayleigh, Van der Pol) and the one of the 3-body problem
(Poincaré), I shall describe an old result of mine which in some sense makes the
two worlds meet: in generic 2-parameter families of germs of diffeomorphisms
of the plane near a fixed point, the tension between radial and angular (or hy-
perbolic and elliptic) behaviour leads to phenomena where the whole wealth of
the area preserving situation is unfolded along some direction of the parameter
space.
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2 Elliptic fixed points

Let F : (S, p) → (S, p) be a local C∞ (or analytic) diffeomorphism of a surface S
defined in the neighborhood of a fixed point p = F (p). The fixed point is said to
be elliptic if the spectrum of the derivative dF (p) is of the form {2πiω,−2πiω}
with ω 6= ±1. This is equivalent to the existence of a linear conjugation of dF (p)
with the rotation of angle 2πω. Hence, after choosing good coordinates, one can
suppose that p = 0 and that F : (C, 0) → (C, 0) is such that

F (ζ) = λζ +O(|ζ|2), with λ = e2πiω.

In other words, F is a perturbation of a rotation.1 Now, a rotation preserves
each circle centered at the origin. This is a very strong property, very likely
to be destroyed by the non-linear terms in the Taylor expansion of F . Nev-
ertheless, reality is subtler and the study of the fate of these invariant circles
is the starting point of two famous theories which correspond roughly to the
dichotomy between dissipative and conservative dynamics:

1) Andronov-Hopf-Neimark-Sacker bifurcation theory which analyzes what
happens when one considers a generic2 diffeomorphism F with an elliptic fixed
point at 0. The local behaviour of F itself is quite dull: indeed, the radial
behaviour of the nonlinear terms turns the fixed point into an attractor or a
repulsor and no other invariant object persists in its neighborhood. It is only
when considering “generic” 1-parameter families Fµ of local diffeomorphisms
stemming from F0 = F that the whole richness of the dynamics is regained (see
[A1, A2]): each small enough circle invariant under the rotation dF (0) becomes
a normally hyperbolic3 closed curve invariant under some Fµ (figure 3).

2) Kolmogorov-Arnold-Moser (K.A.M.) theory which analyzes the case when
F is area preserving, a hypothesis which is natural for diffeomorphisms with a
mechanical origin, the paradigmatic example being first return maps4 in the
restricted three body problem first studied by Poincaré (see [C1, C2]). In this
case, it is the angular behaviour of the non-linear terms which plays the key
part, the result being that “many” of the circles invariant under the rotation
dF (0) persist in the form of closed curves invariant under the action of F itself.
Moreover the restriction of F to such an invariant closed curve is smoothly
conjugated to a rotation whose angle is of the form 2πα with α not rational and
even “far from the rationals” in a precise sense.

1Beware that the notation F (ζ) does not mean that F is complex analytic, its expression
depends on ζ and ζ

2We shall not give a formal definition of this word; it means essentially that what is de-
scribed is the general situation and that only special hypotheses could prevent the description
to be correct.

3Roughly speaking this mean that any attraction or repulsion normal to the curve under
the iterates of Fµ dominates any attraction or repulsion inside the curve; this condition insures
the robustness of the curve

4see section 1.4 of [C0] for a brief introduction
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3 Preparation: Poincaré’s theory of normal forms

The idea, which goes back to Poincaré’s thesis in 1879, is the following: being a
rotation, the derivative of F commutes with the whole group SO(2) of rotations.
This is shown to imply that, provided some conditions on ω are satisfied, a high
order approximation of F is locally invariant by an action of SO(2) close to the
standard one. Equivalently, one proves the existence of local coordinates which
reveal the approximate geometry of the map, in a spirit similar to the Jordan
form of a matrix:

Theorem 1 If λ = e2πiω is such that λq 6= 1 for all integers q ∈ N such that
q ≤ 2n+ 2, there exists a local diffeomorphism

H : (C, 0) → (C, 0), ζ 7→ z = H(ζ) = ζ +O(|ζ|2)

such that

H◦F◦H−1(z) = N(z)+O(|z|2n+2), where N(z) = z
(
1 + f(|z|2)

)
e2πi(ω+g(|z|2)),

with f and g real polynomials of degree n such that f(0) = g(0) = 0. If moreover
λ2n+3 6= 1, one can achieve a rest which is O(|z|2n+3).

The so-called normal form N , is characterized by the fact that it commutes
with the whole group SO(2) of rotations:

∀α,N(e2πiαz) = e2πiαN(z).

Proof. Let us start with a local diffeomorphism of degree 2,

H2 : (C, 0) → (C, 0), z = H2(ζ) = ζ +
∑
i+j=2

γijζ
iζ
j
.

The direct computation of H2 ◦ F ◦H−1
2 is illustrated on the diagram below:

Figure 1. Changing coordinates.

Supposing that F (ζ) = λζ +
∑
i+j=2 αijζ

iζ
j
+O(|ζ|3), we get

H2 ◦ F ◦H−1
2 (z) = λz +

∑
i+j=2

(
αij + (λiλ

j − λ)γij
)
zizj +O(|z|3).
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Hence, if no resonance relation of the form λiλ
j−λ = 0 is satisfied with indices

i, j such that i + j = 2, that is if λ3 6= 1 (otherwise λ
2 − λ = 0), the choice of

γij = −(λiλ
j − λ)−1αij kills all degree 2 terms in the Taylor expansion of the

transformed map H2 ◦ F ◦H−1
2 .

If one tries in the same way to simplify the terms of degree 3 in the Taylor
expansion of H2 ◦ F ◦H−1

2 , one stumbles upon an unavoidable resonance

λ2λ− λ = 0

which merely reflects that |λ| = 1. Hence , if no other resonance of order 3
exists, which amounts to saying that λ4 6= 1 (otherwise λ

3 − λ = 0), a local
diffeomorphism H3 of the form H3(z) = z +

∑
i+j=3 γijz

izj can be found such
that5

H3 ◦H2 ◦ F ◦H−1
2 ◦H−1

3 (z) = λz + c1z|z|2 +O(|z|4).

Now, if λq 6= 1 for all q ≤ 2n+ 3, one finds by induction a local diffeomorphism
H = H2n+2 ◦H2n+1 ◦H3 ◦H2 tangent to Id at 0 such that

H ◦ F ◦H−1(z) = λz +
n∑
k=1

ckz|z|2k +O(|z|2n+3).

If λ2n+3 = 1, there is possibly a monomial γz2n+2 which cannot be canceled.
Finally, chosing polar coordinates, one writes H ◦ F ◦H−1 as in the conclusion
of the theorem.
Remark. Resonances of the form λq = 1 for 1 ≤ q ≤ 4 are called strong
resonances. They are characterized by the fact that the resonant monomial
zq−1 is of smaller or comparable order to the first unvoidable resonant monomial
z|z|2 and hence could play a role in the geometry of the normal form N which
could become invariant only by rotations by an angle multiple of 2π/q. In the
sequel, the hypotheses always exclude strong resonances.

Remark on notations. : Theorem 1 allows us to suppose from the start that
local coordinates z have been chosen so that F is in the form given, by Theorem
1. In other words, from now on we shall write F (z) instead of H ◦ F ◦H−1(z).

4 The dissipative case

4.1 Andronov-Hopf-Neimark-Sacker bifurcation

The first two names are attached to the “continuous” case of a differential equa-
tion, the last two to the present “discrete” case of a map (see [A1, A2, I, C6]).

5in order to avoid too cumbersome notations we still call z the transformed coordinate
H3(z).
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In general, the polynomial f(s) =
∑n
k=1 aks

k is such that a1 6= 0. If a1 < 0,
one can scale the coordinates so that a1 = −1 which, provided λq 6= 1 for all
integers 1 ≤ q ≤ 4, puts F into the form

F (z) = N(z) +O(|z|4), where N(z) = z
(
1− |z|2

)
e2πi(ω+b1|z|2)).

As well as the rotation dF (0), the normal form N still leaves invariant the
foliation by circles centered at 0 but it sends the circle of radius r onto the
circle of radius r(1 − r2). This implies not only that limm→∞Nm(z) = 0 but
also that limm→∞ Fm(z) = 0 as soon as |z| is small enough. Indeed,

if |z| < ε, |F (z)| < ε

∣∣∣∣1− 1
2
ε2

∣∣∣∣ < ε, hence by induction |Fm(z)| < ε

∣∣∣∣1− 1
2
ε2

∣∣∣∣m .
One says that 0 is a weak attractor (figure 2), the adjective “weak” recalling
that the attraction is due to a non-linear term.

Figure 2. Weak attraction.
Hence we completely understand the dynamics of F in some neighborhood V of
the fixed point 0. Things become much more interesting if one perturbs F by
including it in a smooth one parameter family of local diffeomorphisms Fµ such
that F0 = F . A direct application of the implicit function theorem shows that,
in the neighborhood of 0, the equation Fµ(z)− z = 0 has a unique solution zµ
depending smoothly on µ and such that z0 = 0. Hence, after a translation by
zµ of the coordinates, one can suppose that for all µ near 0, one has Fµ(0) = 0.
For values of µ such that the spectrum of dFµ(0) is not on the unit circle, there
is no resonance and one could get a normal form which is linear up to any
order. However, this would not be of much use: on the one hand the domain of
definition of the conjugating diffeomorphism Hµ tends to 0 when the spectrum
of dFµ(0) tends to the unit circle and interesting phenomena occur outside of
this domain, on the other hand, this would break the continuity with respect to
µ of the coordinate change Hµ. In consequence, one chooses to eliminate in Fµ
only the same terms as the ones we have eliminated in F0, that is we mimic for
Hµ the construction of H in section 3. Doing so one gets a smooth family Hµ of
local diffeomorphisms of (C, 0) defined in a fixed neighborhood of 0 which put
Fµ into the form Fµ(z) = z(1+fµ(|z|2))e2πi(ω+gµ(|z|2))+ · · · given by Theorem 1
except that fµ(s) =

∑n
i=0 aks

k and gµ(s) =
∑n
k=0 bµ(s)s

k now start with terms
of degree 0. Finally, we shall suppose that a0(µ) is monotone (say increasing)
for µ close enough to zero. This is also a “generic” condition which amounts
to saying that the spectrum of the derivative dFµ(0) crosses transversally the
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unit circle when µ crosses the value 0. It allows us to change parameters and
suppose that a0(µ) = µ. At the end, we are reduced to study a family Fµ of
local diffeomorphisms of the form
Fµ(z) = Nµ(z) +O(|z|4), where

Nµ(z) = z
(
1 + µ+ a1(µ)|z|2

)
e2πi(b0(µ)+b1(µ)|z|2)), and

a1(µ) = −1 +O(|µ|), b0(µ) = ω +O(|µ|).
The rest can be made O(|z|5) except if λ5 = 1, which can leave a term γz4.

Due to the commutation of Nµ with the group SO(2) of rotations, the study of
its dynamics reduces to an elementary question in dimension 1. The results are
summarized in figure 3: the origin, which is a strong (=linear) attractor when
µ < 0, becomes a strong repellor when µ > 0. But points far enough from the
origin are still attracted and in between appears an invariant circle Cµ of radius
the unique solution rµ of the equation µ+ a1(µ)r2µ = 0.

Figure 3. Dynamics of the family of normal forms Nµ.

Theorem 2 (Neimark 1959, Sacker 1964) Under the above hypotheses, for
each µ > 0 small enough, Fµ possesses an invariant closed curve Γµ, close to
Cµ, which attracts a uniform (that is independent of µ) neighborhood V of 0
(with 0 deleted). If the local diffeomorpisms Fµ are of class C∞, these curves
are of class Ck with k going to infinity when µ tends to 0.
The proof proceeds in two steps: 1) One encloses the invariant circle Cµ in an
annulus Aµ of width O(|µ|), say the one bounded by the circles whose radii r±µ
are the two solutions of the equation µ + a1(µ)r2 ± r3 = 0. One checks that
every point z 6= 0 in some uniform (i.e. independent of µ) neighborhood V of 0
is eventually sent inside Aµ under the iterates of Fµ.

Figure 4. The attracting annulus Aµ.
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2) One shows that under the iterates of Fµ, every point inside the annulus
tends asymptotically to some invariant curve Γµ close to the circle Cµ. For this,
we choose coordinates in Aµ centered on Cµ of the form:

z = rµ(1 +
√
µσ) e2πiθ.

If λ5 6= 1, the map Fµ becomes (we keep the same notation Fµ for convenience)

Fµ(σ, θ) =
(
(1− 2µ)σ +O(µ3/2), θ + bµ+O(µ3/2)

)
.

(If λ5 = 1 and the term γz4 is present, a circle is not a good enough approxima-
tion of the invariant curve and a further change of variables is necessary to get to
the above form, see [I].) Let (θ, ψ(θ)) be the graph of a function θ 7→ σ = ψ(θ)
from the circle R/Z to R. If ψ is small enough, its graph Γψ is contained in the
annulus Aµ and the image by Fµ of its graph, also contained in Aµ, is the graph
of a function Fµψ:

Fµ(Γψ) = ΓFµψ.

The map ψ 7→ Fµψ is called the graph transform. Thanks to the contracting
factor 1 − 2µ which dominates any contraction along the angular direction (a
manifestation of the fact that the normal hyperbolicity of Cµ dominates the
perturbation), one shows that Fµ is a contraction in a well chosen Banach
space of Ck functions provided µ is close enough to 0 (a condition more and
more stringent when k tends to +∞). The attracting invariant curve Γµ ⊂ Aµ
we are looking for is the graph of the unique fixed point of this contraction.

Figure 5. Graph transform.

4.2 Dynamics on the invariant curves

In conclusion, from the “radial” hypothesis a1(0) < 0 we have obtained a com-
plete control on the radial dynamics of Fµ in a uniform neighborhood V of 0
(i.e. figure 3 is still pertinent to describe the normal dynamics of Fµ), but we
have no control of the dynamics restricted to the invariant curves. Indeed, this
dynamics may be a “generic” dynamics of a diffeomorphism of the circle (see
section 4 of [C0]). To be more precise we should add another “generic” assump-
tion, this time on the “angular” part of F , namely that b1(0) 6= 0, for example
b1(0) > 0. This implies that, for µ close enough to 0, the restriction of the
normal form Nµ to its invariant circle Cµ is a rotation whose angle increases
with µ. The two-parameter family fω,µ of diffeomorphisms of the circle defined
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by the restriction of Fµ to its invariant curve Γµ, the other parameter being ω,
behaves in general as does Arnold’s family Tω,µ, described in [A3]:

Tω,µ(θ) = θ + ω + µ cos 2πθ.

Figure 6 : Typical behavior of a 2-parameter family of circle diffeomorphisms
(figure adapted from [A3]).

In the interior of each of the so-called Arnold’s tongues – values of the parameters
for which the rotation number is rational – fω,µ is in general a diffeomorphism of
the circle with two periodic orbits of the same period q if the root of the tongue
is the rotation of angle 2πω = 2π pq ). One orbit is attracting, the other repelling.
Such periodic orbits cannot be destroyed by a small enough perturbation and
hence persist over an interval of values of ω for each µ 6= 0; the complement
of the union of all these intervals is a Cantor set of values of ω for which fω,µ
is topologically (but not always smoothly) conjugated to a rotation. Moreover,
for any µ 6= 0, the set of ω for which the rotation number of fω,µ is rational
is in general big in the sense of topology, namely it is open and dense, but its
complement is always big in the sense of measure, namely, its measure tends to
1 when µ→ 0 (see [H]).

5 The area preserving case

5.1 Moser’s invariant curve theorem ([M])

We now suppose that, in addition to satisfying λq 6= 1 for all integers 1 ≤ q ≤ 4,
F is area preserving. It follows that the radial component f of the normal form
N vanishes identically and one can show that it is possible to choose H area
preserving. Hence, one is reduced to the study in the neighborhood of its elliptic
fixed point 0 of an area preserving diffeomorphism of C, 0 of the form

F (z) = N(z) +O(|z|4), N(z) = ze2πi(ω+b1|z|2).

The normal form N is called a truncated Birkhoff normal form. Dynamically, it
is an integrable monotone twist: as well as the rotation dF (0), it leaves invariant
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each circle Cr centered at 0 but the angle of rotation 2π(ω+ b1r
2) on Cr varies

now monotonically with the radius r of this circle
Poincaré, while studying the three body problem, became aware of a funda-
mental difference between the invariant circles on which N induces a periodic
(ω + b1r

2 rational) or non periodic (ω + b1r
2 irrrational) rotation: in the first

case (angle 2πω = 2πp/q) the invariant circle is simply the union of a continous
family of q-periodic points z (i.e. of points z such that Nq(z) = z); in conse-
quence, a small perturbation should in general break such a circle, with only a
finite number of periodic points surviving the perturbation. On the other hand,
if ω is irrational, the invariant circle being the closure ∪n≥0Nn(z) of an orbit
has a dynamical origin and hence has more chance to resist a perturbation. In
the first volume of his famous book The New Methods of Celestial Mechanics,
Poincaré even ventured to write that some arithmetic condition on ω could per-
haps grant resistance to perturbations of such an invariant circle but that he
considered such a possibility as quite improbable.

Figure 7. Perturbation of a monotone twist ???
Nevertheless, after the pioneering work of Kolmogorov in 1954, the so-called
K.A.M. theory (from the names of Kolmogorov, Arnold and Moser) showed that
indeed, what Poincaré deemed improbable was in fact a dominant phenomenon.
In the present case, the pertinent statement is the following

Theorem 3 (Moser 1962) Given an area preserving diffeomorphism F as
above, given C > 0 and β > 0, there exists ε(C, β) > 0 such that each invariant
circle Cr0 of the normal form N such that its rotation angle 2πωr0 = 2π(ω+b1r20)
satisfies the diophantine condition

∀ p
q
∈ Q,

∣∣∣∣ωr0 − p

q

∣∣∣∣ ≥ C|ωr0 − ω|
|q|2+β

and |ωr0 − ω| < ε(C, β)

will give rise to a smooth (resp. analytic) closed curve Γr0 invariant under F
and such that the restriction F |Γr0

of F is smoothly conjugate to the rotation of
angle 2πωr0 .

The most transparent proof of theorem 2 is based on a version of the so-called
“hard implicit function theorem” adapted to the problem of small denominators
well known to astronomers since eighteenth century. The following consequence
of area preservation, named intersection property, is crucial: the image F (Γ) of
a curve Γ surrounding the origin cannot be disjoint from Γ. Note that such a
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property is preserved even under changes of coordinates which do not preserve
area. Fixing r = r0 satisfying the hypotheses of the theorem, one chooses
coordinates centered on Cr0 of the form:

z = r0
√

1 + σ e2πiθ.

The map F is now (as before we keep the same notation F )

F (σ, θ) =
(
σ +O(r40), θ + ωr0 + b1r

2
0σ +O(r40)

)
.

As a further simplification, one replaces σ by ρ = σ+O(r20) so that the formula
for F takes the form

F (ρ, θ) =
(
ρ+ ϕ(ρ, θ), θ + ωr0 + b1r

2
0ρ

)
,

where the perturbation ϕ is O(r40). Following Rüssmann, it is enough to look
for a curve of the form ρ = ψ(θ) which is sent by F to the translated curve
ρ = ψ(θ) + τ for some τ ∈ R. This is because the intersection property, still
valid after the changes of coordinates, implies that τ must be equal to 0. This
leads to the equation

ψ
(
g(θ)

)
+ τ = ψ(θ) + ϕ

(
ψ(θ), θ

)
, where g(θ) = θ + ωr0 + b1r

2
0ψ(θ).

Recall that in the dissipative case, the radial hypothesis a1(0) 6= 0 implied the
existence of a curve invariant under Fµ with a prescribed normal dynamics.
Having now an angular hypothesis b1 6= 0, it is natural to look for invariant
curves of F with a prescribed angular dynamics. It turns out that the right
constraint to impose to the (translated) curve we are looking for is the existence
of a diffeomorphism h of the circle R/Z such that g(θ) = h−1 ◦Rωr0

◦ h(θ).
Finally, defining ψ by ψ(θ) = 1

b1r20

[
h−1 ◦Rωr0

◦ h(θ)− θ − ωr0
]
, we must solve

F(ϕ, τ, h) := ψ(θ)− ψ(h−1 ◦Rωr0
◦ h(θ))− τ + ϕ(ψ(θ), θ) = 0

in the neighborhood of the solution (ϕ = 0, τ = 0, h = Id). This is typically a
“hard implicit function problem” because even the best diophantine condition
allows us only to invert the “derivative” of F in a weak sense (i.e. with loss of
a finite number of derivatives on the target space of the inverse).
Warning. Examples in [AK] show that an area preserving C∞-diffeomorphism
of the disk D2 with an elliptic fixed point such that ω is a Liouville number, too
well approximated by rational numbers, may have a very wild dynamics, with
dense orbits.

5.2 Periodic orbits, Aubry-Mather sets and homoclinic
tangles

The curves Γr0 given by theorem 3 form a Cantor family for which 0 is a density
point (the relative measure of the Cantor set in smaller and smaller neighbor-
hoods of 0 tends to 1). Nevertheless, this is far from being the whole story. The
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dynamics of such a generic area preserving F in the complement of the invariant
curves (the so-called Birkhoff domains of instability) is extremely complicated
and, if the works of Birkhoff, Aubry, Mather, Herman, have shed considerable
light on the way invariant circles of the normal form break (periodic points,
invariant Cantor sets, see [C7]), many questions remain open.
Some of the complexity of a generic area preserving map of the disc is roughly
suggested in figure 8. This figure, taken from [C1], originates from [C8]. It illus-
trates the dynamics of the monotone twist map of the annulus which arises when
studying the restricted three-body problem at high values of the Jacobi constant
(see [C2] for explanations). To the periodic points are attached invariant stable
(resp. unstable) manifolds along which the images of a point under the posi-
tive (resp. negative) iterates of F converge exponentially fast to the periodic
orbit. The homoclinic tangles (see [S, C1]) created by the intersections of such
invariant manifolds produce invariant Cantor sets on which the dynamics of F
is the same as the one of throwing a dice (more technically, a Bernoulli shift,
see [C0, KH]) and hence possesses positive topological entropy. Also, orbits go
from one boundary of a domain of instability to the other, but their diffusion is
blocked by the invariant curves.

Figure 8. The return map of the restricted 3-body problem at high Jacobi constant
(figure reproduced (slightly modified) with the kind permission of Encyclopædia Universalis).
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Remark. One can check ([K, C2]) that Moser’s invariant curve theorem applies
to the Poincaré first return map on a surface of section of the planar circular
restricted three body problem with any large enough energy in the rotating
frame (i.e. Jacobi constant). This implies stability in a strong sense as the
invariant tori corresponding to the invariant closed curves are of codimension 1
in the energy surface and hence serve as barriers confining the solutions. This is
precisely because he lacked such a theorem that Poincaré tried to prove such a
stability result using barriers made from invariant manifolds of periodic orbits,
which lead to the famous error in the first version of his prize winning Memoir
on the Three-body problem (see [C1]).

6 When radial and angular behaviours compete

Area preserving maps form a subspace of infinite codimension within the set of
all smooth maps and the same is true of rotations. If one views Neimark-Sacker
bifurcation as an unfolding, due to the nonlinear terms, of the continuum of
circles invariant by the rotation along the parameter µ (fig. 3), the infinite
codimension reflects the infinite number of events which happen for one and the
same map while generically they happen for different values of µ. In a similar
but subtler way one shows ([C3], summarized in [C4, C5, Y, AP]) that the whole
complexity of the dynamics of an area preserving map happens unfolded along
some curve Γ of the parameter space in generic 2-parameter families Fµ,a of
diffeomorphisms of the plane in the neighborhood of a degenerate elliptic fixed
point which is a very weak attractor. Along the lines of section 2, provided
F = F0,0 satisfies the non resonance relations λk 6= 1 for all integers 1 ≤ k ≤ 6,
such a family can be written


Fµ,a(z) = Nµ,a +O(|z|6), where

Nµ,a(z) = z
(
1 + µ+ a|z|2 + a2(µ, a)|z|4)

)
e2πi(b0(µ,a)+b1(µ,a)|z|

2+b2(µ,a)|z|4),

a2(0, 0) = −1, b1(0, 0) 6= 0, b1(0, 0) + 2
∂b0
∂a

(0, 0) 6= 0.

Figure 9 shows the dynamics of Nµ,a in the different regions of the parameter
plane around (0, 0). Along the curve Γ, Nµ,apossesses a non normally hyperbolic
invariant curve, attracting from the outside and repelling from the inside. This
is in some sense the closest dissipative approximation to an invariant curve of
an area preserving normal form6.

6All figures in this section are reproduced with the kind permission of Publications
mathématiques de l’IHÉS.
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Figure 9. Dynamics of Nµ,a

The complement of some cusp neighborhood of Γ belongs to the hyperbolic
domain: here, the “normal” dynamics of Fµ,a is similar to the one of Nµ,a and
the methods of proof are the ones of section 4. On the contrary, in the cusp
domain along Γ, the control is more on the angular dynamics of Fµ,a and the
methods of proof are the ones of section 5. This is a first approximation of the
elliptic domain.

Figure 10. Hyperbolic and elliptic domains

More precisely, for a Cantor set of points (µ, a) near Γ the dynamics of Fµ,a
is similar both in radial and angular directions to the one of Nµ′,a′ for some
(µ′, a′) ∈ Γ. Moreover, the hyperbolic domain extends to the complement of
a countable number of bubbles having this Cantor set in their closure. The
union of these bubbles is precisely the elliptic domain, the only place where
complicated dynamics occurs. Figure 11, to be compared to figure 3, shows that
one can describe heuristically the dynamics of Fµ,a along this elliptic domain as

13



the unfolding of the dynamics of a generic area preserving map as represented
in figure 8.

Figure 11. “Unfolding” the dynamics of a monotone twist

Finally, in the neighborhood of an elliptic fixed point, generic one-parameter
families of planar diffeomorphims displaying the elimination of a pair of invariant
closed curves, one repelling and one attracting, may be thought of as being
the dissipative analogues of the invariant subsets of a generic area preserving
diffeomorphism : in particular, to the Cantor set of KAM curves corresponds a
Cantor set of families along which the elimination proceedes as simply as in the
case of normal forms (or equivalently of time one maps of differential equations)
with a single value of the parameter for which the diffeomorphism posesses a
smooth invariant closed curve which is non normally hyperbolic and on which
Fµ,a is smoothly conjugate to a diophantine rotation, while to the well ordered
periodic orbits with rational rotation numbers p/q such that q is not too large
with respect to the distance of the orbit to the fixed point 0, correspond one-
parameter families along which the elimination process, much more complicated,
is represented on figure 12.
The condition on p/q amounts to asking that in some annulus A containing the
periodic points of rotation number p/q, the qth iterate F qµ,a of the map still be a
small perturbation of the qth iterate Nq

µ,a of its normal form. The said periodic
points are then interpreted as the trace left by a nearby resonant elliptic fixed
point (compare section 4.2) and resonant normal forms provide local coordinates
(θ, y) in the annulus A which make the one parameter subfamily Fµ,a depicted
in figure 12 appear as a perturbation of the composition of the rotation Rp/q
(of angle 2πp/q) with the time 1 map of a differential equation of the form

dθ

dt
= y,

dy

dt
= α+ γy2 + δ cos 2πqθ,

where γ < 0 and δ > 0 are fixed and α is the parameter.

14



EH.mina.tion of C11.rves in the Neighborhood of a. Degenerate Hop/ Btj'u.rca.tion 

A.R • attractor, 
repu I sor, of 
Birkoff type 7 

(a) 

(g) 

t 
\ 
\ 

' 

(b) (c) 

(e) (f) 

(h) (i) 

5 

Figure 2 Dynamics of Pi;: a. [(a.), (b), (c), (g), (h), and (i) are accurate; in (a), 
(e), and (f) there could exist unexpected invariant curves]. 

I announce here a similar result for invariant sets whose rotation 
number belongs to a sequence of "good" rationals Pnl qn (such a sequence 
automatically converges to r.>0): to the periodic orbits ofF studied in Zehnder 
(1973), and to their homoclinic orbits, correspond one-parameter subfamilies 
of the family P p..a., close to J1. 1-+ P p..a.,., for which the dynamics look as much 

as possible like those of a standard family of elimination. The central values 
of the parameter are associated to a dynamics very close to the one 

Figure 12. Resonant elimination of a pair on invariant curves (from [C3]III)

Finally, a surprizing consequence of this study is the strong organizing power of
diophantine rotation numbers: if some Fµ,a possesses a closed invariant curve
encircling 0 on which it induces a diffeomorphism with such a rotation number, it
behaves like a normal form in a uniform (independent of (µ, a)) neighborhood of
the origin, the sole possibly more complicated dynamics occuring in restriction
to the second invariant closed curve when that curve exists.
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2012”, Birkhauser 2014 http://www.bourbaphy.fr/novembre2012.html

[C2] A. Chenciner, The planar circular restricted three body problem in the lunar
case, minicourse at the Chern Institute of Mathematics, Nankai Univer-
sity, may 2014 https://www.imcce.fr/fr/presentation/equipes/ASD/
person/chenciner/polys.html

[C3] A. Chenciner, Bifurcations de points fixes elliptiques

I. Courbes invariantes, Publications mathématiques de l’I.H.É.S. tome 61,
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