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Abstract

A corrupted word (or sentence), is correctly recognized as long as it
differs less from the original word (or sentence) than from any other word
(or sentence). Combined to the law of large numbers and its fundamen-
tal corollary, the Asymptotic Equipartition Property, this simple looking
statement is at the root of the discovery by Claude Shannon of the limit
H < C imposed to any coding which allows a reliable transmission of
information through a noisy channel, a limit which is almost achieved to-
day by the turbocodes. In the course, after recalling the basic notions of
probabilities, the entropy H of a source, and the capacity C of a channel
will be defined, and Shannon’s theorem will be proved in the simple case
of Bernoulli sources

It is hoped that this elementary introduction will encourage the reader
to enter the realm of Ergodic Theory and Dynamical Systems, in particu-
lar Birkhoff’s ergodic theorem, which is a very strong version of the Law
of Large Numbers, and Kolmogorov’s entropy which plays a key role in
classifications (it is not by chance that Kolmogorov was the first to rec-
ognize the importance of Shannon’s work). A sketchy second part alludes
to these topics.
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Some quotations from the founders

The following quotations clearly define the mathematical setting. The first one
is from Shannon [Sh] in 1948 :

We can think of a discrete source as generating the message,
symbol by symbol. It will choose successive symbols according to
certain probabilities depending in general on preceding choices as
well as the particular symbol in question. A physical system, or a
mathematical model of a system which produces such a sequence of
symbols governed by a set of probabilities, is known as a stochastic
process. We may consider a discrete source, therefore, to be repre-
sented by a stochastic process. Conversely, any stochastic process
which produces a discrete sequence of symbols chosen from a finite
set may be considered a discrete source. This will include such cases
as :

1. Natural written languages such as English, German, Chi-
nese.

2. Continuous information sources that have been rendered
discrete by some quantizing process........

3. Mathematical cases where we merely define abstractly a
stochastic process which generates a sequence of symbols.....

The second one is from Norbert Wiener [W], also in 1948 :

The message is a discrete or continuous sequence of measurable
events distributed in time – precisely what is called a time-series by
the statisticians. ..............................................................................

In doing this, we have made of communication engineering design
a statistical science, a branch of statistical mechanics.........................

.......................................
In the case of communication engineering, however, the signifi-

cance of the statistical element is immediately apparent. The trans-
mission of information is impossible save as a transmission of alter-
natives. If only one contingency is to be transmitted, then it may
be sent most efficiently and with the least trouble by sending no
message at all. The telegraph and the telephone can perform their
function only if the messages they transmit are continually varied in
a manner not completely determined by their past, and can only be
designed effectively if the variations of these messages conforms to
some sort of statistical regularity.

To cover this aspect of communication engineering, we had to
develop a statistical theory of the amount of information, in which
the unit amount of information was that transmitted as a single
decision between equally probable alternatives. This idea occured at
about the same time to several writers, among them the statistician
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R. A. Fisher, Dr. Shannon of the Bell Telephone Laboratories, and
the author. Fisher’s motive in studying this subject is to be found
in classical statistical theory ; that of Shannon in the problem of
coding information ; and that of the author in the problem of noise
and message in electrical filters. Let it be remarked parenthetically
that some of my speculations in this direction attach themselves to
the earlier work of Kolmogoroff in Russia, although a considerable
part of my work was done before my attention was called to the work
of the Russian school.
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I – SHANNON’S THEOREM IN THE BERNOUILLI CASE

1 The weak Law of Large Numbers and Shan-
non’s Asymptotic Equipartition Property

In this section, we prove in the simplest setting Shannon’s Asymptotic Equipar-
tition Property, a theorem on which rests the whole course.

1.1 Random variables with finite values

A random variable with finite values may be encountered under at least three
equivalent disguises

– A finite probability space, that is a finite set X = {X1, X2, . . . , XN} endowed
with a probability law {P1, P2, . . . , PN}, where the Pi’s (Pi=probability of Xi)
are non negative real numbers whose sum is 1;

– A finite measurable partition Ω = C1 +C2 + · · ·+CN of a space Ω endowed
with a probability measure µ);

– A random variable with finite values ξ : (Ω, µ) → X = {X1, X2, . . . , XN}.
The relations are straightforward: Ci = ξ−1(Xi), Pi = µ(Ci), which means that
the probability measure on X is the direct image P = ξ∗µ of µ.
The case of interest to us is X = An, where A is a finite alphabet, for example
A = {a, b, c, . . . , x, y, z} or A = {0, 1}.

Figure 1 : Finite random variable.
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Remark on the notations. In measure theory one writes P (Y ) for the prob-
ability of a subset Y ⊂ X, while in probability theory one writes Pr{ξ ∈ Y }.

Definition 1 Two random variables ξ, η : Ω → X with the same image law
(µ∗ξ = µ∗η) are said to be identically distributed.

Definition 2 Two random variables ξ, η : Ω → X are said to be independent if

Pr(ξ ∈ Y, η ∈ Z) = Pr(ξ ∈ Y )Pr(η ∈ Z).

This definition can be immediately translated into a definition of the inde-
pendence of two finite measurable partitions: Ω = C1 + C2 + · · · + CN and
Ω = D1 + D2 + · · ·+ DK are independent if

µ(Ci ∩Dj) = µ(Ci)µ(Dj).

Warning. The above definition extends immediately to the independence of a
finite number of random variables. But, if the independence of a finite number
of random variables implies their pairwise independence, figure 2 below shows
that the converse is not true.

Figure 2 : Pairwise independent but globally dependent (µ is the area).

Example. The typical example of independent identically distributed (iid)
random variables with finite values ξi is given by independent random draws of
letters in a finite alphabet A endowed with a probability measure, for example
A = {0, 1}, with 0 having probability p and 1 having probability q = 1 − p.
Let Ω = An, the set of words of length n, for some n, and define the measure
µ = Pp,q by

Pp,q(a1, a2 . . . an) = pαqn−α ,

where α is the number of 0’s in the word. The random variables ξi : An → {0, 1}
are defined by

ξi(a1a2 . . . an) = ai.

As it will be important for our purpose to to be able to take the limit n →∞,
we quickly introduce in the next section the space of infinite words with its
probability laws corresponding to independence of the successive letters (the
so-called Bernouilli case).
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1.2 The game of “heads or tails” as a stochastic process

Let X = {0, 1}N∗ be the set of infinite sequences

ω = a1a2 . . .

of 0’s and 1’s. As above, each such sequence can be thought of as an infinite
sequence of “independent” coin tosses in a “heads or tails” game. It is the real-
ization of a stationary stochastic process without memory: “stationary” means
that the probability p that ai = 0 and the probability q = 1− p that ai = 1 are
independent of the “time” i of the coin toss ; the independence (or absence of
memory) means that the probability of a cylinder

Aj1j2...jk

i1i2...ik
=
{
ω ∈ X; ai1 = j1, ai2 = j2, . . . , aik

= jk

}
, i1, . . . ∈ N∗, j1, . . . ∈ {0, 1},

is
µ(Aj1j2...jk

i1i2...ik
) = µ(Aj1

i1
)µ(Aj2

i2
) . . . µ(Ajk

ik
),

that is pαqk−α if the sequence j1j2 . . . jk contains α terms equal to 0.

Exercise 1 1) A finite intersersection of cylinders is still a cylinder;
2) the complement of a cylinder is a disjoint union of a finite number of cylin-
ders;
3) a finite union of cylinders may also be written as a finite union union of
disjoint cylinders;
4) deduce from 1),2),3) that the finite unions of disjoint cylinders form an alge-
bra G of subsets of X (compare to the algebra of finite unions of disjoint intervals
[ai, bi[ of [0, 1]).

It is natural to define the tribe (= σ-algebra) X of measurable subsets as the
one generated by the algebra G of finite unions of cylinders1. One says that the
probability measure µ = Pp,q whose value on the cylinders was just given is the
product of an infinity of copies of the measure (p, q) on {0, 1}.
Apart from the countable unions of disjoint cylinders, producing non trivial
elements of X is not so easy. In fact, the problem is the same as the one of
producing a non trivial Borelian of the interval [0, 1] ⊂ R. The tribe X is
indeed the Borelian tribe for the topology on X generated by the cylinders, that
is the infinite product topology (see exercise 2): the probability of an element
of X is defined as the unique extension of the probability we have defined for
cylinders, in exactly the same way as the mesure of Borelians of [0, 1] is deduced
from the measure (length) of intervals.

1Recall that, by definition, an algebra of subsets of a set X is a family closed under
complements and finite unions while a σ-algebra is an algebra closed under countable unions.
The σ-algebra X = σ(G) generated by the algebra G is the intersection of all the σ-algebras
containing G. While defining a probability space (X,X , µ) one adds to the elements of the
σ-algebra X all subsets of X of measure 0
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Exercise 2 (the topological space {0, 1}N∗ as a Cantor set). One endows
{0, 1}N∗ with the product topology: a basis of open sets is formed by the cylinders.
In other words, an open set is an arbitrary union of cylinders. Another definition
is via the introduction of the distance d(a1a2 . . . , b1b2 . . .) =

∑∞
k=1

|ak−bk|
2k . Show

that the map

f3 : {0, 1}N∗ → [0, 1], f3(a1a2 . . . an . . .) =
∞∑

k=1

2ak

3k

is a homeomorphism from {0, 1}N∗ to the standard triadic Cantor set K. Show
that K is of zero Lebesgue measure.

From {0, 1}N∗ to the interval [0, 1]: Let us now consider the map

f2 : {0, 1}N∗ → [0, 1], f2(a1a2 . . . an . . .) =
∞∑

k=1

ak

2k
.

As any element of [0, 1] possesses a dyadic expansion , this map is surjective.
It is not injective: the inverse image of 1

2 consists in 1000 . . . and 0111 . . ., and
same non-unicity phenomenon of the dyadic expansion occurs on the countable
dense set of dyadic numbers, of the form m

2k where m and k are integers.
But, surprisingly, in the case of equiprobability (p = q = 1/2) i.e. fair coin toss,
one can show that f2 is as good as a bijection from the measure point of view:

Proposition 1 (Steinhaus) From the point of view of measure theory, the
space of infinite sequences of bits (0’s and 1’) endowed with its borelian tribe and
the measure corresponding to sequences of independent draws without bias, is
equivalent to the interval [0, 1] endowed with its Borelian tribe and the Lebesgue
measure: precisely, the map

f2

(
{0, 1}N∗

,F , P 1
2 , 1

2

)
→
(
[0, 1],B, λ

)
is an isomorphism of probability spaces2 .

Proof. Thanks to a well-known property of tribes, its is enough to check
measurability and preservation of the measure on generators of the Borelian
tribe, that is on intervals, and even on intervals of the form ] p

2k , p+1
2k ]. But, if

x =
∑k

i=1
ai

2i and y = x + 1
2k , one checks that f−1

2 [x, y] = Aa1a2...ak

12...k and hence
that P 1

2 , 1
2

(
f−1
2 [x, y]

)
= 1

2k = |y − x| = λ([x, y]).
On the other hand, the non injectivity of f2 happens on a set of measure 0:
let D be the subset of {0, 1}N∗

made by the sequences which after a certain
rank contain only 1’s; D is contained in a union of cylinders whose sum of

2Recall that a map f : (X,A, µ) → (Y,B, ν) from a probability space to another one is an
isomorphism of probability spaces iff

1) it is a bijection modulo sets of measure 0
2) f and f−1 are measurable and preserve the measure.
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probabilities may be chosen arbitrarily small (exercise) and hence it is of measure
0. Its complement {0, 1}N∗ \ D is in bijection with the interval [0, 1[ obtained
by deleting a single point (hence of measure 0) to [0, 1]. This ends the proof.

Corollary 2 The map

δ = f2 ◦ f−1
3 : K → [0, 1]

is continuous and surjective.

This map δ takes the same values at the extremities of an interval of [0, 1] \K.
Hence it can be extended into a map from [0, 1] to itself by giving it a constant
value in each of the intervals of [0, 1] \K. This extension is a nice example of
a function with bounded variation which is not absolutely continuous (i.e. not
equal to the integral of its derivative, which exists and is equal to 0 Lebesgue-
almost everywhere). Its graph, the devil’s staircase, is illustrated on figure 3.

Figure 3 : the devil’s staircase.
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1.3 Expectation, variance

Being interested only in the very simple case of random variables with finite
values, we need not speak of tribes, the tribe in this case being just the one
generated by the corresponding partition.

Definition 3 The expectation of the random variable ξ : (Ω, µ) → R is its
mean

E(ξ) =
∫

Ω

ξdµ.

The deviation from the expectation is measured by the variance:

Definition 4 The variance of a random variable is the expectation of the squared
deviation from its mean

V arξ = σ2
ξ = E(ξ − Eξ)2 = E(ξ2)− (Eξ)2.

If ξ takes the values A1, · · · , Ar, let Ω = C1 + · · · + Cr be the partition of Ω
defined by the Ci = ξ−1(Ai). If µ(Ci) = pi, expectation and variance of ξ are
given by the formulas

Eξ =
r∑

i=1

piAi, V arξ =
r∑

i=1

pi(Ai − Eξ)2 =
r∑

i=1

piA
2
i −

( r∑
i=1

piAi

)2
.

1.4 The weak Law of Large Numbers

The following elementary lemma implies the weak law of large numbers in the
case of independent draws, also called the Bernouilli case:

Lemma 3 (Tschebishev ’s inequality) If ξ : (Ω, µ) → R is a positive (i.e.≥
0) random variable with finite values A1, . . . , Ar, and if α > 0 ∈ R, one has

µ{ω ∈ Ω, ξ(ω) ≥ α)} ≤ Eξ

α
·

Proof.

µ{ω ∈ Ω, ξ(ω) ≥ α} =
∑

i,Ai≥α

pi ≤
∑

i,Ai≥α

pi
Ai

α
≤
∑

i

pi
Ai

α
=

Eξ

α
·

Remark on the notations. In general, probabilists write the above inequality

Pr{ξ ≥ α} ≤ Eξ

α
.

Applied to the positive random variable (ξ−Eξ)2, Tschebishev’s lemma becomes

Pr{|ξ − Eξ| ≥ t} ≤ V arξ

t2
·
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Exercises.
1)Show that if ξi, ξj : Ω → R are independent random variables with finite
values one has E(ξiξj) = E(ξi)E(ξj).
2) Show that the expectation of a sum of random variables ξ1, · · · , ξn : Ω → R
with finite values is the sum of their expectations. Show that the same is true
of their variances if the ξi are two by two independent.

We can now prove in the simplest case the weak law of large numbers, which
founds the statistical interpretation of the notion of probability.
We consider random variables which are independent and identically distributed
(i.i.d.); Here also the simplest example is given by the

ξi : ({0, 1}N∗ ,B, Pp,q) → R, ξi(a1a2 . . .) = ai.

Theorem 4 (Weak law of large numbers in the independent case) If
ξ1, · · · , ξn : (Ω, µ) → R are i.i.d. random variables with finite values, whose
expectation is m and variance is σ2, one has:

∀ε > 0, P r

{∣∣∣∣ξ1 + · · ·+ ξn

n
−m

∣∣∣∣ ≥ ε

}
≤ σ2

nε2
.

In particular, ε being fixed, this probability tends to 0 when n tends to +∞.

Proof. Let sn = ξ1 + · · · + ξn; one applies Tschebishev’s inequality to the
random variable

(
sn

n −E( sn

n )
)2 and one uses the results of the above exercises.

1.5 The Asymptotic Equipartition Property (AEP) in the
Bernoulli case

Corollary 5 (Asymptotic Equipartition Property in the Bernoulli case)
Under the above assumptions,

∀ε > 0, P r

{∣∣∣∣∣ 1n log
1

p(a1 · · · an)
−

r∑
i=1

pi log
1
pi

∣∣∣∣∣ ≥ ε

}
≤ σ2

nε2
,

where σ2 = 1
2

∑r
i,j=1 pipj(log pj

pi
)2 and the probability is computed with the mea-

sure Pp1,··· ,pr on {A1, · · · , Ar}N∗ (or, this is equivalent, on {A1, · · · , Ar}n).
Hence, 1

n log 1
p(a1···an) converges in probability to h(p1, . . . , pr) =

∑r
i=1 pi log 1

pi

when n tends to infinity.

Proof. We apply the weak Law of Large Numbers theorem to the random
variables

ξi : {A1, · · · , Ar}N∗ ,B, Pp1,...pr ) → R, ξi(a1a2 · · · ) = log
1

p(ai)
,

where the log can be taken in any basis and p(ai) = pk if ai = Ak. Writing
p(a1 · · · an) = p(a1) · · · p(an) for the probability of the cylinder Aa1···an

1···n (which
is also the probability of a1 · · · an ∈ An), one proves the theorem.
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This corollary is of the utmost importance for Shannon’s theory. It is best
understood by introducing as in [CT] the ε-typical set A

(n)
ε ⊂ An defined by

A(n)
ε =

{
a1 . . . an ∈ An, 2−n(h(p1,...,pr)+ε) ≤ p(a1 . . . an) ≤ 2−n(h(p1,...,pr)−ε)

}
.

One checks immediately that , if n is large enough,

Pr(A(n)
ε ) ≥ 1− ε and (1− ε)2n(h(p1,...,pr)−ε) ≤ |A(n)

ε | ≤ 2n(h(p1,...,pr)+ε).

Figure 4, in which the size of elements represents their probability illustrates
the interpretation of the corollary: as soon as n is large enough, one most
probably will encounter only sequences (messages) a1 · · · an whose probability
is very close to 2−nh (if the log is taken in basis 2) and the number of such
messages is approximately 2nh. Compared to the totality of the 2n log r possible
messages of length n., this maybe very small: If for example h = 1/2 log r, that
is one half of its maximal value (see next section), this represents 100 messages
among 10000 !
Actually, It is easy to characterize most of these typical messages at the limit
n → ∞: according to the law of large numbers, they are the ones such that,
for each i = 1, 2, . . . , n, the number ni of occurences of the letter Ai satisfies
limn→∞ ni/n = pi. Because of the possibility of large deviations from the
mean, the messages with exactly ni = pin occurences of Ai, i = 1, . . . , n, are
much less numerous but yet, thanks to Stirling’s formula n! ∼

√
2πnn+ 1

2 e−n,
the logarithm of their number is asymptotically equivalent to nh when n tends
to infinity:

log
n!

(p1n)!(p2n!) · · · (prn!)
∼ nh(p1, p2, . . . , pn).

Figure 4 : The Asymptotic Equipartition Property.
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2 The entropy of a finite probability space

2.1 From the definition of Hartley to the one of Shannon

Definition 5 (Shannon’s entropy of a finite probability space) The Shan-
non entropy of a finite set A = {A1, · · · , Ar} endowed with probabilities {p1, · · · , pr},
is the real number

h(p1, p2, · · · , pr) =
r∑

i=1

pi log
1
pi

,

where the logs are most often taken in base 2.

This definition is a refinement of the one given by Hartley, h̃ = log r (i.e.
h̃ = 1

n log Nn where Nn = rn is the total number of messages of a given length
n). Both definitions coincide only when all letters of A are equiprobables but
the Asymptotic Equipartition Property (corollary 5) shows that their real dif-
ference is that in Shannon’s definition only the typical messages, which are
approximately equiprobable, are taken into account. Hence both definitions are
essentially of the same nature.
Remarks.

1) entropy and Maxwell-Boltzmann’s distribution. The above charac-
terization of typical messages, based on Stirling’s formula, is also at the root
of the definition of Boltzmann’s statistical distribution. Given n undistinguish-
able particles, each of which may be in r distinct energy states E1, E2, · · · , Er,
a macrostate is defined by the r-tuple (n1, n2, · · · , nr), where ni is the num-
ber of particles having energy Ei. A given macrostate can be realized in
W = n!

n1!n2!···nr! ways by microstates in which the particles are labelled; hence,
if all the microstates are supposed to be equiprobable, the probability of a given
macrostate is proportional to W . Given a macrostate (n1, n2, · · · , nr), let

E =
r∑

i=1

niEi, pi =
ni

n
, e =

E

n
=

r∑
i=1

piEi

be respectively the total energy, the probability that a particle have energy
Ei and the average energy per particle. The so-called Maxwell-Boltzmann dis-
tribution is obtained by maximizing the probability of a macrostate, that is
of W with the constraint that the average energy per particle e be constant.
Supposing that n is very big and replacing log W by its asymptotic equivalent
nh(p1, p2, · · · , pr), one is reduced to maximizing the entropy h(p1, p2, · · · , pr)
subject to the constraint

∑r
i=1 piEi = e. Taking neperian logs, one gets the

famous formula

pi =
e−λEi∑r

j=1 e−λEj
, where λ satisfies

∑r
j=1 Eje

−λEj∑r
j=1 e−λEj

= e.
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2) Entropy as a measure of information given by an experiment. As a
mesure of the total number of typical (i.e. with a non infinitesimal probability)
outputs which can result from n independent trials when n is big enough, h is
an average measure of our uncertainty before the experiment; equivalently, it
is an average measure of the information which can be learnt from an experi-
ment. Maximal in the equiprobability case where uncertainty is complete, it
approaches 0 when uncertainty vanishes, in which case an experiment brings
no new information. For instance, when throwing a coin whose two faces are
equiprobable, one cannot say anything a priori on the result of an experiment.
If on the contrary the probabilities of the faces are different, one expects getting
more often the one whose probability is the highest.

2.2 Elementary properties of the entropy function

Lemma 6 The function h(p1, · · · , pr), defined on the set of all probabilitiy laws
P = (p1, · · · , pr) on A, is strictly concave; it possesses a unique maximum at
( 1

r , · · · , 1
r ).

Forgetting at first the constraint
∑

pi = 1, h is concave because its second
derivative is the diagonal matrix diag(− 1

p1
, · · · ,− 1

pn
) which is negative definite.

But the restriction to an affine subspace of a concave function remains concave.

The assertion concerning the maximum results from an elementary computation:
there exists a Lagrange multiplier λ such that, if s(p1, · · · , pr) =

∑
pi,

∂h

∂pi
(p1, · · · , pr) = λ

∂s

∂pi
(p1, · · · , pr), i.e. log

1
pi
− 1 = λ for i = 1, · · · , r.

Hence all the pi must be equal. Figure 5 shows the graph of h when r = 2 and
r = 3 :

Figure 5 : Graph of entropy function

Let us give an alternative proof of the fact that the maximum occurs for
equiprobability, not needing any differential calculus but using only the con-
vexity (or concavity) properties. The following inequality expresses that the
center of mass of a collection of point masses belongs to the convex enveloppe of
these masses; applying it to the case f(x) = log(1/x), λk = pk, xk = 1/pkr, one
gets that

∑
pk log(pkr) ≥ 0, that is h(p1, · · · , pr) ≤ log r = h(1/r, · · · , 1/r).
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Proposition 7 (Jensen’s inequality) Let f : R → R be a convex function.
For any integer n, any points x1, . . . , xn ∈ R and any positive weights λ1, . . . , λn

such that
∑n

k=1 λk = 1, one has

f

(
n∑

k=1

λkxk

)
≤

n∑
k=1

λkf(xk).

Moreover, equality holds if and only if all the xk are equal.

Figure 6 : Jensen’s inequality

In order to show that, up to normalization, entropy is the unique reasonable
measure of information, we must introduce a fundamental property for which
we need the notion of conditional entropy.

2.3 Conditional entropy

Let us first remember the equivalence between the notions of finite probabil-
ity space, finitely valued random variable and finite partition. The language of
partitions, more geometric, is indeed extremely well suited to intuitive under-
standing of the notion of conditional probability.
Two probability spaces

A =
(
{A1, A2, . . . , Ar}, (p1, p2, . . . , pr)

)
and B =

(
{B1, B2, . . . , Bs}, (q1, q2, . . . , qs)

)
being given, let us consider them as finite partitions of one and the same
probability space (Ω, µ); this amounts to writing their measures in the form
pk = µ(Ak) and ql = µ(Bl). One can then define
1) a probability space consisting in joint events i.e. couples of an element of A
and an element of B (often noted AB by the probabilists),

A ∨B =
(
{A1 ∩B1, · · · , Ak ∩Bl, · · · , Ar ∩Bs}, (π11, · · · , πkl, · · · , πrs)

)
,

where πkl = µ(Ak ∩Bl) ; the entropy H(A ∨B) (also noted H(A,B)) is called
the joint entropy of A and B.
2) conditional probability laws

B|Ak
=
(
{B1, B2, . . . , Bs}, (qk1, qk2, . . . , qks)

)
, k = 1, 2, . . . , r,

14



and
A|Bl

=
(
{A1, A2, . . . , As}, (p1l, q2l, . . . , qrl)

)
, l = 1, 2, . . . , s,

where the pkl (probability of Ak if Bl is realized) and the qkl (probability of Bl

if Ak is realized) are defined by πkl = pkqkl = pklql.

Figure 7 : Conditional probabilities defined by two partitions.

Definition 6 If A 7→ H(A) is a function defined on the set of all finite prob-
ability spaces A =

(
A, (p1, · · · , pr)

)
, one notes HAk

(B) = H(B|Ak
) and one

defines HA(B) (also noted H(B|A)) as the expectation of the random variable
Ak 7→ HAk

(B) defined on A :

HA(B) = H(B|A) =
r∑

k=1

pkHAk
(B).

If H is the entropy, HA(B) is the conditional entropy (or entropy of B if A).

From the equalities πkl = pkqkl and
∑

l qkl = 1, one deduces immediately the

Lemma 8 The entropy H(p1, · · · , pr) =
∑

pi log 1
pi

satisfies the “chain rule”

H(A ∨B) = H(A) + HA(B).

Remark 1. It follows that the equality H(A ∨ B) = H(A) + H(B), that is
H(A ∨B) maximum, is equivalent to the independence of A and B.
Remark 2. In the language of finitely valued random variables x : Ω → A, y :
Ω → B, etc..., measure on A,B, · · · are defined as direct images by x, y, · · · of
the measure µ on Ω and probabilists use the more figurative notation

pk = µ(x = Ak), ql = µ(y = Bl), πkl = µ(x = Ak, y = Bl).

It is then natural to note H(x) instead of H(A), H(y) instead of H(B), H(x, y)
instead of H(A ∨B) and Hx(y) (or H(y|x)) instead of HA(B) (or H(B|A)).
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Remark 3. Here is how G. Raisbeck ([Ra]) justifies the introduction of entropy
as a measure of the information attached to an experiment : let us take for Ω a
finite set (whose elements may be considered as “messages”) with r elements and
for measure µ the one defined by equiprobability of elements : µ = (1

r , 1
r , . . . , 1

r ).
Let x : Ω → {0, 1} be a random variable and p0 = r0

r , p1 = r1
r be the direct im-

age of µ on {0, 1} (i.e. r0 and r1 are the cardinals of the sets x−1(0) and x−1(1)).
One shall think of this random variable as representing the nature (to be cho-
sen among two possibilities named “0” and “1”) of a message emited along the
probability µ. As this emission is made from r equiprobable messages, reading
the message provides log r information bits: this is indeed the only function, up
to normalization amounting the choice basis for the logarithms (we shall choose
the basis 2), which is additive under the juxtaposition of independent sets of
equiprobable messages. The information associated to the emission of a message
of which the only thing known is the group to which it belongs is the difference
between the complete information log r and the partial information log r0 or
log r1 associated to the emission of a message among the r0 of x−1(0) or the r1

of x−1(1). As the two cases occur in the respective proportions p0 and p1, it is
natural to estimate the “average” information produced by the experiment as
being

H(x) = log r − p0 log r0 − p1 log r1 = −p0 log p0 − p1 log p1.

One recognizes the property of entropy mentioned above: let us set

B = {(B1, . . . , Br), (
1
r
, . . . ,

1
r
)}, A = {(0, 1), (p0, p1)},

and
A ∨B = {(i, j), (πij), i ∈ A, j ∈ B},

where πij = 1 if j belongs to the subset ri and 0 otherwise. As probability
spaces, A ∨B and B are isomorphic (exercise). The entropy H(A ∨B) = log r
corresponding to a trial which gives a complete knowledge of the element is
the sum of the entropy H(A) = p0 log 1

p0
+ p1 log 1

p1
corresponding to a trial

indicating only to which of the two subsets it belongs and of the conditional
entropy HA(B) = p0 log r0 + p1 log r1.

In the following section, we show that the two properties of the entropy we have
singled out suffice to characterize it.

2.4 Characterisation of the entropy of a finite probability
space

The characterization given below, almost the same as the one given by Shannon,
comes from [Kh1]. The notations are the same as the ones of [Kh1] except that
I note HAk

(B) instead of Hk(B).
Both authors consider a function defined on all finite probability spaces endowed
with the tribe formed of all subsets.

16



Theorem 9 Let, for any integer r,

H(A) = H(p1, p2, . . . , pr)

be a function defined on the set of all finite probability spaces (A, p1, . . . , pr).
One supposes that the functions H are continuous and that they verify:
1) For each r, H(p1, p2, . . . , pr) attains its maximum at ( 1

r , 1
r , . . . 1

r ).
2) If A and B sare two finite probability spaces and if, as above, B comes with
conditional probabilities with respect to the Ak, the chain rule holds:

H(A ∨B) = H(A) + HA(B).

3) H(p1, p2, . . . , pr, 0) = H(p1, p2, . . . , pr).
Then there exists a positive constant λ such that

H(p1, p2, . . . , pr) = λ

r∑
k=1

pk log
1
pk

.

Remark. Shannon replaces the first condition by the condition that the func-
tion H( 1

r , . . . , 1
r ) be monotone increasing in r, a condition which follows imme-

diately from 1) and 3). On the other hand, he formulates condition 2) in terms
of “successive choices”.

Sketch of proof. (i) Let us set

L(r) = H(
1
r
,
1
r
, . . . ,

1
r
).

If A(1), A(2) are two copies of A =
(
{A1, A2, . . . , Ar}, ( 1

r , 1
r , . . . , 1

r )
)

indépendent
(i.e. such that the probability of the simultaneaous event A

(1)
k1

A
(2)
k2

is 1
r2 ), prop-

erty 2) reads H(A(1) ∨ A(2)) = H(A(1)) + H(A(2)), that is L(r2) = 2L(r). One
shows in the same way that L(rm) = mL(r) pour any integer m > 0. It is now
a classical exercise to show that a monotonous function L(r) which satisfies the
above condition is necessarily of the form L(r) = λ log r.
(ii) As for all r H is continuous, it suffices to show the formula in the case where
p1, p2, . . . , pr ar all rational numbers; one can then write pk = gk

g , where the
gk are positive integers whose sum is

∑r
k=1 gk = g . Let B be the probability

space

B =
(
{B(1)

1 , . . . , B
(g1)
1 , . . . , B(1)

r , . . . , B(gr)
r }, (1

g
, . . . ,

1
g
, . . . ,

1
g
, . . . ,

1
g
)
)
.

One defines the conditional probabilities

Pr(B(i)
l |Ak) = 0 si l 6= k and Pr(B(i)

k |Ak) =
1
gk

.

Hence HAk
(B) = H( 1

gk
, 1

gk
, . . . , 1

gk
) = λ log gk and

HA(B) =
r∑

k=1

pkHAk
(B) = λ

r∑
k=1

pk log pk + λ log g.
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Finally, in the evaluation of H(A ∨B): only the g =
∑r

k=1 gk events (Ak, B
(i)
k )

have a non zero probability (equal to pk × 1
gk

= 1
g ). Hence H(A ∨B) = L(g) =

λ log g, which concludes the proof.

From now on we shall set

H(A) = H(p1, p2, . . . , pr) =
r∑

k=1

pk log
1
pk

, HA(B) =
r∑

k=1

pkHAk
(B).

Remarks.
1. Tverberg’s characterization of entropy. In [Tv], continuity is not
assumed but only integrability on the interval [0, 1] of the function H(x, 1− x);
the function H is supposed to be symmetric in its arguments and to satisfy

H(x1, x2, · · · , xn−1, u, v) = H(x1, x2, · · · , xn) + xnH

(
u

xn
,

v

xn

)
,

which is condition 2) of theorem 9 in the case when B has 2 elements and the
conditional probabilities pr(B|Ak) = 0 are equal to 0 if k = 1, · · · , n − 1 and
(u, v) if k = n. Tverberg’s proof is based on the following functional equation
satisfied by the function f(x) = H(x, 1− x):

f(x) + (1− x)f
(

u

1− x

)
= f(u) + (1− u)f

(
x

1− u

)
for all 0 ≤ x < 1, 0 ≤ u < 1 such that x + u ≤ 1.

2) the homological nature of entropy. In [BB], Baudot and Bennequin
define a Hoschild type information homology for which the 1-cocycle condition
is exactly the chain-rule identity; they use Tverbeg’s functional equation above
to prove that the entropy function generates the 1 dimensional cohomology
group.

2.5 Shannon’s inequality

2.5.1 Classical approach based on convexity properties

Proposition 10 HA(B) ≤ H(B). In particular, H(A ∨ B) ≤ H(A) + H(B) :
the entropy of a simultaneous choice is less or equal to the sum of the entropies
of the individual choices. Moreover, the inequality becomes an equality only
when A and B are independent, that is when for all k, l, one has πkl = pkql.

Proof. One writes

HA(B) =
∑

k

pk

∑
l

qkl log
1

qkl
, H(B) =

∑
k

pk

∑
l

qkl log
1
ql

,

where in the expression of H(B) one used the equality ql =
∑

k πkl =
∑

k pkqkl.
The inequality in the proposition follows from the following lemma which affirms
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that for each k, one has the inequality
∑

l qkl log 1
qkl

≤
∑

l qkl log 1
ql

, equality
occuring only if for each l one has qkl = ql, that is πkl = pkql. Hence the
difference H(B)−HA(B) is a sum indexed by k positive (or zero) terms and it
can be zero only if each term is zero, that is if A and B are independent.

Lemma 11 (Gibbs’s inequality) If P = (p1, . . . , pr) and Q = (q1, . . . , qr)
are two probability measures on the same finite set A, one has

r∑
k=1

pk log
1
qk
≥

r∑
k=1

pk log
1
pk

.

Moreover, equality occurs only if pk = qk for each k.

Proof. One applies Jensen’s inequality to the function x 7→ log 1
x and the points

xk = qk

pk
endowed with weights pk.

Remark. It is only the average (the expectation) HA(B) of the HAk
(B) which

is less than H(B). It may well happen that the realization of some particular
event Ak increases the incertainty on the result of the drawing of B ; in other
words, it is possible that, for some values of k, one has HAk

(B) > H(B) : for
instance, it will be the case if the realization of Ak makes the Bl equiprobable,
that is if, for all l, one has qkl = 1

s . Figure 8 below, taken from [MK], is an
example (the measure µ on the square Ω is Lebesgue).

Figure 8 : An example (the Ak are horizontal bands of equal thickness).

Exercise. Prove Shannon’s inequality via maximisation
∑

kl πkl log 1
πkl

under
the constraints

∑
k πkl = ql and

∑
l πkl = pk.

2.5.2 A more precise Shannon’s inequality

This version of Shannon’s inequality was given by Misha Gromov during a series
of lectures in 2006. I have found mention of it in none of the books of Information
Theory that I consulted but it seems to be known among specialists of Statistical
Mechanics. (see [Ru]).
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Definition 7 A partition C = {C1, · · · , Cm} of a set Ω is said to be finer than
a partition D = {D1, · · · , Dn} of the same set if, for all i, there exists j such
that Ci ⊂ Dj. On says also thart D is coarser than C.

Here is a definition of the partition A∨B consisting in the intersections Ak ∩Bl

which calls for a symmetric definition of A ∧B :

Definition 8 Given two partitions A and B of a set Ω, the partition A ∨B is
the coarser partition which is finer than A and B ; the partition A ∧ B is the
finer partition which is coarser than A and B.

Figure 9 : An example such that A ∧B is non trivial.

Proposition 12 (Shannon’s symmetric inequality) If A and B are finite
partitions of the probability space (Ω,F , µ), one has

H(A ∨B) + H(A ∧B) ≤ H(A) + H(B).

Equality occurs only if in each piece of A ∧ B, the partitions induced by A and
B are independent.

Proof. It is enough to apply Shannon’s inequality to each element of the par-
tition A∧B. Precisely, let A∧B = C = {C1, · · · , Cm, · · · , Cp}. By hypothesis,
each Cm is the union of some Ak’s and also the union of some Bl’s. We may
attach to the elements of A and B a double index, the first one indicating the
element of C in which the element is contained :

A = {A11, · · · , A1α1 , A21, · · · , A2α2 , · · · , Ap1, · · · , Apαp},

B = {B11, · · · , B1β1 , B21, · · · , B2β2 , · · · , Bp1, · · · , Bpβp}.

One notes in the same way pmi and qmj the measures (i.e. the probabilities)
of Ami and Bmj . Finally, let ρm =

∑αm

i=1 pmi =
∑βm

j=1 qmj be the measure of
Cm and πmij the one of Ami ∩ Bmj . Note that if m′ 6= m, the intersection
Am′i ∩Bm′′j is empty. One has

H(A ∨B) =
∑
m

∑
1≤i≤αm

∑
1≤j≤βm

πmij log
1

πmij
·

But for m fixed, the Ami’s on the one hand, the Bmj ’s on the other hand, define
two partitions CA

m and CB
m of Cm and one has

H(CA
m ∨ CB

m) =
∑

1≤i≤αm

∑
1≤j≤βm

πmij

ρm
log

ρm

πmij
·
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As
∑

1≤i≤αm

∑
1≤j≤βm

πmij = ρm, one deduces that

H(A ∨B) =
∑
m

ρmH(CA
m ∨ CB

m) + H(A ∧B).

In the same way,

H(A) =
∑
m

ρmH(CA
m) + H(A ∧B), H(B) =

∑
m

ρmH(CB
m) + H(A ∧B),

and hence

H(A)+H(B)−H(A∨B)−H(A∧B) =
∑
m

ρm

(
H(CA

m)+H(CB
m)−H(CA

m∨CB
m)
)
.

To conclude, one applies Shannon’s inequality to the partitions CA
m and CB

m of
Cm for 1 ≤ m ≤ p. The characterization of equality follows from the fact that
the right hand side is a linear combination with positive coefficients of positive
terms.

2.5.3 A trivial special case and a nice example of equality

If each one of the partitions A and B is made of equiprobable pieces, i.e. if p1 =
· · · = pr = 1

r and q1 = · · · = qs = 1
s , Shannon’s inequality, in its precised version,

is an immediate consequence of the following upper bound of the cardinal |A∨B|
of A ∨ B in terms of r = |A|, s = |B| and p = |A ∧ B|. Indeed, from the first
characteristic property of the entropy fiunction, one deduces

H(A) = log r, H(B) = log s, H(A ∧B) = log p, H(A ∨B) ≤ log
rs

p
.

Lemma 13 The following inequality holds:

|A ∨B| ≤ rs

p
.

Proof. The partition A ∨ B is the one defined by the intersections Ak ∩ Bl;
as such an intersection is empty as soon as Ak and Bl do not belong to the
same piece of the partition A ∧ B, a majoration of |A ∨ B| is obtained by
looking for the maximum of

∑p
m=1 αmβm, where the notations are the one of

the preceding section. This is still a problem of constrained extrema, with
constraints

∑p
m=1 αm = r and

∑p
m=1 βm = s. Hence there must exist two

Lagrange multipliers λ and µ such that, for all m, βm = λ and αm = µ, that is
αm = r

p and βm = s
p which implies

∑p
m=1 αmβm = rs

p .

An example of equality (Gromov). As the ambient space one takes the
vector space (F2)N of dimension N on the field F2 with 2 elements, each ele-
ment being given the same probability 1

2N . One calls A and B two partitions,
each one consisting in parallel affine subspaces. The precised form of Shan-
non’s inequality, in this case an equality, reduces to an identity of codimensions
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of affine subspaces. Indeed, if a and b are the respective codimensions of the
affine subspaces Ak and Bl, these subspaces have respectively 2N−a and 2N−b

elements; hence

r = 2a, p1 = · · · = pr =
1
2a

, s = 2b, q1 = · · · = qs =
1
2b

,

and the entropies are nothing but the codimensions:

H(A) = a, H(B) = b.

Now, the partitions A ∨ B and A ∧ B are also partitions into affine subspaces,
respectively those defined by the intersections Ak ∩ Bl and those generated by
the couples Ak ∪ Bl with non empty intersection. I leave to the reader the
pleasure of the conclusion.
Of course, one of the virtues of such an example is to show that it was conceptu-
ally a mistake to forget one of the terms of the inequality, but in order to make
this remark it was enough to consider the case where A = B.

2.5.4 The Asymptotic Equipartition Property as a tool for proofs

The proof of Shannon’s inequality using the law of large numbers is not sim-
pler than the classical proof based on convexity. Nevertheless it brings forth
the beautiful idea of using the law of large numbers as a tool which reduces
the general case to the case of equiprobability. In the same way as Shannon’s
definition reduces to Hartley’s definition if one considers only sufficiently long
“typical” messages, Gromov noticed that the Asymptotic Equipartition Prop-
erty allows reducing the proof of proposition 12 to the case above where each of
the partitions A and B consists in equiprobable pieces.
Technically, one “almost” reduces the general case to the equiprobable case
by replacing Ω by ΩN with N large enough and “forgetting the non typical
elements”. More precisely, if (Ω,F , µ) is a probability space, one defines on ΩN

the probability measure µ⊗N corresponding to the independence of coordinates
and one argues as follows:
(i) To the partitions A and B of Ω correspond the following partitions A′ and B′

of ΩN : an element Aa1...aN
of A′ is defined as the set of all N -tuples (x1, ..., xN )

such that xi ∈ Aai for i=1,...,N. the measure pa1···aN
of Aa1...aN

is the product
pa1 · · · paN

of the measures of the Aai ’s ; an explicit computation shows that
H(A′) = NH(A).
(ii) One shows easily that A′ ∨B′=(A∨B)′ andt A′ ∧B′ = (A∧B)′. Hence, it
is enough to prove the inequality for the partitions A′ and B′.
The Asymptotic Equipartition Property asserts the existence of a subset ZA ⊂
ΩN whose measure is arbitrarily close to 1 if N is large enough which consists
in elements Aa1...aN

of A′ such that

|(1/N) log(1/pa1···paN
)−H(A)| < ε.
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It follows that the probability of each of these elements lies between 2−N(H(A)+ε)

and 2−N(H(A)−ε), which implies that their number is at most 2N(H(A)+ε). The
same count as was done in the equiprobable case (one counts elements of A′′∨B′′

as a function of the number of elements of A′′ ∧B′′ and one extremises) shows
that if one considers the restrictions A′′ and B′′ of A′ and B′ to the intersection
of ZB and ZA one has

H(A′′ ∨B′′) + H(A′′ ∧B′′) < N (H(A) + H(B) + 2ε) .

(iv) It remains to compare the entropy of A′′ ∨ B′′, etc to the one of A′ ∨ B′,
etc. A quick estimation (to be checked) shows that in the above estimation,
replacing A′′ by A′ etc amounts to add to the 2ε an error of the form cste(ε +
(1/N)ε log(1/ε)). Making ε tend to 0 gives the conclusion.

2.5.5 Applications of Shannon’s inequality (Gromov)

Proposition 14 (A universal inequality for finite subsets of Zn) The car-
dinal |Y | of a finite subset Y of the lattice Zn satisfies

|Y ||Y | ≥ ΠS |Y ∩ S||Y ∩S|,

where the product is taken over all the lines S parallel to some coordinate axis
which contain at least one point of Y . Equality occurs if and only if Y is a
product of subsets of Z.

Proof. Let Ai be the partition of Y whose pieces are the intersections of Y
with the lines parallel to the ith axis of coordinates, and A12···i the partition
whose pieces are the affine subspaces parallel to the i-plane generated by the
first i axes of coordinates. Endowing Y with the equiprobability of its elements,
one has

H(A1)+· · ·+H(An) =
∑
S

|Y ∩ S|
|Y |

log
|Y |

|Y ∩ S|
= n log |Y |−

∑
S

|Y ∩ S|
|Y |

log |Y ∩S|.

Indeed, as each point of Y belongs to n lines in S, one has
∑

S |Y ∩ S| = n|Y |
and the proposition is equivalent to the inequality

H(A1) + · · ·+ H(An) ≥ (n− 1) log |Y |.

But, since the partition A1 ∨ A2 is the partition into atoms and the partition
A1 ∧A2 is a priori finer than A12,

H(A1) + H(A2) ≥ H(A1 ∨A2) + H(A1 ∧A2) ≥ log |Y |+ H(A12).

It follows that

H(A1) + H(A2) + H(A3) ≥ log |Y |+ H(A12 ∨A3) + H(A12 ∧A3).
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In the same way, as A12∨A3 is the partition into atoms and A12∧A3 is a priori
finer than A123, one gets

H(A1) + H(A2) + H(A3) ≥ 2 log |Y |+ H(A123).

Adding one by one the terms H(Ai) and noticing that A12···n is trivial and
hence has entropy 0, one gets the required inequality. I leave to the reader the
characterization of the cases of equality.

Remark. The difference between the two terms of the inequality is a nice
measure of the ”dispersion” of the subset, i.e. of its ”distance” to the shape of
a k-dimensional rectangle.

This inequality implies (and is stronger than) the discrete version of the Loomis-
Whitney inequality:

Figure 10 : Isoperimetric Loomis-Whitney inequality in dimension 3.

Proposition 15 |Y | < Π|Yi|1/(n−1) where the Yi’s are the projections of the n
coordinate hyperplanes.

Proof. We must show that (n − 1)) log |Y | <
∑

log |Yi|, which is implied by
the stronger inequality (n−1) log |Y | <

∑
H(mi) where H(mi) is the entropy of

the image by the projection on the ith coordinate axis of measure on |Y | which
gives the same probability 1/|Y | to each point (i.e. the mass (1/|Y |)|Y ∩ S|
is given to the point which is the projection of the fibre S). This inequality
can be written −(n− 1) log |Y | >

∑
−H(mi) or log |Y | >

∑
(log |Y | −H(mi))

(n terms). But this last sum is neither but the sum of the coentropies of the
projections (or relative entropies of Y with repsect to the partitions defined by
the fibres), that is the sum of the expectations of the functions which to a point
in one of the n quotients associates the entropy of the corresponding fibre: i.e.
the sum of the (|Y ∩ S|/|Y |) log |Y ∩ S|. Finally, the inequality amounts to
log |Y | >

∑
(|Y ∩S|/|Y |) log |Y ∩S| which, by exponentiation, gives the discrete

Loomis-Whitney inequality.
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3 Data compression

3.1 Using the typical set to define a code

Given a finite probability space (A, p) =
(
{A1, A2, · · · , Ar}, (p1, p2, · · · , pr)

)
, let

An
ε ⊂ An be the typical subset, that is the subset of words a1 · · · an such that

H(p)− ε ≤ 1
n

log
1

p(a1 · · · an)
≤ H(p) + ε,

where, in the Bernouilli case, p(a1 · · · an) = p(a1) · · · p(an). The Asymptotic
Equipartition Property asserts that, if n is large enough,

Pr(An
(ε)) ≥ 1− ε.

We define in the following way a coding of the elements of An:
1) One orders the elements of An

ε and one associates to each of them their order
number in base 2 as code word. Moreover, we prefix these code words by zero
in order to recognize them. This takes at most n(H + ε) + 2 bits.
2) One codes in the same way the elements of An \An

(ε) and we prefix their code
words by 1. This takes at most n log r + 2 bits.
Such a code is 1-1 and easy to decode and all typical sequences have short codes.
The expectation of the length of a code word satisfies

EL =
∑

ω∈An

p(ω)L(ω) ≤ Pr(An
(ε))
(
n(H + ε) + 2

)
+Pr(An \An

(ε))(n log r + 2),

that is
EL ≤ n(H + ε′).

We have proved the

Theorem 16 Let a finite probability space (A, p) and a real number ε > 0 be
given. There exists a one to one binary coding of words of length n such that
the expectation E(L(X)) of the length of a code word satisfies

EL(X)) ≤ n(H(p) + ε).

In this computation, the lengths of the code words are treated as if they were
taking only the two values n(H + ε)+2 and n log r+2 (which would be the case
if we were adding the ad hoc number of zeroes at the end of each code word).
In fact, even taking accurately into account the length of each code word, one
cannot do better for any one to one code (see [CT] Chapter 5 for a study of
prefix codes, Kraft inequality, optimal code lengths, etc...): the Min expected
code length in bits per symbol is the entropy; roughly said, if n is large enough,
the source An can be considered as having in the average 2nH equiprobable
elements.
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4 Data transmission

4.1 Mutual information and channel capacity

Figure 11 below summarizes Shannon’s main theorems, which give a theoretical
limit to the possibilities of transmitting messages through a noisy channel with
an arbitrarily small error.

Figure 11 : A summary
In the simplest model, a “source” emits messages., these messages are coded
(the “input”), then transmitted through a “channel” and then read as an “out-
put”. Supposing that the coding is also a random process, i.e. supposing that
the letters in A are coded by randomly and independently chosen symbols in X,
input and output messages are elements of probability spaces, say (Xn, p(x))
and (Y n, q(y)). The possible errors due to the transmission by the channel are
represented by conditional probabilities qx(y) = q(y|x) which give the proba-
bility to receive the message y when x is emitted. Then qx(y) = π(x,y)

p(x) , where
π(x, y) is the probability of the joint event (x, y).
The main point is that for long enough messages-, the Asymptotic Equipartition
Property allows one to forget about non typical messages, whose probability of
being sent is asymptotically 0. This means that, be it for the source messages,
the set of inputs (obtained by coding from the source messages) or the set of
outputs (transmitted through the channel), one can replace the total number
2n log |A| (resp. 2n log |X| or 2n log |Y |) of possible messages of length n by 2nh,
where h is the entropy of the corresponding alphabet A,X or Y .
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The two types of fans represent respectively the probability of the ouputs orig-
inating from a given input or the probability of the inputs from which a given
ouput may originate. When n tends to infinity (lower part of the figure), the
probabilities that a given typical output comes from 2 different typical inputs
(and similarly the probability that two typical outputs originate from the same
typical input) vanishes, provided a certain “sphere packing property” holds;
this leads to the the definitions of mutual information and channel capacity in
terms of which Shannon’s theorem is stated: for each typical input sequence of
length n (large), there are in average approximately 2nH(Y |X) most probable
Y -output sequences, all of them having approximately the same probability.
Indeed, the number of typical messages received is by definition 2nh where h is
the expectation h =

∑
x p(x)H(Y |x) of the random variable which to an input

x = x1x2 · · ·xn associates the entropy H(Y |x) =
∑

y p(y|x)log 1
p(y|x) of the ran-

dom variable y = y1y2 · · · yn for the conditional probability law corresponding
to independant draws p(y|x) =

∏n
i=1 p(yi|xi). Hence

h =
∑
x,y

p(x)p(y|x) log
1

p(y|x)
= H(Y |X).

But the total number of most probable Y -sequences of length n (large) is ap-
proximately 2nH(Y ). Hence the maximal number of disjoint most probable Y -
output sequences is likely to be asymptotically the quotient 2nH(Y )/2nH(Y |X) =
2n(H(Y )−H(Y |X)).
Dually, for each typical Y -output sequence, there are approximately 2nH(X|Y )

typical X-input sequence, all of them having approximately the same proba-
bility. The total number of most probable input sequences of length n (large)
being approximately 2nH(X), the maximal number of disjoint most probable X-
input sequences is likely to be approximately the quotient 2nH(X)/2nH(X|Y ) =
2n(H(X)−H(X|Y )).
The two above estimates are in fact the same and they deserve a name:

Definition 9 (Mutual information I) The following equivalent expressions
define the mutual information I(X, Y ) = I(Y, X) of two random variables:

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)
= H(X) + H(Y )−H(X ∨ Y )
= H(X ∨ Y )−H(X|Y )−H(Y |X)

=
∑
x,y

π(x, y)log
π(x, y)

p(x)q(y)
.

Remarks. 1) It follows from Shannon’s inequality (see 2.5) that I(X, Y ) ≥ 0
(and even that I(X, Y ) ≥ H(X ∧ Y )).
2) Mutual information is a special case of the relative entropy or Kullback –
Leibler “distance” (which in spite of its name is not a distance because non
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symmetric) between two probability laws on X, defined as the expectation for
the probability law p of the random variable log p(X)

q(X) :

D(p|q) =
∑
x∈X

p(x) log
p(x)
q(x)

Indeed, I(X, Y ) is the relative entropy between the joint probability π(x, y) and
the product probability p(x)q(y).
Finally, optimizing the choice of the probability law p(x) on X, we get a funda-
mental characterization of a channel:

Definition 10 (Capacity C of a channel)

C = max
p

I(X, Y ),

where the max is taken over all possible probabilities laws p(x) on X .

Exemples in case X = A and Y = B are finite alphabets.

1) Noisy Typewriter: here A = B = A1, · · · , Ar and the letter Ak has probabil-
ity 1/2 of being transmitted as Ak and probability 1/2 of being transmitted as
Ak+1 (with the convention that Ar+1 = A1). One easily shows that C = log r−1.

2) Binary Symmetric channel: A = B = {0, 1} with conditional probabilities

p00 = 1− α, p01 = α, p10, p11 = 1− α,

where 0 < α < 1 is given. Show that the capacity is 1−α log 1
α−(1−α) log 1

1−α .

3) Binary Erasure channel: A = {0, 1}, B = {0, e, 1} with conditional probabil-
ities

p00 = 1− α, p0e = α, p01 = 0, p10 = 0, p1e = α, p11 = 1− α.

Show that the capacity is 1− α.
4) In november 1948, in a short note titled A case of efficient coding for a very
noisy channel, Shannon considers the case when p = 1+ε

2 , q = 1−ε
2 with ε small.

The capacity of such a channel is approximately Kε2 where k is a constant. The
theoretical code proposed by Shannon (only theoretical because the integer n
must be very large) is the following: one repeats n times each symbol 0 or 1 and
one decodes each sequence of n symbols at the majority. Each such sequence
follows a binomial law, i.e. the probability of receiving k times 0 if 0 was sent
is
(
n
k

)
pk(1− p)n−k and analogously with p and q exchanged if 1 is sent. By the

de Moivre-Laplace theorem, when n tends to infinity, one obtains

lim
n→∞

Pr

{
A ≤ k − pn

√
npq

≤ B

}
=

1
2π

∫ B

A

e−
z2
2 dz.
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The probabiity of error when sending 0 is the probability that the number k of
0’s which are received satisfies −∞ ≤ k − pn ≤ n

2 − pn = −nε
2 , that is

−∞ ≤ k − pn
√

npq
≤

−n ε
2√

n 1−ε2

4

= −
√

ε
√

n
√

1− ε2 ∼ −ε
√

n.

Hence this probability is asymptotically given by the Gaussian integral

1√
2π

∫ −εn√
1−ε2

−∞

Hence a bound on the error is obtained by bounding below ε
√

n; , for example
to get an error below 10−3 one must have ε

√
n ≥ 3.1 which is of the same order

as the theoretical limit which will be given by Shannon’s theorem.

4.2 The channel coding theorem

It is the remarkable fact discovered by Shannon that the rough hint given by
the above analysis turns out to be a rigorous estimate of the possibilities of
asymptotically error-free transmission by a noisy channel.
In order to state a precise theorem we still need a few definitions; note that
having in mind a coding of the typical set, we deal only with fixed length codes.

Definition 11 ((M,n)-Code) An (M,n) code for the channel {Xn, p(y|x), Y n}
is an index set {1, 2, · · · ,M}, an encoding function {1, 2, · · · ,M} → Xn, yeld-
ing codewords Xn(1), · · · , Xn(M) and a decoding function g : Y n → {1, 2, · · · ,M}
(or g(y)=“error”).

In the case we are considering, M will be approximately the number 2nH(A) of
typical messages from the source, all these typical messages being approximately
equiprobable.

Definition 12 (Probability of error) If f is the coding and g the decoding,
we set

λ(n)
w (C) = Pr(

{
g(Y n) 6= w and Xn = f(w)

}
,

λ(n)(C) = max
w∈{1,2,··· ,M}

λ(n)
w (C), λ(n)(C) =

1
M

M∑
w=1

λ(n)
w (C).

Definition 13 (Rate of a code) The rate of an {M,n} code is R = log M
n

bits per transmission. It is said to be achievable if there exists a sequence of
{2nR, n} codes such that the maximal probability error λ(n) tends to zero when
n tends to infinity.

We now prove Shannon’s theorem in the simple setting of Bernouilli (i.e. dis-
crete memoryless) sources and channel where the successive symbols sent are
independent. We closely follow [CT].
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Theorem 17 (Channel Coding Theorem) All rates below capacity C are
achievable. Conversely, any sequence Ci of (2niR) codes with λ(Ci) tending to
zero when ni tends to infinity must have R ≤ C.

Recalling that there are approximately 2nH(A) typical messages of length n
which have a non asymptotically vanishing probability of being sent, we get

Corollary 18 (Source-channel coding theorem) There exists a source chan-
nel code with λ tending to zero when n tends to infinity if H(A) < C.
Conversely, if H(A) > C, the probability of error is bounded away from 0, and it
is not possible to send the process over the channel with arbitrary low probability
of error.

Proof. We recapitulate the process of coding and sending the coded message.
Only the last point (decoding) is new:
1) A (2nR, n) code is chosen randomly according to the probability law p(x) on
X. This means that the code

C =

 x1(1) x2(1) · · · xn(1)
· · · · · · · · · · · ·

x1(2nR) x2(2nR) · · · xn(2nR)


is given the probability

Pr(C) =
2nR∏
w=1

n∏
i=1

p
(
xi(w)

)
.

2) The sender and the recipient both know the code and the conditional prob-
abilities p(y|x) of the channel.
3) The message W is chosen according to equiprobability:

Pr(W = w) = 2−nR, w = 1, 2, . . . , 2nR.

4) If x(w) = x1(w)x2(w) · · ·xn(w) is sent, y = y1y2 · · · yn is receivend according
to the probability

p(y|x(w)) =
n∏

i=1

p(yi|xi(w)).

5) A coded message x(w) being sent which is received as y, we decode it as
g(y) = ŵ if

(i) the pair (x(ŵ), y) is joint typical (i.e. if x(ŵ) is typical in Xn, y is typical
in Y n and the pair is typical in Xn ∨ Y n);

(ii) ŵ is the only message with this property.
If ŵ 6= w or if there is no such ŵ, one decodes as g(y) = error.
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Computing the average error. (for details, see [CT] pages 198 . . .)
This is the main point. The heuristic reasoning is the same as the one we did at
the beginning, the only difference being the use for the mutual information of
the formula I(X, Y ) = H(X)+H(Y )−H(X∨Y ): choosing a couple at random
in Xn ∨ Y n according to the probability defined by the probability on X and
the conditional probabilities on Y characterizing the channel, the probability
that it be typical goes to 1 when n tends to infinity. On the other hand, taking
independently a random typical message in Xn and a random typical message
y in Y n, the probability that the couple (x, y) be joint typical is approximately
2nH(X∨Y )/

(
2nH(X) × 2nH(Y )

)
= 2−nI(X,Y ). Hence the probability that another

pair (x′, y) be typical is approximately this probability times the number of
candidate messages, that is

(
2nR − 1

)
× 2−nI(X,Y ) which goes to zero when n

goes to infinity as soon as R < I(X, Y ).
To turn this into a proof, the bright idea (which belongs to Shannon) is to look
first at the average

λ(n)(C) =
1

2nR

2nR∑
w=1

λ(n)
w (C)

over all source words w of the probability of error for a given code, and then to
average it over all possible codes C, that is to compute the double average

∑
C

Pr(C)λ(n)(C) =
1

2nR

2nR∑
w=1

∑
C

Pr(C)λ(n)
w (C).

Now, because of the average over all possible codes C, the sum
∑

C Pr(C)λ(n)
w (C)

is independent of w, hence equal for example to
∑

C Pr(C)λ(n)
1 (C). It follows

that this double average amounts to the probability (computed over all random
codes) of getting an error when decoding the output obtained when the word 1
is coded and sent through the channel, that is the probability

Pr(E1) =
∑
C

Pr(C)λ(n)
1 (C)

over all random codes of the event E1 which corresponds to decoding an error
after having sent the codeword f(1). The event E1 can be decomposed into

E1 = Ec
1 ∪ E2 ∪ · · · ∪ E2nR ,

where, by definition, the event Ew occurs if the codeword f(w) and the output
y1 received after sending the codeword f(1) are joint typical.
Now, because the codewords and the codes are chosen randomly, it follows from
the Asymptotic Equipartition Property that

i) the probability of Ec
1, that is the probability that (f(1), y1) are not joint

typical, tends to zero when n tends to infinity;
ii) as f(1) and f(w) are independent if w 6= 1, so are f(w) and y1. As

when n tends to infinity, there are asymptotically 2nH(X) × 2nH(Y ) couples
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of a typical element of Xn and a typical element of Y n, the probability that
the pair (f(w), y1) is joint typical is asymptotically equivalent to the quotient
2nH(X∨Y )/

(
2nH(X) × 2nH(Y )

)
= 2−nI(X,Y ) . As there are 2nR − 1 possibilities

for w 6= 1, the total probability of the events E2 ∪E3 ∪ · · · ∪E2nR is equivalent3

to 2n(R−I(X,Y )) when n tends to infinity. From i) and ii) it follows that the error
can be made arbitrarily small when n is large enough as soon as R < I(X, Y ).
Maximizing among the probability laws on X, one gets the necessary condition
that the rate of the code be less than the capacity of the channel: R < C.
Finally, a simple trick of throwing away the worst half of the code words in
the best code turns the estimate on the average error into an estimate on the
maximum error (see [CT] page 202).

Proof of the converse. Let

M = {1, 2, · · · , 2nR}

be the set of input messages. As these are supposed to be almost equiprob-
able, we have approximately H(M) = nR. Recall that, by definition of the
information, H(M) = H(M|Y n) + I(M, Y n).

Lemma 19 The following inequalities hold
1) I(M, Y n) ≤ I(Xn, Y n) (Data processing inequality),
2) I(Xn, Y n) ≤ nI(X, Y ) (chain rule).

Intuitively, 1) asserts that no processing of Xn (here replacing it by M) can
increase the information that Y n contains about Xn.
It follows that nR = H(M) ≤ H(M|Y n)+nC, which shows that the problem is
to estimate the conditional entropy H(M|Y n). Now, if the channel was perfect,
i.e. if it was doing no mistake, the decoding would be exact and this would
imply H(M|Y n) = 0. In the general case, the converse of the theorem is a
consequence of the

Lemma 20 (Fano 1952) H(M|Y n) ≤ 1 + λ
(n)

nR.

Indeed, it follows that

R ≤ C + λ
(n)

R +
1
n

,

hence the proof of the converse when n →∞.

Proof of Lemma 19
1) Given w ∈M, x ∈ X and y ∈ Y , the following holds:

p
(
(w, y)|x

)
= p(w|x)p(y|x).

Indeed, x being given, w and y are conditionally independent. By definition of
conditional probabilities, after multiplying by the common denominator p(x),
this equality can be written p(w, x, y) = p(w, x)p(y|x), that is

p(w, x, y) = p(w)p(x|w)p(y|x),
3for a proof with all the epsilons, see [CT].
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or is in a symmetric form

p(w, x, y)p(x) = p(w, x)p(x, y).

In [CT], a triple M ↔ Xn ↔ Y n satisfying the above equation is called a
Markov chain. This property implies the data processing inequality: indeed,

I(Y n|M ∨Xn) = I(M, Y n) + I
(
(Xn, Y n)|M

)
= I(Xn, Y n) + I(M, Y n|Xn).

On the one hand, as any information quantity, I
(
(Xn, Y n)|M

)
≥ 0; on the other

hand, the conditional independence of M and Y n implies I(M, Y n|Xn) = 0
and the conclusion follows: I(M, Y n) ≤ I(Xn, Y n), which is the very intuitive
statement that no processing of Xn (in the present case, replacing Xn by M)
can increase the information that Y n contains about Xn.
2) The chain rule, which says that a memoryless discrete channel does not gain
in transmission if it is used several times, is a consequence of the following iden-
tities: because of the independance of the codewords which are sent, the same
is true of the code words which are received. In other words, the random vari-
ables Y1, Y2, · · ·Yn are i.i.d. (independent and identically distributed). Hence
Y n = Y1 ∨ Y2 ∨ · · · ∨ Yn, and one shows by induction that

H(Y n) =
n∑

i=1

H(Yi|Y1 ∨ Y2 ∨ · · · ∨ Yi−1) ≤
n∑

i=1

(Yi),

H(Y n|Xn) =
n∑

i=1

H(Yi|Y1 ∨ Y2 ∨ · · · ∨ Yi−1 ∨Xn) =
n∑

i=1

H(Yi|Xi),

the last equality resulting from the fact that Xi depends only on Yi. It follows
that

I(Xn, Y n) = H(Y n)−H(Y n|Xn)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi) =
n∑

i=1

I(Xi, Yi) = nI(X, Y ).

Proof of Fano’s lemma 20 Let

E : M× Y n → {0, 1}

be the random variable defined by

E(w, y) = 0 if g(y) = w,

E(w, y) = 1 if g(y) 6= w or if there is a decoding error,

where g is the decoding function.
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One has by definition, Pr(E = 1) = λ
(n)

and Pr(E = 0) = 1− λ
(n)

. Moreover,
as the knowledge of w and y determines g(y) and hence E, one has

H(E|M ∨ Y n) = 0.

Hence,

H(M∨ E|Y n) = H(M|Y n) + H(E|M ∨ Y n) = H(M|Y n).

On the other hand, exchanging the roles of M and E,

H(M∨ E|Y n) = H(E|Y n) + H(M|E ∨ Y n) ≤ H(E) + H(M|E ∨ Y n).

But as E takes only two values, one has H(E) ≤ 1, hence

H(M∨ E|Y n) ≤ 1 + H(M|E ∨ Y n).

Finally, one computes

H(M|E ∨ Y n) =
∑

y

Pr(0, y)H(M|(0, y)) +
∑

y

Pr(1, y)H(M|(1, y))

= (1− λ
(n)

)
∑

y

Pr(y|0)H(M|(0, y)) + λ
(n)∑

y

Pr(y|1)H(M|(1, y)).

By definition of the conditional entropy as an average, the first term is equal to
(1 − λ

(n)
)H(M|(E = 0) ∨ Y n) and hence vanishes because E = 0 means that

the knowledge of y determines w.

The second term is equal to λ
(n)

H(M|(E = 1) ∨ Y n) ≤ λ
(n)

H(M) = λ
(n)

nR
because the elements of M are supposd to be equiprobable. This concludes the
proof.
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II – BEYOND BERNOUILLI SYSTEMS

Shannon’s theorems admit generalizations to more realistic sources, for example
Markov sources, where the probability of emitting a letter (or a word) depends
on the letters (words) which have been emitted before. More generally, they
are valid for the general case of ergodic sources. We need first introduce the
language of dynamical systems4.

5 Random draws and Bernouilli shifts

The stochastic properties of an infinite sequence of independent draws (with re-
spective probabilities p, q of 0, 1), are nicely reflected in the dynamical properties
of a single object, the Bernoulli shift)

T : ({0, 1}N∗ ,F , Pp,q) → ({0, 1}N∗ ,F , Pp,q), T (a1a2a3 . . .) = (a2a3a4 . . .).

Forgetting a1, this map is surjective but not injective: the inverse image of
any element consists in a pair of elements. It preserves any of the probability
measures P = Pp,q on the Borel tribe F of {0, 1}N∗ : indeed, the inverse image
T−1(A) of the cylinder A = Aj1j2...jk

i1i2...ik
is the cylinder Aj1j2...jk

i′1i′2...i′k
, where i′n = in +1;

as te process is stationary, it has the same probability pk0qk1 as A and one
concludes by lemma 4.

Orbits and dynamics. An orbit {ω, Tω, T 2ω, . . . , Tnω, . . .} of T is a dynam-
ical description of the sequence of draws ω and the language and methods of of
the theory of dynamical systems – for which such an orbit is the discrete version
of a an integral curve – is remarkably pertinent in the description of this type
of stationary processes.

Exercise 3 When p = q = 1
2 , the translation of T in the world of the interval

[0, 1] is the mapping x 7→ 2x(mod.1) = 2x− [2x] which is easily shown directly
to preserve Lebesgue measure ([x] means the integer part of x).

Figure 12 : The map x 7→ 2x on the interval and on the circle.

4for details and proofs, see [C]
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From simply infinite sequences to doubly infinite sequences:
It is often more pleasant to work with invertible transformations and, in our
case, this is accomplished by the consideration of a double infinity of draws,
both in the past and in the future. Correspondingly, one defines a bimeasurable
bijection T : {0, 1}Z → {0, 1}Z which preserves all the probability measures
P = Pp,q by setting

T (. . . a−2a−1a0a1a2 . . .) = (. . . b−2b−1b0b1b2 . . .), where bi = ai+1.

Exercise 4 One supposes that p = q = 1
2 . Show that if g2 : {0, 1}Z → [0, 1]2 is

defined by

g2(. . . a−2a−1a0a1a2 . . .) =

(−∞∑
k=0

ak

21−k
,

∞∑
k=1

ak

2k

)
,

the direct image of P by g2 is the Lebesgue measure on [0, 1]2 and that g2 con-
juguates measurably T : {0, 1}Z → {0, 1}Z to the transformation τ : [0, 1]2 →
[0, 1]2 defined by

τ(x, y) =
(1
2
(x + [2y]), 2y − [2y]

)
,

where [2y] denotes the largest integer ≤ 2y (clearly, 2y − [2y] is nothing but
2y(mod1)). Explain why dynamicists call τ the “baker’s transformation”.

Figure 13 : The baker’s transformation.

Stationary stochastic processes and shifts : dictionary
Up to now we have supposed that the successive draws were independent and
this was reflected by the choice of the probability measure P = Pp,q on {0, 1}Z.
In information theory , one sends messages whoses structure is in general not
so simple: in any natural language, the probability that some letter follows
another one depends on the two letters and this leads to the considération of
more complex processes, for example the Markov chains which we shall define.
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Definition 14 (discrete source) A (stationary) discrete source is a shift-inva-
riant probability measure defined on the Borelian tribe of {0, 1}Z (resp. of AZ,
where A = {A1, A2, . . . , Ar} is a finite alphabet).

This is equivalent to giving a stationary stochastic process with values in {0, 1}
(resp. in A) in the following sense:

Definition 15 A discrete time stochastic process on the probability space (Ω,F , µ)
with values in the topological space X is a sequence {ξn}n∈Z of random variables
ξn : Ω → X.

To such a process on associates a probability measure ν on XZ by setting

ν(Aj1j2...jk

i1i2...ik
) = µ

(
ξ̃−1(Aj1j2...jk

i1i2...ik
)
)
,

where ξ̃(ω) = . . . ξ−2(ω)ξ−1(ω)ξ0(ω)ξ1(ω)ξ2(ω) . . ., that is by defining this mea-
sure as the direct image ν = ξ̃∗µ of µ by the map ξ̃. The processus is said to be
stationary if ν is invariant by the shift T . If the random variables ξi are indepen-
dent, equally distributed and with values in the finite alphabetX = (A1, · · · , Ar)
with image probability measure (p1, · · · , pr), the measure ν = ξ̃ on XZ coincides
with Pp1,··· ,pr .

6 Ergodicity and Birkhoff’s theorem

6.1 Ergodicity

Independence of the coin tosses in a “heads or tails” game implies “forgetting of
the initial condition”: each toss ignores the result of all the former tosses; to this
corresponds a very strong property of the Bernouilli shifts, called ergodicity5:

Definition 16 (Ergodicity) Let (X,X , µ, T ) be a measured dynamical sys-
tem6. One says that T (or that the dynamical system) is ergodic if every set
A ∈ X which is invariant7 by T satisfies µ(A) = 0 or µ(A) = 1. When T is
given, one says also that the invariant measure µ is ergodic.

Exercise 5 Show that the map T is ergodic if and only if any one of the fol-
lowing properties is satisfied:
1) every measurable T -invariant function f : X → C is a.e. constant;
2) There exists p ≥ 1, such that every T -invariant function f ∈ Lp(X, C) is a.e.
constant.

5for a more detailed presentation, see [C]
6That is a probability space (X,X , µ) and a measure preserving map T from this space to

itself.
7here, the precise meaning of “A is invariant” is µ(A∆T−1(A) = 0.
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6.2 Mixing

In order to prove ergodicity of the Bernoulli shifts, we shall prove that they are
mixing, a strictly stronger property:

Definition 17 (Mixing) Let (X,X , µ, T ) be a measured dynamical system.
One says that T is mixing if for any A,B ∈ X ,

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

Definition 18 (Weak mixing) Let (X,X , µ, T ) be a measured dynamical sys-
tem. One says that T is weak mixing if for any A,B ∈ X ,

lim
n→∞

1
n

n−1∑
k=0

∣∣µ(A ∩ T−k(B))− µ(A)µ(B)
∣∣ = 0.

Exercise 6 Mixing implies weak mixing and weak mixing implies ergodicity.

Exercise 7 T is mixing if and only if for every f, g ∈ L2(X,X , µ),

lim
n→∞

∫
X

f · (g ◦ Tn)dµ =
(∫

X

fdµ

)(∫
X

gdµ

)
;

it is weak mixing if and only if for every f, g ∈ L2(X,X , µ),

lim
n→∞

1
n

n−1∑
k=0

∣∣∣∣∫
X

f · (g ◦ T k)dµ−
(∫

X

fdµ

)(∫
X

gdµ

)∣∣∣∣ = 0.

Theorem 21 Bernouilli shifts T on {0, 1}N∗ or {0, 1}Z are mixing (and hence
ergodic) for any one of the product probability measures µ = Pp,q.

Proof. It is enough to check the defining property on the algebra G of finite
union of cylinders which generates the Borelian tribe8. But, given two finite
unions of cylinders A0 and B0, the set of indices associated to A and T−n(B0)
are disjoint as soon as n is large enough, and this implies that µ(T−n(A0)∩B0) =
µ(A0)µ(B0). The end of the proof is left to the reader.

Corollary 22 The map x 7→ 2x(mod.1) : [0, 1] → [0, 1] and the baker map
τ : [0, 1]2 → [0, 1]2 are mixing, and hence ergodic, for the Lebesgue measure.

6.3 Birkhoff’s ergodic theorem

Originating in Poincaré”s recurrence theorem, the ergodic theorem was proved
by Birkhoff in 1931. An important generalization implying Birkhoff’s theorem,
the subadditive ergodic theorem, was given by Kingman in 1968. The nice proof
of Kingman’s theorem by Avila and Boschi (2009) is explained in [C].

8for details, see [C]
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Theorem 23 Let (X,X , µ, T ) be a measured dynamical system. For every func-
tion f ∈ L1(X,X , µ), the limit of “Birkhoff sums”

lim
n→∞

1
n

n−1∑
k=0

f
(
T k(x)

)
:= f∗(x)

exists for µ-almost every x ∈ X and it defines a function f∗ ∈ L1(X,X , µ)
satisfying f∗ ◦ T = f∗ (µ-a.e.) and

∫
X

f(x) dµ(x) =
∫

X
f∗(x) dµ(x).

Remark. If T is invertible, the functions f∗ and f̄∗ respectively defined by T
and T−1 coincide almost everywhere.
Indeed, suppose that the a.e. T -invariant set Y = {x ∈ X, f∗ > f

∗} has
positive measure. Applying Birkhoff’s theorem to the restrictions of T and T−1

to Y one gets ∫
Y

f∗dµ =
∫

Y

fdµ =
∫

Y

f
∗
dµ ,

hence
∫

Y
(f∗− f

∗
)dµ = 0. But this is a contradiction because f∗− f

∗
is strictly

positive on Y .

Corollary 24 Under the same hypotheses, if moreover T is ergodic, f∗ is a
constant, equal to

∫
X

fdµ.

In words, this means that if T is ergodic, the time average, that is the limit of
the Birkhoff sums exists almost everywhere and is equal to the integral, that
is to the spatial average. If for example f is the characteristic function XA of
a measurable subset A ∈ X , the corollary asserts that, for almost every x, the
proportion of “time” the orbit of x spends in A coincides with the measure (the
probability) of A (n ∈ N∗ or n ∈ Z should indeed be interpreted as a discrete
time, the unit of time corresponding to one iteration of T ).

6.4 Applications: strong forms of the Law of Large Num-
bers

Applied to the Bernoulli shifts, corollary 24 says that the statistical structure of
almost all sequences is the same, which is a strong form of the so-called strong
law of large numbers. In what follows, we consider only the case of random
variables with finite values.

Theorem 25 (Stong law of large numbers in the independent case) If
f1, · · · , fn, · · · : (X,X , µ) → R are independent and identically distributed ran-
dom variables whose values are A1, · · · , Ar with probabilities p1, · · · , pr, one has

Pr

{
lim

n→∞

1
n

(f1 + · · ·+ fn) =
r∑

i=1

piAi

}
= 1.
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Proof. We apply corollary 24 to the generalized shift )

T : ({A1, · · · , Ar}N∗ ,B, µp1,··· ,pr ) →: ({A1, · · · , Ar}N∗ ,B, µp1,··· ,pr )

and to the functions fi(a1 · · · an · · · ) = ai = f1(T i−1(a1, · · · , an, · · · )), which are
a universal model of i.i.d. random variables. The conclusion follows because,
on the one hand f1(x) + · · ·+ fn(x) =

∑n−1
k=0 f1(T k(x)), on the other hand the

integral of f1 on {A1, · · · , Ar}N∗ is equal to
∑r

i=1 piAi.
Applying the law of large numbers to the random variables

fi : {A1, . . . , Ar}N∗ → R, fi(a1 · · · an · · · ) = log
1

pai

, where pai = pj if ai = Aj ,

one gets

Corollary 26 (Strong form of the Asymptotic Equipartition Property)
Given ξ1, · · · , ξn, · · · : (Ω,F , µ) → R, independent and identically distributed
random variables with values in {α1, · · · , αr} and image probability measure
(p1, · · · , pr), one has

Pr

{
lim

n→∞

1
n

log
1

p(a1 · · · an)
=

r∑
i=1

pi log
1
pi

}
= 1.

The following proposition justifies the adjectives “”weak and “strong”:

Proposition 27 The strong law implies the weak law

The proof is of a classical nature in probability theory: “convergence with prob-
ability 1 implies convergence in probability”.
Proof. Let Xn, n ∈ N, be a sequence of random variables converging with
probability 1 to the random variable X:

µ{ω ∈ Ω, lim
n→∞

(Xn(ω) = X(ω)} = 1.

The complement of the subset L of measure 1 defined in this formula is

Lc = ∪ε{ω ∈ Ω, |Xn(ω)−X(ω| ≥ ε for an infinity of n}.

It suffices in fact to take the union on the countable set of rational ε’s, which
shows that L is measurable. The proposition is then consequence of

Lemma 28 Suppose that

µ{ω ∈ Ω, |Xn(ω)−X(ω| ≥ ε for an infinity of n} = 0 ;

Then
lim

n→∞
µ{ω ∈ Ω, |Xn −X| ≥ ε} = 0.
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By definition, if this last property is satisfied for every ε > 0, Xn converges to
X in probability.
Proof. Let Gn = {ω ∈ Ω, |Xn(ω) − X(ω| ≥ ε}. The set of those ω which
belong to Gn for an infinity of values of n is by definition lim supGn; it can be
defined by the formula

lim sup
n

Gn = ∩∞n=1 ∪∞k=n Gk.

From this follows that

lim sup
n

µ(Gn) ≤ µ(lim sup
n

Gn).

Indeed, lim sup Gn is the intersection of the Un = ∪∞k=nGk which are a decreasing
sequence of subsets (i.e. Un+1 ⊂ Un). Hence limn→∞ µ(Un) = µ(lim sup Gn).
But Gn ⊂ Un hence µ(Gn) ≤ µ(Un) and finally

lim sup(µ(Gn) ≤ lim supµ(Un) = lim µ(Un) = µ(lim sup Gn).

The hypothesis of the lemma is that µ(lim sup Gn) = 0. One deduces that
lim supµ(Gn) ≤ 0 and hence, as µ has positive values, that lim µ(Gn) = 0.

An example of a more precise result Consider in ({0, 1}N∗ ,B, Pp,q) the
cylinder A defined by a1 = a2 = . . . = a1000 = 0.
The Birkhoff sum 1

n

∑n−1
k=0 XA

(
T k(x)

)
, where T is the shift, represents the fre-

quency with which one gets ak+1 = ak+2 = . . . = ak+1000 = 0 when k varies
from 0 to n. the theorem asserts that, for almost every sequence, this frequency
tends to a limit equal to p1000, when n tends to +∞. This occurs for any cylin-
der, that is for any finite motive of 0’s and 1’s and it is far from exhausting the
content of the theorem as the function f could depend on an arbirtrary number
of coordinates.

7 Beyond independence: a glance at Markov
chains

If the sequences a1a2 . . . an we consider are sentences written in some language,
the probability of an individual letter is not independent of the preceding one
(or more generally of the preceding ones). In other words, the random variable
a1a2 . . . an 7→ ai is not independent of the random variable a1a2 . . . an 7→ ai−1.
Let A = {A1, . . . , Ar} be a finite alphabet. The simplest probability laws on
An taking this into account are the so-called Markov chains with one step mem-
ory characterized by the initial probabilities (p1, . . . , pr) and the conditional
probabilities pij , 1 ≤ i, j ≤ r, which are the probabilities that Aj follows Ai,
the conditions being that these numbers be all non negative and such that∑r

i=1 pi = 1 and, for i = 1, . . . , r,
∑r

j=1 pij = 1 (a matrix (pij) with non nega-
tive entries and the eigenvector (1, 1, . . . , 1) with eigenvalue 1 is called stochas-
tic). The probability of the sequence Ai1Ai2 · · ·Ain

is by definition the product
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pi1pi1i2pi2i3 . . . pin−1in . Let us describe in more details the case when A = {0, 1}
has only 2 elements. The conditional probabilities are conveniently represented
by the graph in figure 14:

Figure 14 : A one step Markov chain.
A straightforward calculation shows that, given a sequence a1a2 . . . an ∈ An,
the probabilities p

(k)
0 and p

(k)
1 that ak be 0 or 1 are given by the matrix identity(
p
(k)
0 p

(k)
1

)
=
(
p0 p1)Mk−1 .

In particular, if (p0p1) = (p0p1)M , the probabilities that ak = 0 or ak = 1 are
respectively p0 and p1 independently of k. One then deduces from the proba-
bilities of finite sequences in {0, 1}n a probability measure PM,p0,p1 on the set
{0, 1}N∗ of infinite sequences endowed with the tribe generated by the cylinders
defined by fixing the values (0 or 1) of a finite number of terms ak1 , ak2 , . . . , akn

;
the above condition is equivalent to the stationarity of this measure, i.e. its
invariance under the shift

a1a2 . . . an . . . 7→ a2a3 . . . an+1 . . .

The following lemma, a simple consequence of the fixed point theorem for con-
tractions, implies, under the given hypotheses, the ergodicity of this measure,
that is (recall 6.1) the fact that any measurable subset of {0, 1}N∗

invariant
under the shift has measure 0 or 1.

Lemma 29 (Perron-Frobenius) Let M be a 2× 2 matrix with non negative
coefficients such that the vector with coordinates (1, 1) is invariant. Suppose
there exists an integer s such that the matrix Ms has all its coefficients, noted
p
(s)
ij , strictly positive. The there exists a unique probability (p0, p1) on {0, 1}

such that
1) (p0 p1)M = (p0 p1),
2) lims→∞ p

(s)
ij = pj , j = 0, 1.

The interpretation of the hypotheses is that for any pair i, j ∈ {0, 1}, there is
a positive probability that if ak = i, then ak+s = j. The interpretation of the
conclusion is that, 1) the measure is stationary (i.e. invariant under the shift),
2) the conditions ak = i and ak+N = j are asymptotically independent when
N →∞: the conditional probability p

(N)
ij depends less and less on i.

This last property implies mixing, hence ergodicity: indeed, let us consider first
elementary cylinders Aj

i = {(a1 · · · an · · · ) ∈ {0, 1}N∗ , ai = j} fixing a single
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term of the sequence; we see that

PM,p0,p1(T
−n(Aj1

i1
) ∩Aj2

i2
) = PM,p0,p1(A

j1
i1+n ∩Aj2

i2
) = pj2p

(n+i1−i2)
j2j1

,

(one supposes n + i1 > i2) tends to pj2pj1 = PM,p0,p1(A
j1
i1

)PM,p0,p1(A
j2
i2

) when
n tends to +∞. The full proof follows by considering first finite unions of
arbitrary cylinders, which proves the mixing property on the elements of the
algebra generated by the cylinders, then showing that this implies the same for
the σ-algebra.
All this generalizes to Markov chains associated to any finite alphabet.

8 From Shannon’s entropy to Kolmogorov’s en-
tropy

Let A = (A1, · · · , Ar) be a finite set endowed with a probability measure
(p1, · · · , pr). Recall that, in the case of independent draws, the entropy

∑r
i=1 pi log 1

pi

may be defined as the limit limn→∞
1
n log 1

p(a1···an) for Pp1,··· ,pr -almost every se-
quence a1 · · · an · · · ∈ AN∗ . This is a direct consequence of the ergodic theorem
applied to the random variable

f : AN∗ → R, f(a1a2 · · · an · · · ) = log
1

pai

(Recall the notations : pai = pj if ai = Aj and, more generally, pa1···an is the
measure of the cylinder Aa1···an

1···n ; it will be convenient to identify A to the set
{1, 2, · · · , r} and to use the notation Aa1···an

1···n = Aj1j2···jn

1···n if ak = Ajk
.)

If we endow AN∗ with an ergodic Markov measure µ = PM ;p1,··· ,pr
defined by

initial probabilities pi and conditional probabilities pij , one gets that for µ-
almost every sequence a1 · · · an · · · ∈ AN∗ ,

lim
n→∞

1
n

log
1

µ(a1a2 · · · an)
=

r∑
i,j=1

pipij log
1

pij
.

Indeed, one applies the ergodic theorem to the function

g : Ω → R, g(a1a2 . . . an . . .) = log
1

pa1a2

,

which leads to

1
n

log
1

µ(a1a2 . . . an)
=

1
n

log
1

µ(a1)
+

1
n

n−1∑
i=0

g(T i(a1a2 . . .)

and ∫
Ω

g(x)dµ(x) =
r∑

i,j=1

pipij log
1

pij
·

The function g is indeed constant on the atoms of the partition Ω =
∑r

i,j=1 Aij
12 :

it is equal to log 1
pij

on Aij
12 and µ(Aij

12) = pipij .

43



8.1 The entropy of a Markov chain

The considerations above lead us to define the entropy of a Markov chain by
the formula

H =
r∑

i,k=1

pipik log
1

pik
.

With the notations used to define conditional entropy, H is the expectation of
the random variable Ai 7→ HAi

(A) =
∑r

k=1 pik log 1
pik

. It is the expectation of
a draw following the one of the letter Ai, the probability the the result be Ak

being the conditional probability pik. In other words, H is simply the conditional
entropy HA(A2), which, in the independent (= Bernoulli) case reduces to the
definition we have given.

8.2 Entropy as the mean information content by symbol

Let µ be a probability measure on AN∗ (or AZ) which is invariant under the shift
(for example Pp1,...,pr in the Bernoulli case, PM ;p1,...,pr in the Markov case).
Let H<n>

µ be the entropy of the finite set An endowed with the probability
measure defined by the measure of cylinders, that is of the direct image under the
canonical projection πn : AN∗ → An (or AZ → An), π(· · · ai · · · ) = a1a2 · · · an

of the measure µ :

H<n>
µ =

∑
j1j2...jn∈{1,2,...,r}n

µ(Aj1j2...jn

12...n ) log
1

µ(Aj1j2...jn

12...n )
·

The entropy H<n>
µ is a measure of the information obtained from the emission

of a sequence of n successive symbols (or n successive experiments).

1) the Bernouilli case : if µ = Pp1,...,pr , a direct computation shows that

H<n>
µ = nH.

2) the Markov case : if µ = PM ;p1,...,pr
, we set

pi;j1j2...jn = pij1pj1j2 . . . pjn−1jn .

This is the conditional probability that, Ai being realized, a sequence of n draws
result in Aj1 , Aj2 , . . . , Ajn . As in the case n = 1, one defines the entropy of the
chain iterated n times by

H(n) =
r∑

i=1

piH
(n)
i =

r∑
i,j1,j2,...,jn=1

pipi;j1j2...jn log
1

pi;j1j2...jn

·

Lemma 30 The following identities hold true:

nH = H(n) = H<n+1>
µ −

r∑
i=1

pi log pi
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Proof. H(n) is the entropy associated to a sequence of n successive draws.
Reasoning by induction on n, we suppose that the system is in the state Ai and
we decompose a sequence of n + 1 draws into a first draw (called the event A)
followed by a sequence of n draws (called the event B). These two events are
not independent and the formula H(A ∨B) = H(A) + HA(B) becomes :

H
(n+1)
i = Hi +

r∑
k=1

pikH
(n)
k .

But (p1, p2, . . . , pr) being a probability vector associated to the matrix M of
conditional probabilities, one has

∑r
i=1 pipik = pk and hence

H(n+1) =
r∑

i=1

piH
(n+1)
i = H + H(n),

which proves the first identity. The second identity results from an explicit
computation.

8.3 The entropy of a discrete source

A discrete source is the data of a finite alphabet A = {A1, . . . Ar} (for example
{0, 1}) and a probability measure µ on Ω = AN∗ (ou AZ) which is invariant
under the shift T . The probability of a given result of a draw depending a priori
of the whole past history, we need consider arbitrarily long sequences in order
to define an entropy.
Computations made in the former section show that the definition of entropy
given in the following lemma generalizes the ones given in the cases when µ =
Pp1,...,pr is Bernouilli or when µ = PM ;p1,...,pr is Markov.

Lemma 31 (McMillan) The “mean information content by symbol” 1
nH<n>

µ

tends to a limit Hµ = Hµ(T ) when the length n of the sequence (the message)
tends to infinity :

Hµ(T ) = lim
n→∞

1
n

H<n>
µ = inf

n
(
1
n

H<n>)

is by definition the entropy of the source.

Proof. One decomposes as above the emission of a sequence of n+m symbols
into two events, the second of which depends on the first: the emission Xn of
the n fist symbols followed by the one Ym of the m last symbols.
Noting un = H<n>

µ , one has

un+m = H(Xn ∨ Ym) = H(Xn) + HXn(Ym) ≤ H(Xn) + H(Ym) = un + um.

this “subadditivity” of the sequence un = H<n>
µ is the key of the proof : Let

v = infn(un

n ). By definition of v, given any ε > 0, there exists N > 0 such that
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uN < N(v + ε). But euclidean division allows to write every integer n in the
form n = kN + r with k ≥ 0 and 1 ≤ r ≤ N − 1. By subadditivity, this implies
un ≤ ukN + ur ≤ kuN + ρN , where ρN = sup1≤r≤N−1(ur). Finally,

lim sup
n→∞

(
un

n
) ≤ lim sup

k→∞
(
kuN + ρN

kN
) =

uN

N
≤ v + ε.

One deduces that the sequence un

n converges to v, which proves the lemma.

In the next section, I briefly alludes to the remarkable generalization of Shannon
– McMillan’s entropy given by Kolmogorov in case the shift T is replaced by
any measure preserving transformation of a probability space into itself.

8.4 Kolmogorov’s entropy

Definition 19 (Entropy of a finite partition) Let (Ω,F , µ) be a probability
space and E a finite partition Ω = A1 + A2 + . . . + Ar (to which we can think as
a finite subalgebra of F). The entropy of E is

Hµ(E) =
r∑

i=1

µ(Ai) log
1

µ(Ai)
·

Notations. Given a transformation T : Ω → Ω and a partition E , we note
T−1E the algebra of subsets formed by the T−1(Ai), Ai ∈ E . Given finite
partitions E(1), . . . , E(m) of Ω, we note ∨m

i=1E(i) the partition whose atoms are
the intersections A

(1)
k1
∩A

(2)
k2
∩ . . . ∩A

(m)
km

, where A
(i)
ki

is an atom of E(i).

Definition 20 The entropy Hµ(E , T ) of a partition E with respect to a measure
preserving transformation T : Ω → Ω and the entropy Hµ(T ) of the transfor-
mation T are respectively defined by

Hµ(E , T ) = lim sup
n→∞

1
n

Hµ

(
∨n−1

k=0T−kE
)
, Hµ(T ) = sup

E
Hµ(E , T ),

where the sup is taken among all finite partitions E of Ω.

Explanation (see [B2]) : an element A
(1)
k1
∩ A

(2)
k2
∩ . . . ∩ A

(m)
km

of the partition
∨m

i=1E(i) may be considered as the realization of m experiments, corresponding
to the m partitions E(i). Given a partition E , let us denote by A = {A1, . . . , Ar}
the set of atoms of the partition and by x : Ω → A the random variable which, to
an element ω ∈ Ω, associates the atom Ai to which it belongs. As T preserves
the measure µ, the image measures of µ by the random variables x ◦ Tn are
all the same (n is an integer or a relative integer if T is invertible). In other
words, the experiments corresponding to the partitions T−n(E) have all the
same probabilistic structure and hence they can be considered as realizations,
a priori not independent, of one and the same experiment.
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The case when T : AN∗ → AN∗ , A = {A1, A2, . . . , Ar}, is a shift and E is the
partition into elementary cylinders

Ω = {ω = . . . a1a2 . . . | a1 = A1}+ {ω| a1 = A2}+ . . . + {ω| a1 = Ar},

sheds light on this assertion : the atoms of the partition ∨n−1
k=0T−kE are the

cylinders defined by fixing a1, a2, . . . , an ; the experiments are independent in
the Bernoulli case, they are not in the Markov case.

Exercise 8 Show that, in the case of a Bernoulli shift T , for any integer n
the entropy Hµ

(
∨n−1

k=0T−kE , T
)

is n times the entropy
∑r

k=1 pk log 1
pk

of the
finite probability space (A, p1, . . . pn) from which the invariant measure on AN∗

is defined.

Exercise 9 Same exercise, replacing Bernoulli by Markov

We shall admit the following theorem, due to Kolmogorov (see [B2, CFS]); it
immediately implies that the entropy of a Bernoulli (resp. Markov) shift is∑r

k=1 pk log 1
pk

(resp.
∑r

i,k=1 pipik log 1
pik

) :

Theorem 32 If T : (Ω,F , µ) is invertible and if there exists a finite partition E
which is generating in the sense that the partitions ∨n

i=−nT−i(E), n = 1, · · · ,∞,
genrate the σ-algebra F , one has

Hµ(T ) = Hµ(E , T ).

An analogous statement holds true in the non invertible case if one replaces
∨n

i=−nT−i(E) by ∨n
i=0T

−i(E).

8.5 The Shannon-McMillan-Breiman theorem on ergodic
discrete sources

8.5.1 Entropy as expectation

Let us consider a discrete source, that is a finite alphabet A and a probability
measure µ on Ω = AN∗ (or Ω = AZ) which is invariant under the shift T .
The finite probability space An is endowed with the probability defined by the
measure

pj1j2...jn = µ(Aj1Aj2 . . . Ajn) := µ(Aj1j2...jn

12...n )

of the cylinders of length n. Its entropy H<n>
µ , is by definition, the expectation

of the random variable ξn : An → R defined by

ξn(Aj1Aj2 . . . Ajn) = log
1

µ(Aj1Aj2 . . . Ajn
)
·

Hence, by definition of the entropy of a general source,

Hµ(T ) = lim
n→∞

E

(
1
n

ξn

)
.
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8.5.2 The Asymptotic Equipartition Property

Replacing the expectation by the random variable itself, this property has been
proved by McMillan and Breiman to hold true for general ergodic sources. The
quite technical proof can be found in [B2].

Theorem 33 (Shannon-McMillan-Breiman) The entropy of an ergodic dis-
crete source (T, µ) satisfies the strong Asymptotic Equipartition Property: for
µ-almost every ω = . . . a1a2 . . . ak . . . ∈ Ω,

lim
n→∞

1
n

log
1

µ(a1a2 . . . an)
= Hµ(T ).

In other words,

µ

{
ω = . . . a1a2 . . . ak . . . ∈ Ω, lim

n→∞

1
n

log
1

µ(a1a2 . . . an)
= Hµ(T )

}
= 1.

The following is a weak form of this statement, closer to the initial statements
by Shannon.

Corollary 34 Given any ε > 0, one has

lim
n→∞

µ

{
ω = . . . a1a2 . . . ak . . . ∈ Ω,

∣∣∣∣ 1n log
1

µ(a1a2 . . . an)
−Hµ(T )

∣∣∣∣ ≥ ε

}
= 0.

Let us recall the interpretation of the corollary (see figure 4) : by definition
of the limit, there exists, for any ε > 0, an integer n(ε) with the following
property: as soon as n ≥ n(ε), the set An may be decomposed into two pieces:
a “small” (precisely with a cardinal of the order of 2nH , where H = Hµ(T ))
subset of sequences of length n almost equiprobable, and the complement whose
probability is ≤ ε. In particular, it is most of the time possible to treat the
sequences of n symbols (n big) as if their total number was only 2nH , each of
these sequences having the probability 2−nH .

A companion assertion, also given by Shannon, follows: let us consider the
minimum number of messages of length n whose union has a probability ≥ 1−δ.
One could estimate this number by by choosing the messages of length n n by
order of decreasing probability until the bound 1− δ is reached.

Definition 21 The essential information H<n>
µ,δ of a discrete source is defined

by the following formula, in which |E| stands for the cardinal of E :

H<n>
µ,δ = log min{|E|;E ⊂ An, µ(E) ≥ 1− δ}.

Theorem 35 Let (T, µ) be a discrete ergodic source. Given any ε > 0 and
0 < δ < 1, there exists and integer N such that, for all n ≥ N , we have∣∣∣∣ 1nH<n>

µ,δ −Hµ(T )
∣∣∣∣ ≤ ε.
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Proof. 1) The real number ε and the integer n being given, let us note

E1(n, ε) =
{

(a1, a2, . . . , an) ∈ An,

∣∣∣∣ 1n log
1

µ(a1a2 . . . an)
−Hµ(T )

∣∣∣∣ ≤ ε

}
.

One deduces from corollary 34 the existence of an integer n0 = n0(ε, δ) such
that,

∀n ≥ n0, µ
(
E1(n, ε)

)
≥ 1− δ.

As each of the elements (a1, a2, . . . , an) of E1(n, ε) satisfies

µ(a1a2 . . . an) ≥ 2−n(Hµ(T )+ε),

one deduces that |E1(ε, δ)| ≤ 2n(Hµ(T )+ε) and hance that

∀n ≥ n0(ε, δ),
1
n

H<n>
µ,δ ≤ Hµ(T ) + ε.

2) Conversely, let E ⊂ An be such that |E| ≤ 2n(Hµ(T )−ε). One has

µ(E) = µ
(
E ∩ E1(n,

ε

2
)
)

+ µ
(
E ∩ Ec

1(n,
ε

2
)
)

.

Let us choose δ′ > 0 such that δ + δ′ < 1. the first term of the right hand
side is bounded by 2n(Hµ(T )−ε)×2−n(Hµ(T )− ε

2 ) = 2−n ε
2 and hence by δ′

2 dès que
n ≥ n1(ε, δ′) ; the second term is bounded by µ(Ec

1(n, ε
2 )) and hence by δ′

2 as
soon as n ≥ n0( ε

2 , δ′

2 ). One deduces that, for n large enough, µ(E) ≤ δ′ < 1− δ.
Hence

∀n ≥ sup
(
n1(ε, δ′), n0(

ε

2
,
δ′

2
)
)
,

1
n

H<n>
µ,δ ≥ Hµ(T )− ε,

which finishes the proof

The interpretation of this theorem is that, for n large enough, not only there
is subset of approximately 2nHµ(T ) “typical” messages of length n among the
2n log |A| messages, with an arbitrarily small probability of encountering a non
typical message, but this number cannot be substantially lowered even at the
price of rising the error δ which is admitted.
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