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Some facts and more questions about the “Eight”

Alain Chenciner

Abstract. I discuss some properties of the “Eight” solution of the three-body problem, many of them

conjectural. I describe in particular a simple approach to the P12 family, proposed by C. Marchal, which

is a choreography in the rotating frame with the same 12-fold symmetry as the “Eight”. .

I - Introduction
I-1 The equal mass 3-body problem in IR2 ([C1],[C2]). We consider three bodies
of unit mass in IR2. As we are interested in periodic solutions, we suppose from the start
that the center of mass is fixed at the origin. Hence, the configuration space is the open
subset X̂ of

X =
{
x = (�r1, �r2, �r3) ∈ (IR2)3,

3∑
i=1

�ri = 0
}

defined by the condition of “no collision” : ∀i �= j, �ri �= �rj . The vector space X is endowed
with the “mass metric”, which coincides here with the standard euclidean metric:

I(x) = ||x||2 =
3∑

i=1

||�ri||2.

Newton-Lagrange equations can now be written ẍ = ∇U(x), where U is the Newtonian
potential

U(x) =
∑
i<j

1
||�ri − �rj ||

.

It is well known that they are the Euler-Lagrange equations of the action A which associates
to a C1 path x : [t0, t1] → X̂ the real number

A
(
x(t)

)
=

∫ t1

t0

( ||ẋ(t)||2
2

+ U
(
x(t)

))
dt.

I-2 The space of oriented triangles ([AC],[CM],[C4]). The squares a, b, c of the
lengths of the sides of a triangle are a good set of parameters of the set of all triangles
up to isometries. We fix the size by setting a + b + c = 1, which amounts to fixing the
moment of inertia, with respect to the center of mass, of three equal masses located at the
vertices of the triangle. Not all the points of the simplex a + b + c = 1, a ≥ 0, b ≥ 0, c ≥ 0
represent triangles. The true triangles correspond to the points inside the disc defined by
the inequation

16S2 = 2ab + 2bc + 2ca − a2 − b2 − c2 ≥ 0,

which asserts the positivity of the squared area S of the triangle, a formula going back to
Heron of Alexandria. The positivity of S2 is equivalent to the three triangular inequalities.
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Gluing 2 discs together, we represent all similitude classes of oriented triangles by a 2-sphere
(a more “metric” construction is given in [CM]). This sphere – the so-called “shape sphere”
– is represented on figure 1 with the action of its symmetry group, the dihedral group

D6 =
{
s, σ | s6 = 1, σ2 = 1, sσ = σs−1

}
.

The North and South poles represent respectively the positively and negatively oriented
equilateral triangle, the equator represents the flat triangles and the three vertical planes
represent the isosceles triangles while C1, C2, C3 are the collision half-lines.
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Figure 1 (the shape sphere and the action of D6)

I-3 The action of the dihedral group D6 on the loop space ([C2]). The actions
of the two generators on a loop x : IR/TZZ → X are defined by the following formulas: if
x(t) =

(
�r1(t), �r2(t), �r3(t)

)
,

(s · x)(t) =
(
Σ�r3(t − T/6),Σ�r1(t − T/6),Σ�r2(t − T/6)

)
,

(σ · x)(t) =
(
−�r1(−t),−�r3(−t),−�r2(−t)

)
,

where Σ is the symmetry with respect to the y axis in R2.
I-4 Choreographies. As the subgroup ZZ/3ZZ generated by s2 acts by cyclically permut-
ing the bodies after one-third of a period, each D6-invariant loop is a choreography, that is
a loop of the form (q(t), q(t + T/3), q(t + 2T/3), where q : IR/TZZ → IR2 is a parametrized
plane curve. More generally, in [CGMS] and [S2] the authors call (simple) choreography a
loop in the configuration space of the n-body problem in IRk of the form(

q(t), q(t + T/n), · · · , q(t + (n − 1)T/n)
)
,

where q is a parametrized closed curve in IRk.

II - The “Eight” ([Mo,][CM],[C2],[Ch],[ZZ2]).

FACT 1: it exists. The existence of a minimizer of the Lagrangian action in the space
ΛD6 of D6-invariant loops in the configuration space is a consequence of Tonelli’s theory:
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coercivity comes from the D6-invariance which forces the length – and hence the action
– of an element of ΛD6 to be big as soon as some part of the loop goes far away (“tied”
class in the sense of Gordon, see [M1]). The main point is to show that such a minimizer
is collision-free, which implies that it is a solution of the three-body problem and even
a choreography supported by an eight-shaped curve. Accurate pictures were obtained
numerically by Carles Simó
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Figure 2 (“The” Eight)

The proof boils down to showing the inequality Acoll > Atest, where Acoll is a lower bound
for the action of a D6-invariant loop undergoing at least one collision and Atest is the
action of a collision-free equipotential test path (see [CM]). The best estimate for Acoll

(better than the ones in [CM]: Acoll = 2
1
3 A2, or even in [Ch]) is found in [ZZ2]: thanks to

a formula of Leibnitz, the action of a 3-body problem splits into the sum of three terms,
each of which is one third of the action of the Kepler problem with attraction constant
equal to the total mass M = 3 (see [V1],[ZZ1]):

A
(
x(t)

)
=

1
3

∑
i<j

∫ T

0

[
||�̇ri(t) − �̇rj(t)||2

2
+

3
||�ri(t) − �rj(t)||

]
dt.

As the configurations at t and t+T/2 are symmetric with respect to the 0y axis (compute
the action of s3), any collision which occurs at t0 occurs also at t0 +T/2. The lower bound
of the Kepler action during a period T is then twice the minimum of the Kepler action
of an ejection-collision wih attraction constant 3 and period T/2. This is equivalent to
Acoll = A(2L(T/2)), where 2L(T/2) is the equilateral relative equilibrium which makes
two complete turns in one period T . An estimate for Atest is given in [CM].

QUESTION 1: but is it unique ? Numerical evidence by Carles Simó in [S1] suggests
unicity of the minimizer. From now on we shall indulge in speaking of “the” Eight.

QUESTION 2: is each lobe convex? in [CM] we prove only that each lobe of a
minimizer is starshaped (the problem is near the crossing point, convexity outside a neigh-
borhood of this point is easy to prove).

QUESTION 3: is it a transcendental curve? C. Simó ([S1],[S3]) computed numer-
ically truncated Fourier expansions of the components of the Eight. We take the period
T = 2π. Because of the symmetries, the curve q(t) is of the form:

q(t) =


∑

jodd

aj sin jt,
∑

jeven

bj sin jt


 ,
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with aj = 0 if j ≡ 3 mod. 6 and bj = 0 if j ≡ 0 mod. 6. Because of the missing terms
and the quick decrease with j of the non-zero ones, one gets a good approximation of
the Eight by the quartic t �→

(
a1 sin t, b2 sin 2t + b4 sin 4t

)
. Indeed, the next terms are

(a5 sin 5t, b8 sin 8t), with a5 of the order of 2× 10−2 and b8 of the order of 10−4. Going to
order 30 is enough to have all harmonics larger than 10−16. Finally, fits of the solution by
algebraic curves g(x, y) = 0 up to degree 12 definitely show disagreements which, according
to C. Simó, cannot be due to computational errors.

FACT 2: existence of a priori less symmetric “Eights” ([C3]). The ZZ/3ZZ sym-
metry is certainly not enough to characterize the eight because it follows from [CD] that
minimizing among choreographies of three equal masses leads to Lagrange equilateral rel-
ative equilibrium. The dihedral group D6 has three subgroups which contain ZZ/3ZZ . The
one generated by s2 and σs, isomorphic to D3, is not interesting for our purpose because
every element acts on the shape sphere preserving the orientation of the triangles (in par-
ticular, the Lagrange equilateral relative equilibrium is symmetric under the action of this
subgroup). The two others are respectively generated by s2 and σ (isomorphic to D3) and
by s (isomorphic to ZZ/6ZZ ). It is shown in [C3] that a minimizer of the action among D3

or ZZ/6ZZ -invariant loops is collision-free.

Figure 3 (less symmetric “Eights” ?)

QUESTION 4: all the same ? This is of course intimately linked to the unicity
question. For more on possible extra-symmetries of action minimizers, see [C2],[C3],[V2].

III - The spatial case

III-1 Action of D6 on spatial configurations ([C3]) Let ∆ be the axis 0x and P,Σ
be respectively the coordinate planes 0xz and 0xy (see figure 4). We extend to loops of
spatial configurations of three bodies the action of D6 by replacing the symmetry with
respect to 0 (resp. 0x, resp. Oy) by the symmetry with respect to ∆ (resp. P , resp. Σ):

(s · x)(t) =
(
Σ�r3(t − T/6),Σ�r1(t − T/6),Σ�r2(t − T/6)

)
,

(σ · x)(t) =
(
∆�r1(−t),∆�r3(−t),∆�r2(−t)

)
,

where Σ (resp. ∆) denotes the symmetry with respect to the horizontal plane Σ (resp. to
the line ∆). The Eight in the plane orthogonal to ∆ is an obvious example of an invariant
loop, but there is also the equilateral relative equilibrium 2L(T/2) which makes two full
turns in one period in the horizontal plane (figure 4).
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Figure 4 (Two examples of D6-invariant spatial loops)

Moreover the lower bound given for the action D6-symmetric loops with collision in the
plane still holds in space.

QUESTION 5: is a minimizer in Λspatial
D6

necessarily planar? i.e. of angular
momentum zero, i.e. an “Eight”?

III-2 The P12 family ([Ma],[C3]). This family continues the Eight solution in three-
space up to Lagrange equilateral solution, through choreographies in a rotating frame. It is
described in detail in [C3]. It is parametrized by an angle u between 0 and π

6 : the solution
labeled by u is supposed to minimize the action in fixed time T/12 between configurations
which are symmetric with respect to the line ∆ with 0 ∈ ∆ and configurations which are
symmetric with respect to a vertical plane P through the origin which contains body 2 and
makes angle u with ∆. In a frame rotating around the vertical axis of an angle −u in time
T/12, one gets a family of D6-symmetric choreographies of period T which connects the
two examples depicted on figure 4 (the Eight and twice Lagrange 2L(T/2)) via progressive
folding in the direction of ∆ (see [C3] fig. 1 and 2, and [N] fig. 5).

FACT 3: existence of a family. For all values of u, minimizers are collision-free

The surprise is that, using as a model the horizontal Lagrange family xu (which satisfies
the symmetry requirements), one can give a simple direct proof of the absence of collisions
in a minimizer of the action in Λspatial

D6
, simpler than in the planar case:

1) the action of an admissible path undergoing a collision is bigger than the action
Â2 = 2−

5
3 3

2
3 π

2
3 T

1
3 (masses =1) of the horizontal relative equilibrium solution x0 of an

equilateral triangle which rotates by π
3 in the same amount of time T/12;

2) this last action is, for any u ≤ π
3 , bigger than the one A(u) = Â2

[
3
π (π

3 − u)
] 2

3 of the
horizontal relative equilibrium solution xu of an equilateral triangle which rotates by an
angle (π

3 − u) during the given amount of time.

Finally, we prove that, for 0 ≤ u < π
6 , the Lagrange solution xu is not a minimizer. This

is because the value d2A(xu)(ξ, ξ) of the Hessian of the action on the vertical variation

ξ =
(

sin(
2πt

T
), sin(

2πt

T
+

2π

3
), sin(

2πt

T
+

4π

3
)
)
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which “opens” xu in the direction of the Eight, is negative for u < π/6 and positive
for u > π/6. Indeed, the Hessian of xu is positive when π/6 < u ≤ π/3, which supports
Marchal’s claim that xu is the minimizer when π/6 ≤ u ≤ π/3 (notice that its size increases
to infinity and its action decreases to 0 when u tends to π/3). To be sure that this family
really connects the Lagrange and Eight solutions, we need answering positively Questions
5 and 6.

action of solutions with collisions

Lagrange
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not local minima

minima

minima

 Eight ?
(see Q4)

Action

Acoll
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Figure 5 (Bifurcation of the P12 family from the Lagrange family)

QUESTION 6: unicity of minimizer for any value of the parameter u? or at
least continuity of a minimizing family? Such continuity would imply the existence
among the family of spatial (non-planar) 3-body choreographies in the fixed frame. Indeed,
for well-chosen values of u, the period of the rotating frame and the one of the solution in
the rotating frame would be resonant.

III-3 Other continuations in a rotating frame. The first continuation of the Eight
into a family of rotating planar choreographies was given – up to the first orbit encountering
a collision – by Michel Hénon [CGMS], using the same program as in [H]. The continuation
beyond this orbit can be found is [S1]. A third family should exist, rotating around an
axis orthogonal to the first two.

IV - Fixing homology

FACT 4: homology class of the eight is (0, 0, 0). This means that, during a period,
each side of the triangle has zero total rotation. Hence the eight does not minimize the
action in its homology class: the minimum, equal to 0, is attained for still bodies infinitely
far from each other (for the case of homology class (1, 1, 1), see Poincaré [P] 1896 and
Venturelli 2001 [V1], [ZZ1]).

QUESTION 7: does the eight minimize the action among choreographies in
its homology class? What makes this question hard is the mixture of topological and
symmetry constraints

V - Fixing homotopy. The homotopy class of a loop in the configuration space of the
planar n-body problem may be thought of as the braid described by the bodies in (periodic)
space time IR2 × (IR/TZZ ). Knowing that each lobe of the Eight is starshaped is enough
to imply the following:
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FACT 5: the braid defined by the Eight is the “Borromean rings” ([Ber],[C3]).
This is the signature of a truly triple interaction.

t=0

t=T

Figure 6 (The braid defined by the Eight)

FACT 6 ([C2],[M2]): the eight does not minimize the action in its homotopy
class

QUESTION 8: does the eight minimize the action among choreographies in
its homotopy class? And are there other choreographies in this homotopy class?
Remark. An interesting example of mixed conditions (topology and symmetry) for a
minimization problem may be found in [V2] where generalizations of the Hip-Hop lead to
spatial choreographies of 4 equal masses. But, as for most choreographies, no proof was
found of the existence of Gerver’s “supereight” with four equal masses [CGMS],[C2].

VI - Stability

FACT 7: numerically, the “Eight” is KAM stable. A numerical computation of a
Poincaré map to high order around the fixed point corresponding to the “Eight” and the
subsequent computation of the normal form shows that one can apply KAM theorem and,
hence, that the “Eight” is KAM stable on the manifold of zero angular momentum ([S1]).
For theoretical works on the stability properties of action minimizers, see [Ar],[Bi],[O].

QUESTION 9: Give a detailed proof of the KAM stability of the “Eight”.

VII - Masses ([C5],[C6],[BCS])

FACT 8: a choreography with n ≤ 5 bodies must have equal masses. This is
proved in [C6] using the remark that if a choreography is solution of the n-body prob-
lem with masses m1, m2, . . . , mn, it is also solution of the n-body problem with masses
µ, µ, . . . , µ, where µ = (m1 + m2 + · · · + mn)/n.

QUESTION 10: is the same true for any number of bodies? in particular n = 6 ?

VIII - “Eights” with more bodies and limit when the number n = 2p + 1 of
bodies tends to +∞ ([S2],[C2]). Eight-shaped choreographies exist numerically with
any number n of bodies. If n is odd, the eight-curve has the full (ZZ/2ZZ ) × (ZZ/2ZZ )
symmetry (see figure 7) but if n is even, it has only a ZZ/2ZZ symmetry (the two lobes are
unequal ([ CGMS] figure 3a)).
In [C2], the action of D6 on the loop space of the configuration space of the equal mass
three-body problem is extended, for n odd, to an action of the dihedral group D2n on the
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loop space of the configuration space of the equal mass n-body problem. We call ΛD2n the
subspace of invariant loops under this action.
QUESTION 11: Is an Eight with n (odd) bodies an action minimizer in ΛD2n

?

QUESTION 12: understand the limit of the Eight when n odd tends to +∞.
According to C. Simó [S3], the angle at the crossing point tends to π/2 and, for a given
period, the size has a precise scaling law in n.

Figure 7 ( 399 bodies on a Eight, computed by C. Simó)

IX - Other potentials ([CGMS]). According to [Mo],[CGMS], the “Eight” exists for
all potentials of the form rα with α ∈]−∞, 0[. When α = −2 (Jacobi potential), it follows
from the Lagrange-Jacobi identity that the energy of any periodic solution is necessarily
equal to 0, and its moment of inertia I = ||x(t)||2 is constant. For the Newtonian potential
(α = −1), it is a conjecture of D. Saari that a solution of the n-body problem can have a
constant moment of inertia with respect to the center of mass only in the case it is a relative
equilibrium, that is ([AC], Proposition 2.5) when the mutual distances stay constant along
the motion (rigid motion). Numerically, the variations of I for the Newtonian Eight are
of the order of 0.5% ([S3]).

QUESTION 13: show that the moment of inertia I = ||x(t)||2 of the “Eight”
stays constant only when α = −2.

Two curiosities. Another nice property of the Eight, consequence of its high symmetry,
is the shape of its hodograph (figure 8-1); also curious is the curve described by the center
of force (see [W] p. ) of the configuration (figure 8-2 from fig. 13 of [Br]).

3

1,2

Figure 8-1 (the hodograph) Figure 8-2 (the curve described by the center of force)

Thanks to Carles Simó for numerous and precise comments which I included in the text.
Warm thanks to the organizers of the Taiyuan satellite conference of ICM 2002 for giving
me the opportunity to present these questions in the enchanting environment of Jinci.
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