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This is the english version (with an appendiz added) of a text in French which will appear
i a book dedicated to the memory of Gilles Chatelet. The french title “la forme de n
corps”, has a pun, hard to render into English because it plays on the two meanings of the
french word “forme” : shape and quadratic form.

Introduction: Heron’s formula. The form is quadratic and the bodies are points, even
if of celestial origin. At the beginning, there is the formula of Heron of Alexandria [H] for
the area |A| of a triangle whose sides have lengths «, 3,7 :

16|A]2 = (a+ B+7)(—a+ B+7)(a—B+7)(a+B8-7). (H)

The last three factors are easily understood as they vanish when the triangle is flat (the
second when the length of the longest side is «, the third if it is 3, the fourth if it is ). If
one sets

a/:a27 b:/327 02727

the formula becomes
16|AJ? = 2ab + 2bc + 2ca — a® — b* — 2.

Surfaces and determinants have much in common and so it is not too astonishing to discover
that this formula takes the form of the Cayley determinant

01 1 1
1 0 ¢ b

—16|A* = det L e 0 a (C)
1 b a 0

Nevertheless, a 2 x 2 determinant would be less surprising® than a 4 x 4 determinant.
What follows originates from work ([AC], see also [A3] and [C1]) done in collaboration
with Alain Albouy on the symmetries of the n-body Problem and their reduction. That
work generalizes Lagrange’s fundamental memoir [L] to more than three bodies. In it
one understands that the above determinant is simply a means of computing a subtler
determinant, namely that of an endomorphism of a two-dimensional vector space which
possesses no privileged basis. (Think of the plane of equation = + y + z = 0 in IR®. This
plane is naturally equipped with the three lines of intersection with the coordinate planes
x =0, y =0 and z = 0 but certainly not with a canonical basis.) Choices or tricks are
necessary to compute in such a plane.

indeed, if X is the matrix whose columns are the components of the two vectors V,WeIR?, det X is the

oriented area of the parallelogram generated by the two vectors and det®? X X is the squared area.
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1 - The “dispositions” and the reduction of translations

Let us consider a triangle in the plane IR? or the space IR3. Its area is not affected by a
rigid motion or by a symmetry. This is the fundamental property that we want to exploit.
It explains why the area depends only on the lengths of the sides and not on the absolute
positions of the vertices.

Figure 1 (Invariance of the area by translation)

The way to compute “up to translations” goes back to the works of Jacobi on the n-body
Problem [J]. What follows is a formalization of his ideas. Giving n points 71,7, ..., 7y, in
the space E = IRF, k = 1,2,3, ... is the same as giving the linear mapping X : IR" — E de-
fined by X (&1,&2,...,&n) = 21y &T5. In other words, one represents the “configuration”
of n points (bodies) in E by the k x n matrix, whose i‘" column consists of the coordinates
of ¥; in E = IR*. This representation was introduced by Alain Albouy in his PhD thesis
[A1].

The source IR™ of the mapping X represents the “side of the bodies”, the target E represents
the “side of space”.

Now, let D* be the subspace of IR™ which consists of the n-tuples ({1, &2, ...,&,) whose
sum equals O :

D* = {(51,527""571) € Rna Zgl - 0}
1=1

Whatever be t € E and (£1,&1,...,&,) € D*, we have

G+ =) &
i=1 i=1

Hence, the restriction z of X to D* no longer distinguishes the two n-tuples (71,75, ..., 75)
and (7 N N N L f} Yet, it gives the differences 7; —7; and hence the positions of
the bodies once the position of one of them has been fixed. It follows that giving n points
up to a translation in E' is the same as giving the mapping = : D* — FE.

Such a mapping can be represented by the k x n matrix whose columns consist in the
components of the vectors 7; € IR* but as well by the matrix whose columns consist in the
components of the vectors 7; + ¢, where ¢ € IR*. Tt is only after we choose a basis of D*
that we can get a representation by a (kK — 1) X n matrix.
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But where does D* come from 7 One has to interpret the subspace D* as the dual of
the space D of n-tuples of points on the real line up to a translation. This latter space,
called the disposition space, is the quotient of IR™ by the line generated by the vector
(1,1,...,1) : whatever be t € IR, the n-tuples (z1,z2,...,x,) and (z1+t,x2+1t,...,x,+1)
represent the same element in D. To (&1,&s,...,&,) € D* and (21, x2,...,x,) representing
an element of D, the duality associates the well defined real number > &x; = > & (x; +t).
A homomorphism z : D* — E may then be interpreted as an element of the tensor product
D ® E. The representation of x by an equivalence class of £ X n matrices corresponds to
the one of D® E as the quotient of IR" ® £ = E™ by the diagonal action of the translations
in F.

2 - From the “side of space” to the ‘“side of the bodies”: the reduction of
rotations and symmetries

The invariance under translations of the area |A| means that it depends only on z; its
invariance under linear isometries (i.e. rotations and symmetries with respect to a vector
subspace) means that it depends in fact only on the Gram matrix, whose coefficients are
the scalar products (7, 7) ;. In particular, if x is represented by the k x n matrix X whose
columns are the components of the vectors 7; € E = IR*, |A| depends only on the n x n
matrix X X.

The Gram matrix must of course be interpreted as the matrix of a quadratic form 3 on
D* (and not on IR™). This quadratic form is a complete coding for the shape (“forme” in
french) defined by the n points up to isometries; it may be written:

1
EDRGEANITIEDY <—§T¢2j) &inj.
] 4,

where r;; = || — 7| is the distance betxeen ¢ and j. Notice that the last equality does
not hold on IR™ but only on D*.

Figure 2 (Invariance of the area by rotation and symmetry)

Remark. One can show that the mutual distances r;; are the coordinates of 3 in a natural
basis of the vector space of quadratic forms on D*. Hence giving these is the same as giving
£ and no mention has to made of the ambient space E. We have passed from “the side of
space” to “the side of the bodies”.



From the definition of 3 one deduces that B(¢,€) = ||, &7]|%2 > 0. The following
theorem states that the converse holds (see [Bo], [AC]):

Theorem (Borchart 1866). The real numbers r;; are the mutual distances of n points
in an euclidean space E (whose dimension is not imposed) if and only if the quadratic form
8= Z” (—%r?j) &mn; on D* is non negative. Moreover, on can choose E of dimension k
if and only if the rank of (3 is less than or equal to k.

This theorem was rediscovered several times. See for example [S] and [Bl].

3 - Masses and volumes.

Let us transform the points 7; into “bodies”, possibly “celestial bodies”, by assigning pos-
itive masses m; to them. A classical way of reducing the translation symmetry is to fix at
the origin of IR™ the center of mass xg = (1/>_m;) > m;z; of an n-tuple (x1,za,...,T,).
Doing so, one identifies D to the hyperplane of IR™ with equation Y m;z; = 0. In restrict-
ing to this hyperplane the mass scalar product (or kinetic energy scalar product) defined
on IR™ by the formula

n
(Ilax% cee 75671) : (y17y27 cee 7yn) = Zmzxzyz,
=1

one turns D into an Fuclidean space whose scalar product may be written

(x17x27 <o ;xn) : (y17y27 < 7yn> = Zml(xl - xG)(yZ - yG)
=1

To this euclidean structure we associate the isomorphism
p:D =D ply,ze,...,0,) = (Mi(z1 — 2¢), ma(z2 — 26), ..., M (T0, — )

which endows D* with the euclidean scalar product

n

(517§27 s 7571) ’ (77177727 SR 777n) = Z migz’r/z

i=1 "

Using this scalar product we can turn the quadratic form ( into a symmetric endomorphism
B of the euclidean space D*, defined by

B(&,n) = B(&) -n=¢E- Bn).

We come back to the case of 3 bodies, where dim D* = 2. We can give now an interpretation
of the 4 x4 determinant in formula (C') as an artefact in the computation of the determinant
of an endomorphism of a two-dimensional space without privileged basis.
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Proposition. The formula (C), which expresses the squared area |A|? of the triangle with
vertices 71, 72,73 as a Cayley determinant, is equivalent to the equation
det B = —TAT2MS 9 A|y2,
m1 + mo + ms
Proof. The proof is a sequence of exercises in elementary linear algebra, the tricks of
which were announced in the introduction. After a possible translation, one can assume
that the center of mass of the 7; lies at the origin of IR?.

1) One defines the extension B of B to an endomorphism of IR by the condition that
B sends to 0 the vector (my,msy, ms) (this vector generates the orthogonal of D* for the
scalar product dual to the mass scalar product on (IR*)* = IR3. Show that the matrix of
B in the canonical basis of IR? is

B = (bijh<ijes, by =mi <775 >
2) Working in the basis of IR* = IR x IR? formed by (1,0, 0,0), (0, m1,ma, m3), (0,a1,b1,c1),
(0, ag, by, c2), where the (a;, b;,¢;), i = 1,2, generate D*, show that

1 .
det B = 2 det B,

where M = "  'm; is the sum of the masses and B is the 4 x 4 matrix obtained by
adding on top of B theline (0 1 1 1) and on the left the column (0 m; my ms).
3) Use the identities

<7?Zv7?j > = <Flv7?j > = <F7513F1 >=< FilaFjl >,

S 1. . 1, . 1
<77y > —5 Il = Sl =~
to conclude, with the help of line and column operations, that on the one hand
0 1 1 1
det B=det [ " 0 0 0

mo 0 m2<F21,f'21> m2<F21,F31>

msg 0 m3<7_"31,7721> m3<77'31,7731>
is the product by —mimoms of the squared area of the parallelogram generated by the
vectors 751,731, and that on the other hand

0 1 1 1
1 2 1 2
= m 0 —5mqr —5mqr
det B = det Lo 27 1112 113
2 1 2
m3  —5M3r3;  —3M3r3y 0

equals the product by %ml maomg of the determinant which appears in formula (C').

4) Deduce the proposition by recalling that the area of any of the parallelograms generated

by the 7; equals twice the area of the triangle they define.
5) More generally, show that
det(Idp- — AB) = 1 — I\ 4 —/Am21s

mi + mo + ms

41A12N2,

_ _ 1 2 2 2y _ 1
where [ = traceB = 17 (mamarys +mamirs; +mimeoriy) = 37 (mamsa+mamib-+mimac)

is the moment of inertia of the three masses with respect to their center of mass.



Remark All this generalises with the same proof to the case of n bodies in a finite di-
mensional euclidean space (exercise). The characteristic polynomial of B is given by the
formula

det(Idps —AB) =1 —mA+ -+ (=1)" "Iy, A",

1 n
Nk—1 = M Z mg, -+ mzk[(k: - 1)!@0[11...¢k]2, M = Zmi,
2 =1

where vol;,...;, is the (k — 1)-dimensional volume of the simplex with vertices the bodies
Tiys«--sTi,. In particular, the squared (n — 1)-dimensional volume V' of the simplex whose
vertices are the n points is given by the formula

0 1 1
1 0 .
det B = W((n—l)!‘/)z, or (~1)"2" Y n-1)*Vi=det | -~ = "j
. TJQ.Z- .0 .
r . . . . 0
4 - Back to ambient space: inertias.
The map = which represents the n-body configuration (71,7%,...,7,) up to a transla-

tion is the restriction to the hyperplane D* of the linear map X : IR™ — FE defined by
X(&,8&,...,&) = >, &7;. The transposed map sends the dual E* of E into the dual
of D*, which is canonically identified with D. But the euclidean structures of £ = IR*
and D give an identification of each of these spaces with its dual. Finallly, the transposed
tx : E — D* of x may be defined by the formula :

Ve € E\VE € D*, e-x(&) =ta(e) - €,

where the scalar products - are respectively taken in £ and in D*.

The endomorphism B : D* — D* now becomes B =! x o z. But the endomorphism
I =xolz: E — E is well-known by mechanicians, at least in dimension three where the
bivectors can be identified with vectors once an orientation has been chosen. It is the dual
inertia form of the rigid body defined by the n point masses (which one supposes to be
held rigidly to each other by massless rods). Indeed, if n = k = 3,7 = (x;,v;,2;) and
>, mi7; = 0, z and “z may be represented respectively by the matrices

r1 T2 I3 mixry MmMiys Mmiz
t
X=1wnv vy uys and ‘X = | mexzy moys mozo |,
21 k2 Z3 ms3r3 MM3ys 1M3z3

and the extension B of B to IR? introduced in paragraph 3 becomes B =X X while

t Dok TR D METEY >k METE 2k
T=XX= |2, mpyer D pMrYp  Dr MkYZk
Dok MEZRTE Y MEZKYE D M7,
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Let us call J : A2E* — A?E the inertia operator, which turns the instantaneous rotation
of a rigid body motion of the configuration z into its angular momentum. After identifying
its source and target with IR3, it is represented by the matrix:

Semk(Wi +20) = D METRYk — >k METKZE
T=1 =>imrykzr D pmi(zi+ai)  —> . mrykzr | = (traceZ)ld — T.
=2 MEZRTE e MuzkYk oy Mu(TF + Y7)

In particular, the knowledge of the spectrum of any one of the three operators B,Z,J
implies that of the other two. Fixing B is therefore equivalent to fixing up to rotation
the inertia ellipsoid of the configuration. Hence B deserves the name of intrinsic inertia.
Defined on the side of the bodies and no more on the side of ambient space, it is invariant
under the group O(IRF) of linear isometries of E = IR* and covariant under the group
O(D) of linear isometries of D (the so-called “democracy group” of physicists); on the
contrary, the inertia of mecanicians (Z or 7, which define the inertia ellipsoid in IR¥) is
invariant under O(D) and covariant under O(IR*).

Remark. Once the masses are given, the newtonian potential function U(77, 7%, ...,7,) =
Yicj ot depends only on the 1y, ie. on 8. Let us call the isospectral manifold the

set of all quadratic forms # on D* such that the corresponding endomorphism B has a
given spectrum; this manifold consists of the set of shapes whose inertia ellipsoid is fixed
up to an isometry of E. One defines in [AC] the balanced configurations (= configurations
équilibrées) of n positive masses to be the critical points of the restriction of U to an
isospectral manifold. One shows that these are exactly the configurations which admit a
homographic motion in some space E of arbitrary dimension (recall that a homographic
motion is one along which the shape does not change up to similarity). This is another
example of how ambient space is forgotten. These configurations generalise the classical
central configurations which share the same property but only in a space E of dimension
less or equal to 3. Indeed, the central configurations are the critical points of the restriction
of U to the set of configurations whose moment of inertia I = trace B with respect to the
center of mass is fixed.

5 - The 3-body problem in the plane: from area to oriented area and from
Heron’s formula to the theory of invariants.

In the quadrant ZRi consisting of triplets (a, b, ¢) of non negative real numbers, the triplets
which represent the squared side lengths of a triangle are those which belong to the cone
of equation 2ab+ 2bc+ 2ca — a? — b — ¢ > 0. This follows from Borchart’s theorem above,
as this inequality is equivalent to the non negativity of the quadratic form 3 defined on
D* by

1
B(&,n) = —§(a§2773 + &3 + c&ing).

Fixing arbitrarily positive masses, this amounts to the non negativity of the trace and the
determinant of the corresponding endomorphism B. As a,b, ¢ > 0, this is equivalent to the
stated condition. One can say that the positivity of the right hand side of Heron’s formula
embodies the three triangle inequalities.



We now fix the size of the triangles by imposing that their moment of inertia with respect
to the center of mass be equal to 1:

I = traceB = momsa + mzm1b + mymeoc = 1.

The intersection of this affine plane with the cone above is an elliptic domain 7 (a disc if
the three masses are the same): it parametrizes the set of triangles with fixed inertia up
to an isometry. The boundary of this domain corresponds to the flat triangles, whose area
is zero. It contains three marked points, the collision points which label the degenerate
triangles with two coincident vertices (figure 3).

When the ambient space F is of dimension 2, one can take the quotient by the rotations
(i.e. the linear isometries which preserve orientation). This leads to the space of oriented
triangles with fixed inertia: it is a sphere S (the shape sphere), obtained by gluing along
their boundaries two copies of 7 which correspond to the two possible orientations. We
indicate in what follows a more conceptual way of getting this sphere and the structures
which are naturally associated to it.

Figure 3 (in IR3)

The first remark is that we can now enrich the notion of area by attaching to it a sign
which depends on the orientation of the triangle. We shall denote by A this oriented
area. Analytically, A = %111 A o, where i is the vector with origin at the first body and
extremity at the second and s is any vector with origin on the segment between the two
first bodies and extremity at the third body (if masses are attributed to the bodies and if
the origin of w5 is the center of mass of the the first two bodies, u; and sy are the Jacobi
coordinates in the space Hom(D*, IR?) = D® IR? = D? of planar three-body configurations
modulo tranlation; these coordinates can be obtained by choosing an orthogonal basis in
D*).

The equation (C), which expresses A? as a function of the squared mutual distances
a =13, b=r3 c=ri, defines a quadratic cone in IR* (coordinates a,b,c, A) or a half-
cone C if one is interested only in the quadrant a > 0,b > 0,¢c > 0. The shape sphere S
identifies with the set of generatrices of C, i.e. with the quotient of C \ {0} by homotheties
(figure 4).
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Figure 4 (in IR*)

It follows that the cone C and the sphere S appear respectively as a realization of the
quotient of D? by the action of rotations or by the action of oriented similarities (rotations
and homotheties). To make this point more precise, let us notice that the action of the
group SO(2) of rotations of IR? endows the space Hom(D*, IR?) = D ® IR? = D? of planar
3-body configurations modulo tranlation with the structure of a vector space on the field
@' of complex numbers, the multiplication by ¢ corresponding to the rotation by +7 in
IR? = €. In other words, if (u,v) € D?, i(u,v) = —(v,u).

To go further on, one has to get rid of the choice of coordinates and, for this, give an
intrinsic interpretation of the space IR* that we have introduced and of the cone C that it
contains. The key remark is that the squared mutual distances a, b, ¢c and the oriented area
A are quadratic functions with real values on the vector space D?, i.e. functions which in
any system of linear coordinates on D, are expressed as second degree polynomials in these
coordinates. Moreover, these functions are invariant under rotation: they are quadratic
invariants under the action of the rotation group SO(2). Now, it is classical in algebraic
geometry to characterize a space by the space of functions that one can define on it. In
the case we are interested in, the problem of understanding the quotient D?/SO(2) of D?
by the action of the group SO(2) of complex numbers with modulus 1 is equivalent to
the problem of understanding the set of real polynomials P : D? — IR invariant under
this action, i.e. of polynomials P such that P(Av) = P(v) for all A\ € @ with modulus
1. But any such polynomial can be expressed as a polynomial in the quadratic invariant
polynomials. Indeed, if one chooses a basis of D? on the field of complex numbers, i.e. if one
identifies D? with @2 (say by the choice of Jacobi coordinates associated with a choice of
masses), the action of SO(2) becomes A-(z1, 22) = (Az1, Az2) and a polynomial P(z1, z2) =
> aijklziz{zéié is invariant if and only if a;;x # 0 =i —j + k —1 = 0. One deduces that
P is a polynomial in the quadratic invariants |21]?,|22|?, ReZ122,Imz129. It follows that
we need only understand the quadratic invariants, i.e. the real four-dimensional vector
space Q(D?) generated by the above functions. This space is of course independant of the
choice of a basis in D?. As quadratic invariants are enough to construct all the polynomial
invariants, the quotient D?/SO(2) injects into the space Q(D?), more precisely into its
dual Q(D?)*, by the evaluation map e : D?* — Q(D?)* which to v € D? associates the
linear form g — q(v).



But the image of this map is easy to determine. Choose a complex basis of D? whose
coordinates are noted z1, zo. Then Q(D?) is generated by |z1|?, |22]?, Rez1 22, ImZ; 25, and
the image C of D? is defined by the sole quadratic relation |Rez; 20|+ |Imz 22|? = |21|?|22)?,
to which must be added the inequalities |21|? > 0, |22|*> > 0. It is more pleasant to replace
these last coordinates by

Wo = ’21‘2 + ‘22’2,101 = ‘21’2 — ]z2\2,w2 = 2Re(21z2),w3 = 21m(2122),

because the half-cone C, defined by the equations —w3 + w? + w3 + w3 = 0, wy > 0,
appears as the light cone in Minkowski space. In order to identify it with the half-cone
defined by (C), it remains to notice that a,b,c, A form another basis of Q(D?): Heron’s
formula expresses simply the quadratic relation satisfied by the elements of this basis.

Remarks. 1) We have just seen that the image of the map H : €2 — IR* defined by
(21, 22) = (|21 + |22, |21 * — |22, 2Re(2122), 2Im (21 22))

is the half-cone defined by the equations —w32 + w? + w3 + w2, wy > 0. Its composition
H = myoH : @? — IR? with the projection 7 parallel to wg on the subspace IR? generated
by w1, ws, ws is the classical Hopf map, which sends the unit sphere of €2 onto the unit
sphere of IR x €' by the even more classical Hopf fibration.

2) The space of generatrices of the half-cone above is the intrinsic definition (independent
in particular of any choice of the masses) of the shape sphere. One shows (see [M]) that it
inherits a well defined conformal structure by noticing that, independently of any choice
of coordinates, one can define the notion of circle as a set of generatrices of the half-cone
contained in a three-dimensional vector subspace (if one knows the circles, one knows in
particular the infinitesimal circles and one deduces a notion of angle, i.e. a conformal
structure). One obtains riemannian metrics in this conformal class (i.e. defining the same
notion of angle) by considering the shape sphere as the set of oriented isometry classes
classes of triangles whose moment of inertia with respect to their center of mass is equal
to 1. To check this, it is enough, once the masses are given, to choose a basis on
of D? coming from an orthogonal basis of D* (Jacobi type coordiantes). For example,
for the metric corresponding to equal masses, one can take z; = %(FQ —71) and 2z =

2(73 — £(P + 7)). In any case, if one has chosen a basis which is orthonormal, the

metric on D? = @2 = IR* is the standard euclidean metric.

3) Topologically, the oriented situation is much richer than the non oriented one: the shape
sphere possesses a symmetry group with twelve elements (the dihedral group Dg, which is
also the symmetry group of the regular hexagon). Deprived of the three collision points,
it acquires a fundamental group isomorphic to the free group on two generators. Recent
works have shown that part of this richness shows up in the periodic solutions of the 3
body problem, but this is another story (see [C2]).
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Appendix. Darboux’s interpretation of the quadratic form §. In [D], Gaston
Darboux gives the following interpretation of § in the case when it is non degenerate i.e.
when it describes a non degenerate n-simplex in IR"~! (he considers only the case n = 4
but this is immaterial ; compare to Proposition 14 of [A2]). To each point 7 in R"™!
he attaches its barycentric homogeneous coordinates (&1, -, &,) with respect to the given
simplex, defined (as an element of the projective space) by

O e)r=> &,
=1 i=1

where 71, - - -, 7, are the vertices of the simplex. This amounts to identifying JR"~! with the
hyperplane 7' = 1 in IR"(coordinates X,Y,...,T) and calling &1, ..., &, the coordinates of
any point on the line generated by (7, 1) = (z,y,...,1) in the basis {(71,1),..., (Fn—1,1)}
of IR™. Hence

i=1 i=1 =1

He then notices that in such coordinates the sphere circumscribed to the simplex (defined
by X2+Y2+4...—R2T? = 0 if we suppose that the center § of this sphere is at the origin of
R and call R its radius) has equation ) . . r j ijzf’] = 0. A direct proof is easily found;

one can also, as explained to me by Martin Celli, use Huyghens formula for the momentum

of inertia:

n n n

Vie RN Y CGIE-FPP =) Gl —mP 4+ O &5
=1 =1 =1

Choosing as s the center of the circumscribed sphere, the formula becomes

2 Y2 2
—Zler—n\ Zfz ( +"'_R)7

which implies that an equation of this sphere is > i | &|7 — 7| = 0 (recall that for the
points not at infinity, .- | & # 0). But, by the very definition of barycentric coordinates,
S &(F—7i) =0 and it follows from a formula of Leibniz that

- 2
_% Zfifﬂ”w— Zé} Zfz’T—MQ Z& ( }1/12%_”__}%2)7

ij=1
that is

4,5=1

so that the equation of the circumscribed sphere is ) ;' j=1&& jr?j = 0.
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In particular, the quadratic form ((&, ) appears as the restriction of the equation of this
sphere to the hyperplane at infinity.

Let us see now how Darboux deduces the formula for the squared volume of an n-simplex
(see end of section 3) from the consideration of the “contravariant” of the triple formed
by the equation of the circumscribed sphere X2 + Y2 + ... — R?T? = 0 (in coordinates
with the origin at the center of the sphere) and twice the linear form 7" = 0 defining the
“hyperplane at infinity”. This means that he deduces the formula from the computation of
the determinants of both sides of the following identity (the notations are those of section
3 and the identity is obvious either directly or as a consequence of what is proved in 3):

0 1 1 . . 1
1 0 . .
1

1 0 _ET?J _

1 . 0
1 0 0 . 0 0 0 1 1 0 . .0
0 =1 1 1 0 1 0 0 =1 2o . =z,
0 z2 w2 1 0 0 - - 0 v1 Y2 . Un
. . o . . 1 0 0o . L.
0 =z, yo . 1 1 0 . . —R? o 1 1 . 1

This identity expresses the transformation of the “contravariant” formed by the quadratic
form and the two linear forms under the action of the linear group GL(n, IR) through its
natural extension to GL(n + 1, IR) in which it acts only on the last n coordinates. In the
same way, one deduces immediately the formula

0 .
R A
t n+lon 2
det | . . . . =DM ((n-1)IVR)
7‘32-1- 0o .
. 0
from the identity
0 —1'7“2‘ ’ r1 y1 . 1 10 . . 0 T1 T2 . Tp
220 2 oy2 o1 o1 . . ) Y1 Y2 - Yn
' i o 0 1 0
_1.2
2’3%'06 Zn Yo . 1/ \0 0 —R2 11 1
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