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Abstract

In the first two lectures, hamiltonian techniques are applied to avatars
of the N-body problem of interest to astronomers : the first one intro-
duces one of the simplest non integrable equations, the planar circular
restricted problem in the lunar case, where most degeneracies of the gen-
eral (non restricted) problem are not present ; the second one is a quick
introduction to Arnold’s theorem on the stability of the planetary prob-
lem where degeneracies are dealt with thanks to Herman’s normal form
theorem. The last two lectures address the general (non perturbative)
N-body problem : in the third one, a sketch of proof is given of Marchal’s
theorem on the absence of collisions in paths of N-body configurations
with given endpoints which are local action minimizers ; in the last one,
this theorem is used to prove the existence of various families of periodic
and quasi-periodic solutions with prescribed symmetries and in particular
to extend globally Liapunov families bifurcating from polygonal relative
equilibria. Celestial mechanics is famous for demanding extensive compu-
tations which hardly appear here : these notes only describe the skeleton
on which these computations live.
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1 The Poincaré-Birkhoff-Conley twist map of the
annulus for the planar circular restricted 3-
body problem

1.1 The Kepler problem as an oscillator

The (normalized) motions in a plane of a particle submitted to the Newtonian
attraction of a fixed center – the so called Kepler problem – are the solutions of
the equation

ẍ = −x/|x|3,
where x ∈ R2 = C is identified with a complex number and the dot denotes the
time derivative. These equations are the Hamilton equations

ẋ =
∂H

∂ȳ
, ẏ = −∂H

∂x̄

associated to the Hamiltonian H : (C \ {0}) × C → R and the symplectic form
ω respectively defined by

H(x, y) = |y|2 − 2/|x|, ω = dx ∧ dȳ + dx̄ ∧ dy.

The Levi-Civita mapping (z, w) �→
(
x = 2z2, y = w/εz̄

)
defines a two-fold

covering

(L.C.) K−1(0) \ {z = 0} → Σε = H−1(−1/ε2)

from the complement of the plane z = 0 in the 0-energy 3-sphere K−1(0) of the
harmonic oscillator

K(z, w) = |z|2 + |w|2 − ε2 = ε2|z|2
[
H

(
2z2, w/εz̄

)
+ 1/ε2

]
,

to the energy hypersurface Σε = H−1(−1/ε2) of the Kepler problem (both
diffeomorphic to S1×R2). It is conformally symplectic and sends integral curves
of the harmonic oscillator with energy ε2 to those of the Kepler problem with
energy −1/ε2 after the change of time dt = 2ε|x|dt′ which prevents the velocity
to become infinite at collision. In the coordinates u1 = w + iz, u2 = w̄ + iz̄
these integral curves are u1(t) = c1e

it, u2(t) = c2e
it, |c1|2 + |c2|2 = 2ε2, that

is the intersections of the 3-sphere with the complex lines u1/u2 = cste, or in
other words the fibers of the Hopf fibration (u1, u2) �→ u1/u2 : S3 → P1(C).
The closest approximation to a section of the Hopf map, the annulus

arg u1 + arg u2 = 0 mod 2π

is a global surface of section of the flow of the Harmonic oscillator in a sphere of
constant energy : with the exception of the two fibers which form its boundary,
all the fibers cut this annulus transversally in two points ; hence, the second
return map is the identity. Thus perturbations of the Kepler problem with
negative energy are essentially perturbations of the identity map. This is one
of the main sources of degeneracies in celestial mechanics.
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1.2 The restricted problem in the lunar case

The equations of the n-body problem

�̈ri = g
∑
j �=i

mj(�rj − �ri)
||�ri − �rj ||3

make sense even if some of the masses vanish. Such masses are influenced by the
non-zero masses but do not influence them. We shall consider two primaries,
say the Sun (mass µ) and the Earth (mass ν) which have a uniform circular
motion around their center of mass and a 0-mass third body, say the Moon,
which stays close to the Earth. We shall use the normalization g = 1 and
µ + ν = 1. We identify the inertial plane with C (coordinate X = X1 + iX2

centered on the center of mass of the couple Sun-Earth) and introduce a rotating
complex coordinate x = x1 + ix2 = Xe−iωt − µ centered on the Earth. Setting
y = ẋ + iωx (up to a translation, this is the velocity in the inertial frame), the
equations of motion of the Moon take the Hamiltonian form

ẋ =
∂H

∂ȳ
, ẏ = −∂H

∂x̄
,

where H is the Jacobi integral (the constant 2µ is added for convenience)

H(x, y) = |y|2 + iω(x̄y − xȳ) − 2ν

|x| −
2µ

|x + 1| − µ(x + x̄) + 2µ.

More precisely, the vector field is the symplectic gradient of the symplectic form

ω = dx ∧ dȳ + dx̄ ∧ dy = 2(dx1 ∧ dy1 + dx2 ∧ dy2).

As in the first section, we consider the energy hypersurface H−1(1/ε2), with ε
a small parameter. Its projection on the x plane is made of three connected
components: a neighborhood of the Sun, a neighborhood of the Earth and a
neighborhood of infinity (the so-called Hill’s regions, which imply Hill’s stability
result, praised by Poincaré). We shall be interested in the connected component
of H−1(1/ε2) where |x| stays small. Then

H(x, y) = |y|2 + iω(x̄y − xȳ) − 2ν

|x| − 2µ

[
1
4
|x|2 +

3
8
(x2 + x̄2) + O3(x)

]
.

We see that the influence of the Sun on the Moon becomes negligible with
respect to the one of the Earth and that at the collision limit, it disappears and
one is left with a Kepler problem. To make this apparent, we again apply the
Levi-Civita transformation. We get

K(z, w) = ε2|z|2
[
H

(
2z2,

w

εz̄

)
+

1
ε2

]
= f2(z, w)|z|2 + |w|2 − νε2 − ε2µg(z),

where

f(z, w) =
√

1 + 2iε(z̄w − zw̄), g(z) = 2|z|2
(

1
|2z2 + 1| − 1 + z2 + z̄2

)
.
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As in the Kepler case, the direct image of the restriction to K−1(0) \ {z = 0}
of the Hamiltonian flow ż = ∂K

∂w̄ , ẇ = −∂K
∂z̄ becomes the flow of the restricted

problem with Jacobi constant −1/ε2 after the change of time dt = 2ε|x|dt′.
Each truncation of the Taylor expansion of K(z, w) at the origin,

K(z, w) = −νε2+|z|2+|w|2+2iε|z|2(z̄w−w̄z)−ε2µ(2|z|6+3|z|2(z4+z̄4)+08(z)),

makes sense dynamically when restricted to K−1(0) : we get
at order 2, the harmonic oscillator, which regularizes the Kepler problem ;
at order 4, the regularization of the Kepler problem in a rotating frame ;
at order 6, Hill’s problem. This is the highest order of interest to us.

1.3 Hill’s solutions

The truncation K̂(z, w) = −νε2 + f2(z, w)|z|2 + w2 of K at fourth order is a
completely integrable Hamiltonian, a first integral being the angular momentum
or, what is equivalent, the function f2(z, w). This is not surprising as we already
knew that the restriction to K−1(0) corresponds to the completely integrable
Kepler problem in a rotating frame. The intersection of level hypersurfaces of K
and f2 defines in general a two-dimensional torus, except when the two hyper-
surfaces are tangent, that is when w = ±if(z, w)z. In this case the intersection
degenerates to a circle ; in K−1(0), this defines two solutions which project (by
a 2-1 map) onto the two circular solutions (one direct, one retrograde) of the
rotating Kepler problem with the given value −1/ε2 of the Jacobi constant.
¿From now on, two roads may be followed : one can, along with Kummer [Ku],
stick to symplectic coordinates or one can, as did Conley, use the simpler but
not symplectic coordinates

ξ1 = w + if(z, w)z, ξ2 = w̄ + if(z, w)z̄.

We shall follow Conley. The equations ż = ∂K
∂w̄ , ẇ = −∂K

∂z̄ take the form

ξ̇1 = iξ1

(
1 − ε

2
|ξ1 − ξ̄2|2

)
+ε2O5(ξ1, ξ2), ξ̇2 = iξ2

(
1 +

ε

2
|ξ1 − ξ̄2|2

)
+ε2O5(ξ1, ξ2).

For this section, we do not need the exact expression of the terms of order 5.
We shall show that the energy hypersurface K−1(0) contains two periodic solu-
tions of minimal periods close to 2π, corresponding to the so-called Hill’s lunar
orbits, direct and retrograde, which are almost circular periodic motions of the
Moon around the Earth in the rotating frame. The value 0 of the energy does
not play a special role and it is in fact possible to prove the existence of two “Lya-
punov” families of periodic solutions stemming from the origin and foliating two
smooth (even analytical) germs of invariant surfaces in the (z, w) four dimen-
sional phase space. This is a degenerate version of Liapunov’ theorem, the de-
generacy being the double eigenvalues ±i of the linearization ξ̇1 = iξ1, ξ̇2 = iξ2,
of the vector-field at ξ1 = ξ2 = 0. Recall that this degeneracy comes from the
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fact that all solutions of the Kepler problem with a given energy are periodic
with the same period. Here are the main steps of the proof.
i) Putting the vector-field into normal form at order 3: the idea, which goes back
to Poincaré’s thesis and was much developped by Birkhoff is to simplify as much
as possible a finite part of the vector-field’s Taylor expansion at the origin by
means of local change of variables tangent to Identity. It relies on the fact that
replacing X = (x1, · · · , xn) by Y = X + h(X), where the components of h(X)
start with terms homogeneous in X of degree r, transforms the equation Ẋ =
AX + F (X) into the equation Ẏ = AY + [A, h](Y ) + Or+1, where [, ] is the Lie
bracket of the two vector-fields. If A = diag(λ1, · · · , λn) and h = (h1, . . . , hn)
with hs(Y ) = yi1

1 · · · yin
n and hj = 0 if j �= s, one checks that [A, h] = k with

ks(Y ) = (i1λ1 + · · · + inλn − λs)yi1
1 · · · yin

n and kj = 0 if j �= s. It follows that
one can suppress only non-resonant terms, i.e. those for which no resonance
relation i1λ1 + · · · + inλn − λs = is satisfied.
In our case, this allows to replace the equations by the following (we kept the
same name for the variables):

ξ̇1 = iξ1

(
1 + α|ξ1|2 + β|ξ2|2

)
+ ε2ϕ1(ξ1, ξ2),

ξ̇2 = iξ2

(
1 + a|ξ1|2 + b|ξ2|2

))
+ ε2ϕ2(ξ1, ξ2),

with α = β = − ε
2 , a = b = + ε

2 , ϕ1 and ϕ2 of order 5 in ξ1, ξ2, ξ̄1, ξ̄2. In the
neighborhood of the origin, the flow Φt(ξ1, ξ2) = (ξ1(t), ξ2(t)) can be written

ξ1(t) = eit
[
ξ1

(
1 + i(α|ξ1|2 + β|ξ2|2)t

)
+ ε2α1(ξ1, ξ2, t)

]
,

ξ2(t) = eit
[
ξ2

(
1 + i(a|ξ1|2 + b|ξ2|2)t

)
+ ε2α2(ξ1, ξ2, t)

]
,

with α1, α2 of order 5 in ξ1, ξ2, ξ̄1, ξ̄2 uniformly in t belonging to a compact.
ii) Regularizing the equations for a periodic solution by means of a blow-up: We
look for a periodic solution whose period T is close to the period 2π of the
solution ξ2 = 0 of the rotating Kepler problem approximation (an analogous
reasoning can be made for a solution close to ξ1 = 0). Because of the existence
of the energy first integral, the equations which define a periodic solution of
period T , that is ξ1(T ) = ξ1, ξ2(T ) = ξ2, are consequence of the equations

Arg ξ(T ) − Arg ξ1 = 2π, ξ2(T ) − ξ2 = 0.

Writing down directly these equations would lead to possibly non differentiable
terms like α1(ξ1, ξ2)/ξ1. Indeed, they read

2π = T + arg
[
1 + i(α|ξ1|2 + β|ξ2|2)T + ε2

α1(ξ1, ξ2, T )
ξ1

]
,

[
eiT

(
1 + i(a|ξ1|2 + b|ξ2|2)T

)
− 1

]
ξ2 + ε2eiT α2(ξ1, ξ2, T ) = 0.
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We solve this problem by a further localization in a domain of the form |ξ2| ≤ |ξ1|
by means of a complex blow-up

ξ1 = z1, ξ2 = z1z2

which replaces such a term by α1(z1, z1z2)/z1 which is now differentiable. The
first equation determines T as a C3 function of z1, z̄1, z2, z̄2,

T = 2π − 2π|z1|2(α + β|z2|2) + o3,

where o3 vanishes at order 3 along z1 = 0. The second one becomes

2πi|z1|2
(
a − α + (b − β)|z2|2

)
z2 + o3 = 03

As a − α = ε �= 0, solving this equation leads to a C1 surface tangent to the
plane z2 = 0, that is in the (ξ1, ξ2) space to a C2 surface N1 tangent at order 2
to the plane ξ2 = 0. Intersecting with the energy hypersurface K = 0 gives the
seeked for periodic solution. In the same way, one proves the existence of N2

tangent to ξ1 = 0.
iii) Proving the analyticity of N1 and N2: this is done in Conley’s thesis by
closely following the proof given in the non resonant case by Siegel and Moser.
To understand the formulas, one suppresses the resonant terms of any order by
means of a formal (not convergent !) transformation. One gets new (formal
coordinates) ζ1, ζ2 such that ζ̇1 and ζ̇2 become formal series in the resonant
terms ζi|ζj |2 and ζi(ζj ζ̄k). Rewriting the computation of periodic solutions as
above leads to formal surfaces N1 and N2 where, for example, N1 is defined by a
(formal) equation of the form ζ2 = γ(|ζ1|2)ζ1, the restriction of the vector-field
being of the form ζ̇1 = α(|ζ1|2)ζ1 where α has purely imaginary values (this
corresponds to the fact that N1 is foliated by periodic solutions surrounding
the origin). One proves the convergence of γ and α by writing down majorant
series.

1.4 The annulus twist map

Replacing the boundaries ξ1 = 0 and ξ2 = 0 of the Kepler annulus by the two
Hill orbits, one can now construct a global annulus of section of the flow in the
3-sphere K−1(0) and analyze the first return map. Such an annulus is of course
not unique and it will be convenient to chose it so as to contain the “collision
circle” of equation z = 0.
In order to get precise enough information on the first return map, one must
analyze the equations up to the 5th order where the influence of the Sun comes
into play. Writing down a normal form up to this order implies first computing
the effect on terms of order five of the change of variables leading to a normal
form at order 3. In fact, one can dispense with this: it is enough to suppress
only the non resonant terms of order 5, keeping the terms of order 3 as they
stood initially. Moreover, the above analysis of the submanifolds N1 and N2

whose intersection with K = 0 defines Hill’s orbits, shows that there exists an
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analytic change of variables which transforms them into coordinate planes. A
finer analysis shows that such a straightening change of variables differs from
Id only by terms εA + ε2B, where A is resonant of order 5 and B is of order
7. One deduces that such a straightening of N1 and N2 does not bring any new
change to the differential equation up to order 5. Finally, we get new coordinates
(ζ1, ζ2) such that N1 and N2 are respectively defined by ζ1 = 0 and ζ2 = 0, and
the energy hypersurface K−1(0) and the collision circle z = 0 by

1
2
(
|ζ1|2 + |ζ2|2

)
− νε2 + εO6(ζ) = 0, and ζ1 − ζ̄2 + εO5(ζ) = 0.

It follows that an annulus of section in K−1(0) containing the collision circle
and bounded by the Hill orbits can be defined by the equation

Arg ζ1 + Arg ζ2 + εO4(ζ) = 0(mod2π).

Computing a little more, one can find coordinates (ϕ, ρ) on this annulus, such
that the two boundaries are close to ρ = ±1 and the first return map takes the
form

Pε(ϕ, ρ) =
(

ϕ +
1
2
− ν

2
ε3 − 3ν2

2
(1 − µ

4
)ε6ρ + 0(ε7), ρ + O(ε7)

)
.

Coming back to the definition of this annulus, one checks that the return map
corresponds essentially to the passages of the orbit of the Moon through aphe-
lium in the rotating frame. Originating from a Hamiltonian system, this map
necessarily preserves a measure defined by a smooth density. Moreover, it is a
O(ε7) perturbation of an integrable twist map whose twist is of size ε6. This is
a perfect ground for applying the main results of the general theory of conser-
vative twist maps, a particular case of the theory of Hamiltonian systems with
two degrees of freedom:
1) Applied to the iterates of the return map, the Birkhoff fixed point theorem
yelds an infinite number of periodic orbits of higher and higher periods to which
correspond periodic orbits of long period of the Moon around the Earth in the
rotating frame;
2) The Moser invariant curve theorem implies the existence of a positive measure
Cantor set of invariant curves on which the map is conjugated to a diophantine
irrational rotation and to which correspond quasi periodic orbits of the Moon;
3) To the Liouville rotation numbers, the Aubry-Mather theory associates in-
variant Cantor sets to which correspond orbits of the Moon with a Cantor
caustic
4) Finally, it is possible to prove that the image of the collision circle inter-
sects itself transversally at eight points [CL]; in particular, it is not contained
in an invariant curve. Varying the value of ε moves the invariant curve of a
given rotation number across the annulus which forces intersection with the
collision curve. This proves the existence of invariant “punctured” tori which
correspond to orbits of the Moon which persistently change their direction of
rotation around the Earth in the rotating frame (generalization of the punctured
tori to the full planar 3-body problem were given by Féjoz in his thesis [Fe1]).
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Remark. For writing down formulas, working in the 2-fold covering K−1(0)
of the energy hypersurface diffeomorphic to S3 is convenient but one can prefer
to state the results downstairs in the compactification (regularization), diffeo-
morphic to SO(3) (that is to the real projective space of dimension 3), of the
original energy hypersurface H−1(− 1

ε2 ). The first return map then becomes a
perturbation of the Identity (the Kepler case) of the form

Pε(ϕ̃, ρ) =
(
ϕ̃ − νε3 − 3ν2(1 − µ

4
)ε6ρ + 0(ε7), ρ + O(ε7)

)
.

and the collision curve intersects its image only 4 times.
A problem. When the collision curve intersects the set of invariant curves,
the closure of the union of its iterates, being the set of intersected curves, is
in general of positive measure. What if the collision curve is contained in a
Birkhoff region of instability ?

S

O

M

E

ωt

X2

x1

x2

X1

Hill’s region
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2 The Arnold-Herman stability theorem for the
spatial (1+n)-body problem

In the so-called planetary problem, one mass m0 is dominant (the Sun) and
the others, the planets are of the form εm1, . . . , εmn, where ε is small (around
10−3 for the “real” solar system). If x0 = (x1

0, x
2
0, x

3
0), x1, . . . , xn ∈ R3 are the

positions and ||.|| the euclidean norm, Newton’s equations read

ẍj = m0
xj − x0

||xj − x0||3
+ ε

∑
k �=j

mk
xk − xj

||xk − xj ||3
, j = 1, . . . , n.

The solutions are the projections on the configuration space of the integral
curves of the Hamiltonian vector field defined in the phase space, whose co-
ordinates are denoted by (x0, . . . , xn, y0, y1, . . . , yn) and symplectic form is∑

1≤k≤3 dxk
0 ∧ dyk

0 + ε
∑

1≤j≤n

∑
1≤k≤3 dxk

j ∧ dyk
j , by the Hamiltonian

1
2
||y0||2
m0

+ ε

1
2

∑
1≤j≤n

||yj ||2
mj

−
∑

1≤j≤n

momj

||xj − x0||

 − ε2
∑

1≤j<k≤n

mjmk

||xj − xk||
.

One reduces the translation symmetry by restricting to the value Y0 = 0 the
total linear momentum and going to the quotient by translations in the so-called
Poincaré heliocentric canonical coordinates

X0 = x0, Y0 = y0 + εy1 + · · · + εyn, Xj = xj − x0, Yj = yj , j = 1, . . . , n.

After dividing the new Hamiltonian and symplectic form by ε one obtains a
Hamiltonian defined on T ∗R3n (coordinates (X1, . . . , Xn, Y1, . . . , Yn)) deprived
of the collision set (Xj = 0 or Xj = Xk) with its canonical symplectic structure :

Fε =
∑

1≤j≤n

( ||Yj ||2
2µj

− µjMj

||Xj ||

)
+ ε

∑
1≤j<k≤n

(
− mjmk

||Xj − Xk||
+

Yj · Yk

m0

)
.

It describes an ε perturbation of n uncoupled Kepler problems with fictitious
masses defined by Mj = m0 + εmj and µjMj = m0mj . Whe shall be interested
in solutions which stay close to solutions of F0 where the planets describes
around the sun circular coplanar motions with the same orientation.

Theorem 1 Given m0, . . . , mn, a0, . . . , an, there exists ε0 > 0 with the follow-
ing property : if ε < ε0, there exists in the phase space of the spatial (1+n)-body
problem, in the neighborhood of the circular coplanar direct Keplerian motions
with semi major axes a1, . . . , an, a set of positive Lebesgue measure of initial
conditions which lead to quasi-periodic motions with 3n − 1 frequencies (resp.
2n frequencies for the planar problem)

These solutions are slow (secular) modulations of the quasi-periodic motions
with n frequencies corresponding to n independent elliptic motions (case ε = 0),
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the new secular frequencies being associated to a slow precession of the perihelia
and the nodes. The proof of this theorem was given by Arnold in 1963 under
strong non-degeneracy hypotheses which at the time were proved only in the
case of the (1+2)-planar problem where no reduction is necessary. What follows
is a guide to Herman’s proof as written by Féjoz in [Fe2].

2.1 The secular hamiltonian

We make again a symplectic change of coordinates, using the so-called (once
more) Poincaré coordinates (λj ,Λj , ξj , ηj , pj , qj)i=1,... ,n ∈ (T1×R+×R2×R2)n,
well adapted to the description of elliptic Keplerian motions which are nearly
circular and horizontal. They are defined by the following formulas where
the unnamed letters are defined on the figure : λj = lj + gj + θj is the
mean longitude and Λj = µj

√
Mjaj its conjugate variable, rj = ξj + iηj =√

2Λj

√
1 −

√
1 − ε2je

i(gj+θj) and zj = pj + iqj =
√

2Gj

√
1 −

√
1 − cos ιje

iθj

describe each a symplectic plane. The modules |rj | =
√

Λj/2εj(1 + O(ε2j )) and
zj =

√
Λj/2ιj(1+O(ε2j )+O(ι2j )) describe respectively the eccentricity and incli-

nation of a Keplerian ellipse; the horizontal circular motions we are interested
in correspond to |rj | = |zj | = 0 for all j. We shall abbreviate the Poincaré
coordinates by (λ, Λ, Z) ∈ Tn × (R+)n ×C2n , with Z = (r1, . . . , rn, z1, . . . , zn).

x1

x2

�C

G
g

�

i

x3

a(1 + e)
θ

In these (analytical, Poincaré proved it) coordinates, the Hamiltonian H be-
comes an ε-perturbation of a sum of n uncoupled Keplerian Hamiltonians

H0(Λ) =
∑

1≤j≤n

−
µ3

jM
2
j

2Λ2
j

.

This is a very degenerate situation indeed, as H0 depends only on n action
variables instead of 3n. The averaging method tells us to write down H in the
form

H(λ, Λ, Z) = H0(Λ) + εH1
ε (Λ, Z) + εH2

ε (λ, Λ, Z),

where εH1
ε (Λ, Z) is the average of the perturbation H − H0 over the so-called

fast angles λ = (λ1, . . . , λn) ∈ Tn (the only ones which move if ε = 0) and H2
ε
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has zero average over these angles. The hamiltonian H1
ε defines the first order

secular system. As it does not depend on the mean longitudes λj , the conjugate
variables Λj remain constant under its flow (they are supposed to be such that
the (not too excentric) ellipses remain far enough from each other so that the
perturbation function deserves its name). Hence, for given values of the Λj , i.e.
of the semi-major axes aj , H1

ε defines a flow

dZk

dt
= i

∂H1
ε

∂Z̄k
, k = 1, . . . , 2n,

on an open set, diffeomorphic to R4n = C2n of the space, diffeomorphic to
(S2 × S2)n, of n-tuples of normalized ellipses in R3. The detailed study of the
secular hamiltonian is a sequence of long computations, started by Laplace and
Lagrange in the 18th century, of which we only summarize the results :
1) each of the terms Yj · Yk is readily seen to have zero average, which implies

H1
ε (Λ, Z) = −

∑
1≤j<k≤n

∫
Tn

mjmk

||Xj − Xk||
dλ1 . . . dλn,

which is the Newtonian potentiel of a set of elliptic rings whose mass repartition
would follow Kepler’s area law.
2) Being only interested in the neighborhood of the origin, one writes down
the expansion up to second order (indeed third because of parity) of H1

ε . This
depends on long computations, using the so-called Laplace coefficients, of the
Fourier expansion of the inverse distance function of two planets considered as
a periodic function of their mean longitudes.
One gets H1

ε (Λ, Z) = h0(Λ) + QΛ(Z) + O(|Z|4), with

QΛ(Z) = Q′
Λ(ξ1, . . . , ξn) + Q′

Λ(η1, . . . , ηn) − Q′′
Λ(p1, . . . , pn) − Q′′

Λ(q1, . . . , qn),

Q′
Λ(ξ1, . . . , ξn) =

∑
1≤j<k≤n

mjmk

(
C1(aj , ak)

(
ξ2
j

Λj
+

ξ2
k

Λk

)
+ 2C2(aj , ak)

ξjξk√
ΛjΛk

)
,

Q′′
Λ(p1, . . . , pn) =

∑
1≤j<k≤n

mjmkC1(aj , ak)

(
pj√
Λj

− pk√
Λk

)2

.

The value h0(Λ) of QΛ at Z = 0 (which is a critical point corresponding to
circular horizontal motions) depends on the masses and the semi-major axes
while the coefficients C1(aj , ak) and C2(aj , ak) are independent of the masses.
All of them have simple expressions in terms of Laplace coefficients. As a good
exercise, the reader will show that this form of the quadratic terms is essentially
dictated by the symmetries of the problem.
3) If ρ′ ∈ SO(n) and ρ′′ ∈ SO(n) respectively diagonalize Q′ and Q′′, the linear
transformation ρ = diag(ρ′, ρ′, ρ′′, ρ′′) ∈ SO(4n) is symplectic and transforms
QΛ into a hamiltonian of the form

QΛ ◦ ρ(Λ, Z) = h0(Λ) +
∑

1≤j<k≤n

σj(ξj + η2
j ) +

∑
1≤j<k≤n

ζj(p2
j + q2

j ) + O(|Z|4).
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Finally, applying the above coordinate changes to the full Hamiltonian leads
to a Hamiltonian which we shall still write H, defined in a neighborhood of
Tn×Rn

+×{0} in Tn×Rn
+×C2n (symplectic form dλ∧dΛ+

∑
1≤j≤2n

1
2idZ̄j∧dZj),

of the form

Hε(λ, Λ, Z) = H0(Λ) + ε

h0(Λ) +
∑

1≤j≤2n

τj(Λ)|Zj |2 + 0(|Z|4) + H2
ε (λ, Λ, Z)

 ,

where τj = σj if 1 ≤ j ≤ n, τj = ζj if n + 1 ≤ j ≤ 2n, the term O(|Z|4) does
not depend of λ and H2

ε has zero average with respect to λ ∈ Tn.
The degeneracy of the integrable approximation Hε − εH2

ε appears clearly: for
ε = 0 or for Z = 0, the dimension of the invariant tori drops down to n. We
shall later encounter other degeneracies which affect the spatial problem but we
first turn to Herman’s way of proving an appropriate KAM theorem.

2.2 Herman’s normal form theorem and how to use it

Herman’s powerful idea is to separate a normal form theorem for Hamiltonians
close to what could be called a “Kolmogorov Hamiltonian” – one for which
Tm×{0} is a diophantine invariant torus – from the actual verification of a non-
degeneracy hypothesis which allows a tuning of the available parameters which
turns such a normal form into a conjugacy to some Kolmogorov Hamiltonian.
The following theorem is a far reaching generalization of the Arnold-Moser the-
orem on vector-fields on the torus which states that, among all C∞ vector-
fields on T2 close enough to a constant vector-field (noted ω = (ω1, ω2)) whose
frequencies ω satisfy a diophantine condition HDγ,τ (defined below), the ones
which are C∞-conjugated to it form a submanifold of codimension 2; more pre-
cisely, that the mapping

Φω : Diff∞(T2, 0) × R2 → X∞(T2)

defined by Φω(h, λ) = h∗ω+λ (where h∗ω is the direct image by h of the constant
vector-field ω) is a C∞ (i.e. “tame” in the sense of Hamilton) diffeomorphism
of a neighborhood of (Id, 0) onto a neighborhood of ω in X∞(T2).
We study hamiltonians H(r, θ) on T ∗Tm ≡ Tm × Rm (in our case, m = 3n, r =
(Λ − Λ0, |Z| − |Z|0), θ = (λ, ArgZ)). The role of the constant vector field of
frequencies ω on the torus is now held by the set Nω of Kolmogorov Hamiltonians
N(r, θ) = Nω(r) + O(r2), where Nω(r) = ω · r. This is the set of Hamiltonians
whose Hamiltonian vector-field leaves invariant the torus r = 0 and induces on
it the constant vector-field with frequency vector ω. Let also G be some space
(which we will not describe, see [Fe2]) of Hamiltonian diffeomorphisms close to
Identity, defined on a neighborhood of Tm×{0} in Tm×Rm. Let C∞

+ (Tm×Rm)
be the quotient of the space of Hamiltonians by the real constants. We note

HDγ,τ =
{
ω ∈ Rm, ∀k ∈ Zm \ 0, |l · ω| ≥ γ||k||−τ

}
.
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Theorem 2 (Herman’s normal form) For every ω ∈ HDγ,τ and for every
No ∈ Nω, the map

Φω : Nω × G × Rm → C∞
+ (Tm × Rm)

(N, G, ∆ω) �→ H = N ◦ G + N∆ω,

is a local C∞-diffeomorphism in a neighborhood of (No, id, 0). Moreover, the
inverse map Φ−1

ω depends smoothly in the sense of Whitney of ω ∈ HDγ,τ .

As in the Arnold-Moser theorem, this theorem asserts that the set of Hamiltoni-
ans which are conjugated to a normal form with a diophantine frequency vector
(i.e. those of the form H = N ◦ G with N = Nω + O(r2)) form a submanifold
of codimension m of the set of Hamiltonians modulo constants. Herman’s the-
orem is in fact more general (see [Fe2]) in that it works also with normal forms
which leave invariant tori of dimension lower than n. Following Herman, the
proof given in [Fe2] uses a “hard” implicit function theorem, that is one valid
in a scale of Fréchet spaces. The key feature of such theorems is the necessity
of inverting (or inverting approximately) the differential of the mapping Φω on
a whole neighborhood of (N0, Id, 0) (invertibility is not an open property in
Fréchet spaces).

Of course, it is only when the frequency correction ∆ω vanishes that Herman’s
normal form implies the existence of an invariant torus. The beautiful idea
of Herman was to use the Whitney extension theorem and the usual implicit
function theorem to draw the following corollary (I use the name given by Féjoz):
let N = ∪ω∈RmNω = {ω · r + O(r2)}ω∈Rm be the set of all normal forms.

Corollary 3 (hypothetical conjugacy) For every N0 ∈ N , there is a (non
unique) germ of C∞-diffeomorphism

C∞
+ (Tm × Rm)  H �→ Θ(H) = (NH = ωH · r + O(r2), GH) ∈ N × G

at N0 �→ (N0, Id) such that H = NH ◦ GH for each H verifying ωH ∈ HDγ,τ .

The proof is in two steps : first, the Whitney extension theorem allows to
extend (non uniquely) from C∞

+ (Tm × Rm) × HDγ,τ to C∞
+ (Tm × Rm) × Rm

the map (H, ω) �→ Φ−1
ω (H) = (N, G, ∆ω) ; then, one deduces from the identity

N0 = (N0+Nω−ω0)◦Id+Nω0−ω that, at (N0, Id), one has ∂∆ω
∂ω = −Id. Hence,

from the usual implicit function theorem, it is possible to define a function
ω �→ ωH by locally solving the equation ∆ω(ω) = 0.

We are now left with a serious problem : how to check that ωH which we do not
know satisfies a diophantine condition ? The magic word here is “parameters”.
If we were in the non-degenerate case of Kolmogorov where the frequency map
from the actions to the frequencies of the corresponding invariant torus is a
local diffeomorphism the existence of a positive measure set of “good” values
of the actions would follow immediately from the fact that HDγ,τ has positive
measure. But in our case, the frequency map H �→ ωH is of the form

(Λ, ρ) �→
[
ν(Λ) + O(ε), ε

(
τ(Λ) + O(ρ2)

)]
.
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Going back to Arnold and first used by Rüssmann, the key idea is that in the
analytic case, the non-degeneracy hypothesis implying a positive measure set of
good actions can be much weakened; thanks to the following result, it is enough
that the image of the mapping s �→ ω0

s lies in no proper vector subspace of Rm :

Theorem 4 (Arnold, Margulis, Pyartli) If some real-analytic map s �→ ωo
s

from a domain of Rp to Rm is non-planar in the sense that its image is nowhere
locally contained in some proper vector space of Rm, the Lebesgue measure of
{s, ωo

s ∈ HDγ,τ} is positive provided that γ is small enough and τ large enough.

2.3 A stability theorem

We come back to Hamiltonians on Tn×(R+)n×R2p of the form obtained at the
end of section 2.1 (for the spatial (resp. planar) secular system p = 2n (resp.
p = n)).

Hε(λ, Λ, Z) = H0(Λ) + εH1
ε (Λ, Z) + εH2

ε (λ, Λ, Z),

with H1
ε (Λ, Z) = h0(Λ)+

∑
1≤j≤2n τj(Λ)|Zj |2+0(|Z|4), and H2

ε has zero average

with respect to λ ∈ Tn. We note as before νi = ∂H0

∂Λi
(Λ).

Theorem 5 (Herman’s stability theorem) If, for Λ near Λ0, the frequency
map α : Λ �→ (ν1, . . . , νn, τ1, . . . , τ2p) is non planar, there is a positive measure
set of Lagrangian invariant tori close to Tn × {Λ0} × {0} ∈ Tn × (R+)n ×R2p.

One starts by changing coordinates in order that Hε appears as a close enough
approximation of an integrable Hamiltonian in the neighborhood of a Lagrangian
invariant torus. There are standard ways of simplifying such a Hamiltonian
by symplectic transformations defined by polynomial generating functions; the
non planarity hypothesis implies that the set A2 of Λ’s on which this is pos-
sible has positive measure and moreover that it intersects any neighborhood
of Λ0. In the case of the (1 + n)-body problem, the assertion on the bigger
set A1 defined below is directly insured by the non degeneracy of the map
Λ �→ ν(Λ) =

(
ν1(Λ), · · · νn(Λ)

)
.

1) Elimination “à la Lindstedt” of the dependence on the fast angles λj at a
sufficiently high order N1. This is possible if Λ belongs to the set A1 on which
ν(Λ) ∈ HDγ,τ . Moreover, Whitney regularity allows to extend this to a (non
unique) symplectic transformation L such that Hε ◦L keeps the same form with
H2

ε (λ, Λ, Z)) replaced by R1(ε, λ,Λ, Z) + O(εN1), where R1 vanishes at infinite
order along {(ε, λ,Λ, Z)|Λ ∈ A1}.
2) Transformation to Birkhoff normal form up to order N2. This is possible if
Λ belongs to the subset A2 of A1 defined by diophantine conditions on the set
(ν1, . . . , νn, τ1, . . . , τp) of all frequencies. As above, one can get a symplectic
transformation B such that

Hε ◦ L ◦ B(λ, Λ, Z) = H0(Λ) + εH̃1(ε,Λ, Z) + εR2(ε, λ,Λ, Z) + 0(εN1),

H̃1(ε,Λ, Z) = h0(Λ) +
∑

1≤j≤p

τj(Λ)|Zj |2 + K(Λ, |Z2|) + O(|Z|2N2),
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where K is a polynomial in the |Zj |2 with terms of degree between 2 and N2− 1
and R2 vanishes at infinite order along {(ε, λ,Λ, Z)|Λ ∈ A2}. On this subset, Hε

appears now as a O(εN1 , |Z|N2)-perturbation of the completely integrable system
with Hamiltonian H0(Λ)+ε

[
h0(Λ) +

∑
1≤j≤p τj(Λ)|Zj |2 + K(Λ, |Z1|2, . . . , |Zp|2)

]
.

To focus the attention on the Lagrangian invariant tori Λ = Λ0, |Z| = |Z|0
of this integrable approximation, one moves to symplectic polar coordinates
Zk =

√
ρkeiθk , which leads to

Hε = H0(Λ) + ε
[
h0(Λ) + K(Λ, ρ)

]
+ εR3 + O(εN1

, ρN2),

where R3 vanishes at infinite order along {(ε, λ,Λ, Z)|Λ ∈ A2}. In order to
show that enough of these tori do survive the perturbation, one considers the
(m = n+p)-parameter family H(Λ,ρ) of Hamiltonians H obtained by translating
the origin of the actions at (Λ, ρ). If Λ0 ∈ A2, ρ0 > 0 and if (Λ, ρ) is close to
(Λ0, ρ0), the flow of H(Λ,ρ) is close to the flow of H0(Λ)+ ε

[
h0(Λ) + K(Λ, ρ)

]
in

the neighborhood of the Lagrangian torus T(Λ,ρ) = Tn ×{Λ}× {|Z|2 = ρ}. The
non planarity being an open condition, it will be verified at Λ and the conclusion
follows from the hypothetical conjugacy theorem.

2.4 Herman’s degeneracy

For the planar 1+n-body problem, a thorough study of the Laplace coefficients
after complexification of the semi-major axes, allows proving by induction on the
number of planets (letting one semi-major axis go to zero) that the frequency
map is non planar. For the spatial problem, this map presents an expected
degeneracy, say ζn = 0, due to the invariance under rotation of the problem, as
well as an unexpected one: the trace

∑
1≤j≤n σj +

∑
1≤j≤n ζj of QΛ is always

zero. In the study of the motion of the Moon, this resonance is responsible for
the well-known fact that “at the first order of the theory of perturbations” the
retrograde motion of the node is exactly opposite to the mean motion of the
apogee. Nevertheless, it is only Herman who noticed it in its generality. An
induction similar to the one done in the planar case shows that these are the only
degeneracies. The first resonance is well known to disappear when the direction
of the (non-zero) angular momentum is fixed (here, vertical), which corresponds
to restricting the system to a codimension 2 symplectic submanifold; the second
one disappears when completing the reduction by fixing the angular momentum
and quotienting by the rotations around its axis. This comes from the fact that
in the Poincaré coordinates, the vertical component of the angular momentum
becomes the quadratic form Cz = Σ1≤j≤n

(
Λj − 1

2 (|rj |2 + |zj |2)
)

whose trace is different from zero. Hence, after reduction, the frequency map
becomes non planar and the stability theorem yields diophantine Lagrangian
invariant tori of dimension 3n − 2. To these tori correspond, for the non re-
duced system, invariant tori of dimension 3n− 1 whose number of independent
frequencies is 3n − 2 or 3n − 1.
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3 Minimal action and Marchal’s theorem

3.1 Central configurations and their homographic motions

The equations of the n-body problem in an euclidean space E can be given the
particularly simple form

ẍ = ∇U(x), (∗)
where x = (�r1, . . . , �rn) ∈ En and U(x) =

∑
i<j mimj ||�ri − �rj ||−1 ∈ R are

respectively an n-body configuration and its potential function, and where the
gradient is relative to the mass scalar product (or kinetic energy scalar product),
defined by

x′ · x′′ = (�r′1, . . . , �r′n) · (�r′′1 , . . . , �r′′n) =
n∑

i=1

mi 〈�r′i − �r′G, �r′′i − �r′′G〉E ·

The presence of the centers of mass �rG = 1∑
mi

mi�ri makes the formula transla-
tion invariant; one may as well consider only configurations x such that �rG = 0.

In addition to being invariant under translation, equation (∗) is invariant under
isometries of E and it inherits from the homogeneity of U the following scaling
property : if x(t) is a solution, so is λ− 2

3 x(λt) for any positive real number
λ. When n = 2, any change in the configuration is necessarily a similarity (a
segment has no shape !); when n is at least 3, the simplest motions (called
homographic) are such that the similarity class of their configuration does not
change. If dimE ≤ 3, such motions are necessarily of Keplerian type: if for
example, the total energy 1

2 ||ẋ||2 − U(x) is negative, the solution is periodic,
each body following an ellipse of the same excentricity according to Kepler law.
Such solutions were first discovered for n = 3 by Euler and Lagrange at the end
of 18th century. The configurations x which admit homographic motions are
called central configurations and their determination for n ≥ 4 is a very difficult
problem. They are characterized by the existence of a Keplerian motion with
excentricity 1, which means that they collapse on their center of mass when
released with 0 initial velocity. In other words, ∇U(x) is proportional to x. But
x = 1

2∇I(x), where I(x) = ||x||2 is the moment of inertia of the configuration
with respect to its center of mass. Hence central configurations are the critical
points of the restrictions of the potential function U to the spheres I = constant.
As an exercise, the reader will use (squared) mutual distances as coordinates
on the space of ”triangles mod isometries” and prove Lagrange’s result that,
whatever be the masses, the only non colinear central configuration of 3 masses
is the equilateral triangle.
Another important fact, already proved by Lagrange for n = 3, is that a homo-
graphic solution with excentricity e < 1 is necessarily planar. Note that only
the case of a relative equilibrium (that is e = 0) is “physically” obvious.
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3.2 Variational characterizations of Lagrange’s equilateral
solutions

Equations of the type ẍ = ∇U(x) are known, since Lagrange, to be the so-called
Euler-Lagrange equations of an action functional, the Lagrangian action∫

L
(
x(t), ẋ(t)

)
dt, L(x, ẋ)) =

1
2
||ẋ||2 + U(x),

where the Lagrangian L(x, ẋ) is the difference between the kinetic energy 1
2 ||ẋ||2

and the potential energy −U(x). This means that the solutions of (∗) are ex-
actly the set of “extremal” curves of the action functional. It is the mathe-
matical formulation of the so-called principle of least action. Poincaré was the
first to try to obtain new solutions of an n-body problem using minimization.
In a short note written in 1896, he looks for quasi-periodic (periodic in a ro-
tating frame) solutions of the 3-body problem in R2 as functions x(t) defined
on [0, T ], with value in 3-body configurations, which minimize the Lagrangian
action

∫ T

0
L (x(t), ẋ(t)) among those with the following property: after the “pe-

riod” T , the new triangle x(T ) is the image of the initial one x(0) by a rigid
rotation and the three sides have respectively turned by the real (not mod 2π)
angles α, α + k1, α + k2 where k1 and k2 are fixed integers. This amounts to
fixing a 1-dimensional homology class in the space of triangles up to rotation
(this space has the topology of R3 deprived of three half-lines from the origin).
Assuming existence (this is a consequence of Tonelli’s theorem proved around
1930 because k1 �= 0 and k2 �= 0 garantee coercivity, that is the impossibility of
minimizer “at infinity”), he was blocked by the collision problem caused by the
weakness of the Newtonian attraction. Indeed, around 1913 Sundman proved
that in any solution of the n-body problem which ends in a collision (partial or
total) at time t0, two bodies i, j involved in the collision satisfy the estimates

||�ri(t) − �rj(t)|| = O(|t − t0|
2
3 ), ||�̇ri(t) − �̇rj(t)|| = O(|t − t0|−

1
3 ).

For the 2-body problem, these estimates are an easy exercise which was enough
to convince Poincaré that the action of a solution ending in collision might (in
fact always does) converge, hence that a minimizer could a priori be the mere
concatenation through collisions of segments of solutions. He simply eliminated
the problem by assuming a “strong force” potential (proportional to the inverse
squared distance).
Poincaré’s retreat was in a sense wise because very often such homology con-
straints indeed lead to minimizers with collisions. The simplest example is given
by the Kepler problem of attraction by a fixed center in the plane (the 2-body
problem can be reduced to this). Let us look for periodic solutions of the equa-
tion ẍ = − x

|x|3 in R2 \ 0. The action is
∫ T

0

(
|ẋ(t)|2 − 1

|x(t)|
)
dt and one seeks

for minimizers in the space of loops x(t) of period T going k times around the
origin (i.e. loops belonging to a fixed homology class). Coercivity is insured
as soon as the integer k is different from 0. It was proved by Gordon that for
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k = ±1, minimizers are exactly the elliptic solutions of the given period T , with
any excentricity (along a curve of critical points, a function stays constant !)
while, if k �= 0,±1, minimizers are only collision-ejection solutions (ellipses with
excentricity 1). The main point was to notice that, by convexity of the action,
a sequence of ejection collisions in a given time T has a higher action than a
single ejection collision solution during the same time.
A partial generalization of this result was given by Venturelli (and also Zhang...)
for the three body problem : action minimizers among loops of configurations
x(t) of a given period T such that, during time T the three sides of the triangle
make respectively k1, k2, k3 complete turns, where the ki are fixed integers,
are the equilateral elliptic homographic solutions of the given period and any
excentricity if (k1, k2, k3) = ±(1, 1, 1), a collision ejection of the given period if
this is not the case and all ki are different from 0, unknown if one of the ki is 0.
Let us give a sketch of the case (1, 1, 1). In a frame fixing the center of mass, a
classical identity going back to Leibniz allows to write the action as the sum of
three Keplerian actions:

∑
i<j

mimj

M

∫ T

0

[
|| ˙�rij(t)||2

2
+

M

||�rij(t)||

]
dt,

where M =
∑

mi and �rij(t) = �rj(t)−�ri(t). By the result of Gordon, an a priori
lower boundof the action is obtained by replacing each term by its minimum,
obtained if each �rij(t) is a Kepler elliptic solution of period T . The end of the
proof consists in showing that the Lagrange equilateral solution is the only one
which achieves this lower bound: from

∑
�rij(t) ≡ 0 it follows that

∑
�̈rij(t) ≡ 0

that is
∑ �rij(t)

||�rij(t)||3 ≡ 0 from which it follows that the �rij(t) cannot be colinear
and the three mutual distances |�rij(t)| must be equal at each instant of time.
Notice that in all the cases considered above, collision solutions exist among
minimizers. This will not be the case anymore if we minimize the action among
loops x(t) of configurations of period T satisfying the italian symmetry

x(t − T/2) = −x(t).

This symmetry selects the relative equilibria (excentricity 0) among all Keple-
rian motions and indeed, minimizers for the 2-body and 3-body problem are
exactly the circular solutions (with equilateral configuration in the latter case).
The proof is even simpler as above, the reason for the selection of the equilateral
triangle among central configurations being more clearly seen to originate from
the fact that it is the unique configuration which realizes the minimum of the
restriction of U to I = constant or, what amounts to the same, the minimum
U0 of the normalized potential function Ũ(x) = I(x)

1
2 U(x). On the other hand,

the Fourier series of a symmetric loop has no constant term and this implies the
inequality ∫ T

0

||ẋ(t)||2dt ≥ 4π2

T 2

∫ T

0

||x(t)||2dt.
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Hence, the action A of a symmetric loop satisfies

A ≥ A0 =
∫ T

0

[
2π2

T 2
I(x(t)) + U0I(x(t))−

1
2

]
dt ≥ T inf

I

(
2π2

T 2
I + U0I

− 1
2

)
,

with equality if and only if there exist two configurations α and β such that
x(t) = α cos 2π

T +β sin 2π
T (no harmonics of order higher than 1), and the fonction

2π2

T 2 I(x(t)) + U0I(x(t))−
1
2 is constant and equals its absolute minimum. Hence

I(x(t) is constant, from which it follows that the two configurations α and β
are orthogonal and have the same norm. Finally, x(t) is a rigid circle in the
configuration space. One concludes that the motion is a relative equilibrium by
using the fact that the similitude classes of 3-bodies central configurations are
isolated.

The two proofs above are misleading. As soon as the constraints select more
complicated (non a priori known) solutions, one needs proving the existence of
collision-free minimizers. In the next paragraph, an idea is given of the proof
of Marchal’s theorem which is the basic tool explaining why action minimizers
under symmetry constraints are very often collision-free.

3.3 Marchal’s theorem

Theorem 6 Let x′ = (�r′1, �r
′
2, · · · , �r′n) and x′′ = (�r′′1 , �r′′2 , · · · , �r′′n) be two arbitrary

configurations, possibly with collisions, of n material points with positive masses
m1, m2, · · · , mn in the plane or in space. For any T > 0, any local minimizer of
the action among paths x(t) = (�r1(t), �r2(t), · · · , �rn(t)) in the configuration space
which start at x(0) = x′ and end at x(T ) = x′′ is collision-free and hence a true
solution of Newton’s equations in the open interval ]0, T [.

Already in the case of two bodies, this theorem is non trivial. Translated in
terms of the Kepler problem, it asserts that given two points x′, x′′ ∈ R2 \0 and
T > 0, a minimizing path x(t) ∈ R2 \ 0 x(0) = x′, x(T ) = x′′, is a collision-free
solution of the equation ẍ(t) = −x/||x(t)||3. Many proofs can be given of this
special case but Marchal’s one is still among the simplest.
In what follows, I give the main idea of the proof of Marchal’s theorem (see
[Ma3, C3, FT]) . Suppose that the minimum of the action is attained by a path
x(t) which has a collision at time t0. In order to get a contradiction, we try to
slightly modifiy the path in such a way as to decrease the action. The problem
which was faced in the early attempts to prove that minimizers of some kind are
collision-free is that, except in the case of three bodies, not much is known about
the configuration taken by the bodies entering the collision. There is Sundman’s
theory, which says that the normalized configuration tends to the set of central
configurations, but the latter ones are so poorly understood that it is of no
use (for 5 bodies and more one even does not know if the number of similitude
classes is finite !). Marchal proposes to chose any one of the bodies, say �ri

involved in the collision and to shift slightly its position at time t0, replacing
ri(t) by ri(t) + εϕ(t)�vi, where �vi is a unit vector and ϕ(t) is a smooth function
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such that ϕ(t0) = 1, supported by a small interval [t0−η, t0 +η]. Controling the
modification brought to the action by this single modification is impossible but
Marchal makes the striking observation that replacing the original action by the
average of the modified action when �vi takes every possible direction amounts
to replacing the perturbed body i by a uniform repartition of its mass over a
sphere in the spatial case (resp. a circle in the planar case). But, in the spatial
case, the potential generated by a homogeneous sphere is constant inside the
ball bounded by the sphere and equal to the potential of a point mass at the
center with the same total mass outside. This is a strong hint that the averaged
action is strictly smaller than the original one.
Let us prove that it is indeed the case in the simplest possible situation, to which
it is indeed possible to reduce the general case. We suppose that the minimizer
x(t) is a parabolic homothetic collision-ejection solution of the n-body problem
in R3, that is:

x(t) = |t| 23 x0, t ∈ [−T, T ]

where x0 is some central configuration. Thanks to the linearity of the mean, we
may treat separately ejection and collision, hence we can restrict the attention
to the time interval [0, T ]. We study deformations of x(t) of the form

xk
�s(t) =

(
�r1(t), . . . , �rk(t) + R(t)�s, . . . , �rn(t)

)
,

where 1 ≤ k ≤ n and R(t) = (1 − t
T )ρ with ρ a small positive real number

and �s belongs to the unit sphere. Taking the mean of the actions over �s and
exchanging the order of integration amounts to truncating the potential of the
(k, j)-interactions to mjmk/R(t) for t belonging to the interval [0, tj ], where tj
is the characteristic time after which this potential is the same as the one for
the original path, that is

R(tj) = rjk(tj) = r0
jkt

2
3
j ,

which implies
ρ = r0

jkt
2
3
j (1 + O(tj)).

Hence

Ak
m −A ≤ mk

2
ρ2

T
+

∑
j �=k

mjmk

∫ tj

0

[
1

R(t)
− 1

rjk(t)

]
dt,

(the inequality sign comes from the fact that the deformations do not keep the
center of mass fixed)
In other words, the last term is the integral over the whole interval [0, T ] of the

function
[

1
R(t) − 1

rjk(t)

]−
, where for any f : [0, T ] → R, we have denoted by

f(t)− the function which is equal to f(t) when f(t) ≤ 0 and to 0 otherwise.
Hence

Ak
m −A ≤ mk

2T
ρ2 −

∑
j �=k, j≤p

mjmk∆j ,
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where

∆j =
T

ρ
log(1 − tj

T
) +

∫ tj

0

1
rjk(t)

dt.

Hence

Ak
m −A ≤ mk

2T
(r0

jk)2t
4
3
j + O(t

7
3
j ) −

∑
j �=k, j≤p

mjmk

(
1

r0
jk

t
1
3
j + o(t

1
3
j )

)
,

and we conclude that Ak
m −A < 0.

The proof that one can reduce the general problem to this special case is given
in [ICM]. It uses the ideas of R. Montgomery, S. Terracini and A. Venturelli;
the two main steps in this proof are 1) the existence of an isolated collision
in any local minimizer x(t) and 2) the reduction, via blow-up, of the case of
an arbitrary isolated collision to the case of a parabolic homothetic collision-
ejection solution. In [FT] an important generalization is given,with detailed
proofs, to some equivariant cases, to other exponents of the potential and any
space dimension greater than 1. The main remark is that in many cases (the
ones possessing the “rotating circle property”), averaging over a well-chosen
circle is sufficient.

3.4 Minimization under symmetry constraints

The simplest case where Marchal’s theorem applies directly is the already men-
tioned italian symmetry x(t − T/2) = −x(t), which corresponds to an action of
the group Z/2Z on the space of T -periodic loops in the configuration space of
the n-body problem in Rp. Indeed, let [t0, t0 + T/2] ⊂ [0, T ] be a fundamental
domain of this action: the restriction of x to [t0, t1] must be an unrestricted
local minimizer of the action A among paths with the same endpoints, and as
such collision-free in the open interval ]t0, t1[. As the starting point t0 may be
chosen arbitrarily, we deduce that x cannot have a collision.
For the planar problem (p = 2), this result is somewhat disapointing as one
can prove that a relative equilibrium whose configuration minimizes the scaled
potential U0 = I

1
2 U is always an absolute minimizer and that these are the sole

minimizers provided certain technical conditions are satisfied (which are at least
satisfied for n = 3 and n = 4) . Hence, in order to get interesting minimizers,
one must either look at the spatial problem (p = 3) or impose sronger symme-
try constraints. These two routes lead to interesting new families of periodic
solutions of the n-body problem, the Hip-Hops and the choreographies.

1) the Hip-Hops (see [CV, C4]) Combined with known results on central
configurations [Mo3] and the above remark that a relative equilibrium solution
whose configuration minimizes U0 is a minimizer for the italian symmetry, a
simple analysis of Hessian of the action along such a relative equilibrium solution
shows that a minimizer for the spatial problem cannot be a planar solution as
soon as the number n of bodies is at least 4. The simplest case is the one of 4
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equal masses for which a minimizer should be (this is not proved) the original
Hip-Hop with its D4×Z2 symmetry. In this solution, to the relative equilibrium
of the square is added a vertical oscillation of the two diagonals; twice per period,
the shape is the one of a regular tetrahedron. It is a remarkable compromise
between the relative equilibrium of the square and the relative equilibrium of the
regular tetrahedron which should have been the minimizer if it existed (it does
in R4). More generally, whatever be the masses, the corresponding minimizers
are likely to be among the “simplest” non planar solutions of the corresponding
n-body problem.

2) the choreographies (see [CM, Si, CGMS])
In this case, one imposes equal masses and a symmetry constraint which implies
that after time T/n, the bodies occupy the same positions save for a circular
permutation (i.e. the symmetry group G contains as a subgroup a copy of
Z/nZ which acts in the indicated way). This implies the existence of a curve
along which the bodies move, separated by equal time lags. It is likely that the
equality of the masses is a necessary condition for such a solution to exist but
up to now this is proved only when n ≤ 5 [C6]. The simplest choreographies
are the relative equilibria of n equal masses which are the vertices of a regu-
lar n-gon. Surprizingly we shall see in the next section that they are related
through families of relatively periodic solutions to more complicated choreogra-
phies (in particular the figure eight solution when n = 3) and to Hip-Hops. An
extensive search for choreographies was done by Carles Simó (see his website
for animations).
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4 Global continuation via minimization

We study the 3-dimensional dynamics in the neighborhood of the equilateral
relative equilibrium of the regular n-gon with equal masses (∀i, mi = 1).
The fact that, when perturbed in an orthogonal direction, the length of a
straightline segment stays constant at the first order of approximation, implies
a splitting of the variational equation of the n-body problem along any planar
solution into a part (HV E) describing the “horizontal variations” (along the
plane of motion) and one (V V E) describing the vertical ones (orthogonal to the
plane of motion). When the planar solution is a relative equilibrium, this last
equation takes the particularly simple form

z̈i =
∑
j �=i

mj

r3
ij

(zj − zi), (V V E)

where the rij are the (constant) mutual distances of the bodies in the relative
equilibrium and (z1, z2, · · · , zn) ∈ Rn are supposed to be such that

∑n
i=1 zi = 0,

which amounts to fixing the center of mass at the origin. In what follows, we
suppose that all the mi are equal.
After reducing the rotation symmetry by fixing the angular momentum and
quotienting by the rotations around its axis, the relative equilibrium becomes
an isolated equilibrium. One reads directly from the variational equation the
spectrum of the linearized vector-field at this equilibrium: The corresponding
6n− 10 dimensional matrix splits into a 4n− 6 “horizontal” block and a 2n− 4
“vertical” block whose eigenvalues are all purely imaginary because the Newton
force is attractive.

In the next sections, we concentrate essentially on the case n = 3, giving only
hints at the end for the cases n = 4 (partially understood) and n > 4 more
conjectural.

4.1 Bifurcations from the Lagrange equilateral relative
equilibrium

When n = 3, after reducing the rotation symmetry and restricting to a center
manifold one gets into a situation very similar to the one in the lunar problem,
with a 1-1 resonant spectrum and energy surfaces diffeomorphic to the 3-sphere.
Here also the local existence of two Lyapunov families of (relatively) periodic
solutions can be proved: one is already known, it is the homographic family;
the other one, when globally continued (see the next section) goes all the way
to the reverse equilateral relative equilibrium through the planar figure eight
solution. In an energy surface close to the relative equilibrium, the flow admits
an annulus of section whose Poincaré return map is a twist map which, because
of a resonance which persists all along the homographic family, is the identity on
the corresponding boundary. I shall not reproduce the computations of [CF2]
but be content with explaining the similarities and the differences with the first
chapter.

25



For the relative equilibrium of an equilateral triangle whose edges have length
1 and vertices have masses mi, (V V E) reads z̈i =

∑
j �=i mj(zj − zi), i = 0, 1, 2.

As
∑2

i=0 mizi = 0, this becomes the following (with M =
∑2

i=0 mi):

z̈i = −Mzi, i = 0, 1, 2.

We shall choose the masses to be 1/3 so that the period of the relative equilib-
rium solution is 2π and the 2n − 4 = 2 “vertical” eigenvalues are ±i.
On the other hand, the 4n − 6 = 6 “horizontal” eigenvalues are ±i and a
quadruple ± 1√

2
± i (see for instance [Mo2]), so that the spectrum is completely

resonant. Using Maple, an analogue of the normal form described in the first
chapter can be computed. This leads to complex coordinates (u, v, h, k) (I keep
the notations of [CF2]) in the tangent space (identified to C4) of the 8 dimen-
sional reduced phase space such that the linearized vector field becomes free of
non resonant terms up to order three. The normal form, which is not unique
at a general order, can be chosen so that the vector field is invariant under
T (u, v, h, k) = (u,−v, h, k). This corresponds to the symmetry with respect to
the invariant horizontal plane, which is defined by the equation v = 0.
The result is of the following form:

u̇ = iu[1 + α|u|2 + β|v|2 + γhk + γ̄h̄k̄] + O5

v̇ = iv[1 + a|u|2 + b|v|2 + chk + c̄h̄k̄] + Av̄hk̄ + O5

ḣ = λh[1 + r|u|2 + s|v|2 + thk + t′h̄k̄] + Rv2h̄ + O5

k̇ = −λk[1 + r|u|2 + s|v|2 + thk + t′h̄k̄] − Rv̄2k̄ + O5,

where the coefficients have the following non-zero values:

α = −1, β = −1, γ = 9
2 + 6i

√
2,

a = −1, b = − 21
19 , c = 186

19 + 126
√

2
19 i, A = − 120

19 ,

r = − 11
12 −

√
2

12 i, s = − 73
57 + 10

√
2

57 i, t = 275
57 + 334

√
2

57 i,

t′ = 105
19 (1 − i

√
2), R = 5

√
2

19 i,

and where O5 stands for real analytic functions of order 5 in u, ū, v, v̄, h, h̄, k, k̄.

Even if the situation looks more complicated than fin the restricted problem,
it is not really so. This is because one can restrict the attention to a so-called
“center manifold” tangent to the invariant space associated to the purely imag-
inary part of the spectrum, and containing all the local recurrence near the
equilibrium. A simple analysis shows that, when lifted up to the non reduced
phase space, such a 4 dimensional center manifold at the equilibrium becomes
a 6 dimensional manifold tangent to the one obtained from the relative equi-
librium solution by making the rotations act independently on positions and
momenta. From this description of the tangent space one can deduce that the
restriction of the reduced Hamiltonian to a center manifold has the equilibrium
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as a non degenerate minimum, which implies that its levels close enough to
the equilibrium are 3 spheres (and in fact, as noted by Moeckel, that the center
manifold is unique). In restriction to the center manifold (coordinates u, ū, v, v̄),
the normal form, still invariant under the mapping τ : (u, v) �→ (u,−v), is of
the form

u̇ = iu[1 + α|u|2 + β|v|2] + O5

v̇ = iv[1 + a|u|2 + b|v|2] + O5,

with v = 0 defining the Lyapunov family of equilateral homographic motions.
Moreover, the energy becomes

H = −1
2

+
|u|2
36

+
|v|2
6

+ O4.

The problem is now similar to the planar circular restricted problem in the Lunar
case (see [Co, C0, Ku] or [Du] in a more general situation), where the Lyapunov
orbits are Hill’s direct and retrograde orbits. The proof of existence and local
uniqueness of the vertical Lyapunov family (the one tangent to u = 0) follows
exactly as in the first chapter because b �= β; moreover, if we knew that our
center manifold is analytic, we would get also analyticity of the family. On the
contrary, the higher order resonance a = α would prevent us from applying the
same proof to the horizontal homographic family tangent to v = 0 if we did not
know that it exists. A simple analysis of the vertical variational equation along
the homographic family shows that this resonance must persist in normal forms
of any order: the coefficients of the monomials u|u|2k in u̇ and v|u|2k in v̇ are
necessarily equal. One can nevertheless prove that no other Lyapunov family
bifurcates from the relative equilibrium by showing that the Poincaré return
map in an annulus of section, whose one boundary belongs to the homographic
family and the other one to the P12 family, is a monotone twist map.

4.2 From the equilateral triangle to the Eight

The vertical Lyapunov family has a high symmetry. Indeed, after choosing a
phase, it is tangent to the ”linear” family

qj(t) =
(

1√
3
ζjei2πt, ARe(ζ̄jei2πt)

)
∈ R2 × R = R3, j ∈ Z/3Z, (S1)

where ζ = e
2π
3 and the amplitude A is a real parameter. The discrete symmetry

group of such a motion is seeked as a subgroup of

G0 = O(R/Z) × Σ(3) × O(R3),

where g = (τ, σ, ρ) ∈ G0 acts naturally on the space of 1-periodic loops:

q : R/Z × {1, 2, 3} → R3

τ ↓ σ ↓ ρ ↓
gq : R/Z × {1, 2, 3} → R3.
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If q is a loop in the configuration space, the transformed loop by the (left) action
of g = (τ, σ, ρ) is

gqj(t) = ρqσ−1(j)(τ−1(t)).

Lemma 7 The stabilizer G1 ⊂ G0 of S1 is isomorphic to the dihedral group D6

with 12 elements.

The proof is an easy exercise. One finds that the elements (τ, σ, ρ) of G1 act as
follows ( vectors in R3 are decomposed into a horizontal part h and a vertical
part v):

τ−1(t) = ξ(t − θ), σ−1(j) = ξ(j + δ), ρ(h, v) = (ei2παh̄ξ, eiπβv),

with ξ = ±1 (and h̄ξ = h or h̄ according to whether ξ = +1 or −1) and
α ∈ R/Z, β ∈ Z/2Z, δ ∈ Z/3Z, θ ∈ R/Z satisfying

α = θ − δ

3
(mod 1), θ =

β

2
− δ

3
(mod 1).

The choices of (ξ = 1, β = 1, δ = 1) and (ξ = −1, β = 0, δ = 0) define generators
g1 and g2 of G1 which satisfy the relations g6

1 = g2
2 = 1, g1g2 = g2g

−1
1 , which is

a presentation of D6.
In a frame which rotates uniformly in the opposite direction with the same
frequency as the relative equilibrium, (S1) becomes

q̂j(t) =
(
ζjei4πt,Re(ζ̄jei2πt

)
∈ R2 × R = R3, j ∈ Z/3Z, (S1).

The symmetry group does not change but its action does: the formula defining
α is changed to α = 2θ − δ

3 = β − δ (mod 1) = 0 (mod 1). The resulting curve
in rotating frame is now a choreography. Indeed, the group element defined by
ξ = 1, β = 0, δ = 1, transforms (hj(t), vj(t)) into

(
hj+1(t − 1

3 ), vj+1(t − 1
3 )

)
: all

bodies lie on one and the same spatial curve (see figure ).

Global continuation of the family is based on the following remark (see[CF2]):
let us consider the following family (parametrized by �) of paths in the config-
uration space:

q�
j (t) =

(
1√
3

(
4π + �

2π

)− 2
3

ζjei(4π+�)t, 0

)
, j ∈ Z/3Z. (L)

In a frame which rotates uniformly with frequency �, it becomes a loop making
two complete rotations during the period 1. Hence, for all values of �, the
corresponding path has the G1 symmetry in the rotating frame. Its action
during the period 1 is readily computed to be proportional to

(
4π+�

2π

) 2
3 . In

particular, it tends to its absolute minimum zero as � tends to −4π, the limit
situation corresponding in the inertial frame to bodies at rest at infinity. When
� varies from −4π to 0, the action increases. It can stop being the absolute
minimum among paths which, in the rotating frame become loops with the G1
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symmetry only when it appears a 1-periodic Jacobi field, that is a solution of
the variational equation which, in the rotating frame, is 1-periodic and possesses
the required G1 symmetry. This is the case only when � = −2π. For values of
� closer to 0, the minimum is no more the (L) family but an appropriate lift of
the vertical Lyapunov family. The global continuation is obtained by looking,
for each value of � between −2π and 0 to such a minimizer among paths which
are G1-symmetric in the rotating frame. The end of the family is the figure
Eight solution for which the D6 symmetry can be interpreted as the symmetry
of the space of similitude classes of plane oriented triangles (the so-called shape
sphere (see[CM, Mo1]). It is the maximal discrete symmetry that a solution of
the 3-body problem may possess in the case of equal masses (see [Ma1]).

Technically, one is faced with the problem of showing that, for each value of
�, a (local) minimizer has no collision. This is not a direct consequence of
Marchal’s theorem because of the time reversal symmetry which implies that
the boundaries of a fundamental domain of the τ action on the time circle cannot
be chosen arbitrarily. Nevertheless, this can be proved by a direct estimation
of a lower bound of the action of paths with collision with the given symmetry
: this lower bound happens to be exactly the value of the action of the last
member of (L) corresponding to � = 0.

Remarks. 1) Using obvious symmetries, the P12 family can be continued into
a loop of quasi-periodic solutions containing the horizontal equilateral relative
equilibria rotating in both directions (figure). Applying isometries and scaling,
this defines in the 12 dimensional (after reduction of translations) phase space
a compact invariant 6 dimensional submanifold entirely foliated by relatively
periodic solutions. Topologically, this manifold is a fibre space over the lens
space L(4, 1).
2) It is interesting to recall a remark made by C. Marchal at page 257 of his
book[Ma1]: after having determined the expansion ot the vertical Lyapunov
family up to order 6 in a small parameter c1 corresponding to the vertical
extension of the solution (opening of the mouth of the oyster described in the
rotating frame), he asks for their continuation, mentioning as an example of
surprising continuation the family of retrograde Hill solutions up to the colinear
“Schubart” solution (see [He]).

4.3 From the square to the Hip-Hop

In the case of the square relative equilibrium of 4 equal masses, there are two
Lyapunov families in addition to the homographic family; one of these leads by
continuation to the Hip-Hop, which is the simplest non-planar solution of the 4
body problem. The possibility of obtaining this family by minimization of the
action is related to the fact that, in R3, a relative equilibrium must be planar
(this is indeed true of any homographic solution of the n-body problem but it
is an easy result only in the case of relative equilibria).

The case of the Hip-Hop corresponds to a frequency which is not in resonance
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with the frequency of the relative equilibrium; the local study is done in [Ba]
(compare also with [MS] for the case of an additional central mass).

The global continuation of the Hip-Hop family is done in [TV]. Here also, the
proof that there are no collisions for minimizers in this family cannot appeal
to Machal’s theorem (except in the case of a non rotating frame, that is for
the original Hip-Hop where, if one insists on the full D4 × Z2 symmetry, the
strengthening given in [FT] is needed). The problem is the topological constraint
attached to the rotating frame: one has to minimize among loops whose starting
point and end point make a fixed real (not mod 2π) angle between 0 and 2π,
in way similar to what one can be done for the planar Kepler problem. The
method is a nice idea of introducing obstacles. The end of the family should be
a simultaneous double collision but this is not proved.

Remark. The fate of the first vertical Lyapunov family, associated to the
frequency of the relative equilibrium is complicated, probably leading through a
secondary bifurcation to a planar solution proved to exist at first numerically by
J. Gerver and then with a computer assisted proof by Kapela and Zglyczinski
(this solution lies in the horizontal plane and not the vertical one because its
angular momentum, contrarily to the figure eight solution, is not zero).

4.4 The avatars of the regular n-gon relative equilibrium:
eights, chains and generalized Hip-Hops

Symmetries of the solutions of VVE along the regular n-gon relative equilibrium
are easily analyzed [CF3] and may lead to Lyapunov families with interesting
continuation [CF1]. Possible problems connected to minimization under the
corresponding symmetry constraints could appear for n ≥ 6 because of the
appearance of new imaginary eigenvalues of the Horizontal Variational Equa-
tion [Mo2] which could lead to different types of bifurcations with the given
symmetries.

Remark. It is easy to prove that when, looked in the inertial frame, the
members of the vertical Lyapunov families attached to the regular n-gon relative
equilibrium are choreographies for a dense set of values of the frequency � of
the rotating frame in which they have the symmetries of the linearized equation.

Thanks to Jacques Féjoz, Laurent Niederman and David Sauzin for various
comments about these notes. Special thanks to Jacques Féjoz for his help with
the figures.
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newtonien de 4 corps de masses égales dans R3 : orbites “hip-hop”, Ce-
lestial Mechanics 77, p. 139-152 (2000)

[Co] C. Conley On Some New Long Periodic Solutions of the Plane Restricted
Three-Body Problem, Communications on Pure and Applied Mathematics,
XVI, 449-467 (1963)

[Du] Duistermaat Bifurcations of periodic solutions near equilibrium points of
Hamiltonian systems, CIME lectures Montecatini, LN in Mathematics
1057, Springer (1984)
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