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Abstract

Starting with elementary calculus of variations and Legendre trans-
form, it is shown how the mathematical structures of conservative dynam-
ics (Poincaré-Cartan integral invariant, symplectic structure, Hamiltonian
form of the equations) arise from the simple computation of the variations
of an action integral. The study of simple examples of integrable geodesic
flows on the 2-torus then leads to the notion of Lagrangian submanifolds
and to the Hamilton-Jacobi equation, whose relation to the Hamiltonian
vector-field is the first step of the duality between particles and waves.
The two last lectures are a brief introduction to KAM and weak KAM
theories which describe what remains of complete integrability for more
general hamiltonians, in particular for perturbations of integrable convex
hamiltonians.1 Due to the format of the course, only the easy results are
proved while the harder (or longer) ones are admitted without remorse.
This is, I hope, justified by the fact that it allows to give in a very short
time some idea of the general architecture of the theory.

1The first three lectures are directly inspired by the course [C1] on weak KAM theory given
by the author in Barcelona in July 2004. The last one owes much to the paper [Fe] and to
discussions with Jacques Féjoz.
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1 From the calculus of variations to the struc-
tures of conservative dynamics

1.1 Introduction

Classical mechanics (see [A]) deals in general with second order ordinary differ-
ential equations of the form

q̈ = F (q, q̇). (E1)

The terms depending on the time derivative q̇ are termed “dissipative”: they
correspond to frictions (damping) or excitations. In their absence, one gets
“conservative” equations q̈ = F (q) which are often of the form

q̈ = ∇U(q), (E2)

where U is a “potential function” and the gradient is relative to some Rie-
mannian metric on the configuration space, which defines a “kinetic energy”.
The paradigmatic example is “the n-body problem”, where the configuration
q = (�r1, �r2, , �rn) ∈ En is the set of positions of n point masses in an euclidean
space E and the equations are

�̈ri = g
∑
j �=i

mj(�rj − �ri)
||�ri − �rj ||3E

·

Here the mi are positive masses, the potential function is

U(q) =
∑
i<j

mimj

||�ri − �rj ||E

and the Riemannian metric is defined by the (constant) scalar product

〈(�r1, �r2, . . . , �rn), (�s1, �s2, . . . , �sn)〉 =
n∑

i=1

mi 〈�ri, �si〉E .

Such equations are known, since Lagrange, to be the so-called Euler-Lagrange
equations of an “action functional”, the Lagrangian action

L(q, q̇)) =
1
2
||q̇||2 + U(q),

which is the difference between the kinetic energy 1
2 ||q̇||2 and the potential

energy −U(q). This means that the solutions of (E2) are exactly the set of
“extremal” curves of the action functional. It is the mathematical formulation
of the so-called “principle of least action”. In the case when U ≡ 0, one gets the
“geodesics” of the Riemannian metric. This origin makes natural the following
“convexity” hypotheses:
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General convexity hypotheses. The configuration space M will be either
an open subset of Rn or the n-torus Tn = Rn/Zn. The theory works with an
arbitrary compact manifold but this hypothesis will allow us to work with global
coordinates. The C∞ (C3 would be enough) Lagrangian L(q, q̇, t)

L : TM × R = M × Rn × R → R

will be assumed to satisfy the “Tonelli” hypotheses which insure the existence
of minimizers under natural hypotheses of coercivity:

1) L is strictly convex in q̇, that is (in the sense of quadratic forms) :

∀q, q̇, t,
∂2L

∂q̇2
(q, q̇, t) > 0;

2) L is superlinear in q̇ :

∀C ∈ R,∃D ∈ R, ∀q, q̇, t, L(q, q̇, t) ≥ C||q̇|| − D,

that is lim||q̇||→∞
L(q,q̇,t)
||q̇|| = +∞ uniformly in (q, t).

1.2 The fundamental computation

The whole structure of classical conservative mechanics is the consequence of a
single computation, the one giving the variation of the action

AL(γ) =
∫ b

a

L(γ(t), γ̇(t), t) dt

of a path γ : [a, b] → M under an arbitrary variation of the path where neither
the end-points nor the interval of variation of the parameter are fixed. Let us
start with a regular (say at least C2) path γ and consider a variation of γ, that
is a family of paths γu : [a(u), b(u)] → M, u ∈] − ε,+ε[, regular with respect to
both variables (u, t) and such that a(0) = a, b(0) = b, γ0 = γ. The infinitesimal
variation is by definition the vector-field on M along γ defined by

X(t) =
∂Γ
∂u

(0, t),

where we used the notation Γ(u, t) = γu(t). It plays the role of a tangent vector
at γ to the “manifold” of paths. More generally, we shall note Xu(t) = ∂Γ

∂u (u, t).
The Xu(t) are the velocity vectors of the “path of paths” u �→ γu. Thinking of
γu(t) as a point q ∈ M depending on u and t, we shall also use the convenient
notation Xu = ∂q

∂u .
Computing the derivative of the function u �→ AL(γu) via an integration by
parts, one gets the following
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Fundamental formula:

d

du

(
AL

(
γu

))
=

d

du

∫ b(u)

a(u)

L (γu(t), γ̇u(t), t) dt

=
∫ b(u)

a(u)

[(
∂L

∂q
− d

dt

∂L

∂q̇

) (
γu(t), γ̇u(t), t

)]
· Xu(t) dt

+
∂L

∂q̇

(
γu(t), γ̇u(t), t

)
· Xu(t)

∣∣∣
t=b(u)

− ∂L

∂q̇

(
γu(t), γ̇u(t), t

)
· Xu(t)

∣∣∣
t=a(u)

+L
(
γu(t), γ̇u(t), t

) db

du
(u)

∣∣∣
t=b(u)

− L
(
γu(t), γ̇u(t), t

)da

du
(u)

∣∣∣
t=a(u)

,

a formula that we shall abreviate in

dAL

du
=

∫ b

a

(
∂L

∂q
− d

dt

∂L

∂q̇

)
· ∂q

∂u
dt +

[
∂L

∂q̇
· ∂q

∂u
+ L

dt

du

]b

a

.

Restricting to variations parametrized by a fixed interval [a, b] and such that
the end-points are fixed, i.e. γu(a) = γ(a) and γu(b) = γ(b), one gets the
classical Euler-Lagrange equations for the extremals, that is the paths γ such
that dAL(γ)X = 0 for any infinitesimal variation X with fixed interval and
fixed end points (i.e. X(a) = 0 and X(b) = 0):

d

dt

(
∂L

∂q̇i

(
γ(t), γ̇(t), t

))
=

∂L

∂qi

(
γ(t), γ̇(t), t

)
, i = 1, · · · , n. (E)

In order to put these equations into a nice “explicit” form, we notice that the
“general hypotheses” we made on L imply that the Legendre mapping

Λ : TM × R = M × Rn × R → (Rn)∗ × M × R = T ∗M × R

defined by

Λ(q, q̇, t) = (p, q, t), p =
∂L

∂q̇
(q, q̇, t),

is a global diffeomorphism (strict convexity for all p of q̇ �→ L(q, q̇, t)−p·q̇ implies
the injectivity of Λ and surlinearity implies that it is proper, hence surjective).
One says that L is globally regular. From this, two important results follow:
1) Regularity of extremals: any extremal is as regular as L. This means
that if we had assumed paths to be only C0 and piecewise C1, and its vari-
ations accordingly, the extremals would still be as regular as the Lagrangian.
This justifies our working only with regular paths. In the case of minimizers,
one could even work with absolutely continuous paths. In fact, small enough
extremals are minimizers and their regularity amounts, as in the case of straight
lines, to the remark that a broken curve can always be shortened by smoothing
the angle.
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2) Existence of the Euler-Lagrange flows: it follows from the fact that Λ
is a diffeomorphism that equations (E) define a (time-dependant if L is) vector-
field XL in TM and X∗

H in T ∗M (the notation X∗
H will be explained below).

For example, in T ∗M :

dpi

dt
=

∂L

dqi
◦ Λ−1(p, q, t),

dqi

dt
= q̇i ◦ Λ−1(p, q, t) (X∗

H)

These vector-fields are intrinsically defined (i.e. they do not depend on the
choice of local or global coordinates on M). Their flows will both be called the
Euler-Lagrange flow.
Indeed, their variational origin implies that the Euler-Lagrange equations (E)
take exactly the same form in any local or global coordinate system. In other
words, the mapping [L]γ : [a, b] → T ∗M defined by

[L]γ(t) =
∂L

∂q

(
γ(t), γ̇(t), t

)
− d

dt

(
∂L

∂q̇

(
γ(t), γ̇(t), t

))
∈ T ∗

γ(t)M

is an intrinsically defined field of covectors tangent to M “along γ” and the
derivative of the action (for variations with fixed interval and fixed end-points)
can be written

dAL(γ) · X =
∫ b

a

[L]γ(t) · X(t) dt.

1.3 The Poincaré-Cartan integral invariant

From the fundamental formula, it follows that, if γu is a family of extremals of
the action AL =

∫
L dt, we get

dAL

du
=

[
∂L

∂q̇
· ∂q

∂u
+ L

dt

du

]b

a

.

We replace now the partial derivative ∂q
∂u (that is ∂Γ

∂u ), deprived of geometric
meaning, by the “effective variation”

d

du

(
Γ
(
u, t(u)

))
=

dq

du
=

∂q

∂u
+

∂q

∂t

dt

du
=

∂q

∂u
+ q̇

dt

du
, t(u) = a(u) or b(u),

of the extremities of the path γu as a fonction of u (figure 1).

Figure 1
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This transforms the expression of d
du (AL(γu)) for a family of extremals into

an identity between differential 1-forms on the interval U of definition of the
parameter u :

dAL = δ∗b �L − δ∗a�L,

where δa, δb : U → T ∗Tn × R denote the mappings

δt(u) =
(

Γ
(
u, t(u)

)
,
∂Γ
∂t

(
u, t(u)

)
, t(u)

)
, t(u) = a(u) or b(u),

and �L is the differential 1-form on TTn × R defined by

�L =
∂L

∂q̇
(q, q̇, t) · dq −

(
∂L

∂q̇
(q, q̇, t) · q̇ − L(q, q̇, t)

)
dt.

Finally, we can simplify the formulas by transporting everything on the cotan-
gent side with the Legendre diffeomorphism Λ. The function on T ∗Tn × R
defined by

H(p, q, t) = p · q̇ − L(q, q̇, t),

where q̇ is expressed in terms of p, q, t via Λ is called the Legendre transform
of L, or the Hamiltonian associated to the Lagrangian L. If �H denotes the
1-form on T ∗Tn × R defined by

�H = p · dq − H(p, q, t)dt,

the formula for the unconstrained variations of extremals becomes

dAL = (Λ ◦ δb)∗�H − (Λ ◦ δa)∗�H .

The 1-form �H is the Poincaré-Cartan integral invariant (tenseur impulsion-
énergie in Cartan’s terminology).
Rewriting the action. As L = p · q̇−H, the action istself can now be written
as the integral of �H = p ·dq−Hdt on the lift Γ∗(t) =

(
∂L
∂q̇ (γ(t), γ̇(t), t), γ(t), t

)
to T ∗Tn × R of the path γ(t) in Tn :

AL(γ) =
∫

Γ∗
�H .

This expression is the basis of Hamilton’s least action principle.
In order to understand where it comes from, it is enough to apply the general
formula for the variation of the action to a family of paths which differ only by
the domain of definition (that is, all the γu are the restrictions to some time
interval of one and the same path).
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1.4 The symplectic structure and Hamilton’s equations

A paraphrase of equations (E) is that a path t �→ γ(t) in Tn is an extremal if
and only if the parametrized curve in T ∗Tn × R

t �→
(

∂L

∂q̇

(
γ(t), γ̇(t), t

)
, γ(t), t

)
= Λ

(
γ(t), γ̇(t), t

)
is an integral curve of the (time-dependant) vector-field

Ξ∗
H = (X∗

H , 1) = Λ∗(XL, 1)

on T ∗Tn × R. The last formula of the preceding section then implies that,
if Ca and Cb are two oriented loops in T ∗Tn × R, such that Cb − Ca is the
oriented boundary of a cylinder C generated by pieces of of integral curves of
Ξ∗

H = (X∗
H , 1), one has∫

Ca

p · dq − H(p, q)dt =
∫

Cb

p · dq − H(p, q)dt .

In Cartan’s terminology, �H = p · dq − Hdt is a relative and complete integral
invariant : relative because its invariance holds only if the integral is taken on
loops Ci, complete because Ca and Cb are not supposed to be contained in slices
where t is constant (i.e. Cb is not supposed to be the image of Ca under the
element ϕb

a of the flow of Ξ∗
H .

Figure 2
Applying Stokes formula to small disks Da et Db contained respectively in the
time slices T ∗Tn×{a} and T ∗Tn×{b} and such that Db = ϕb

a(Da) is the image
of Da under the flow of Ξ∗

H , one gets the

Theorem 1 The time-dependant vector-field X∗
H defined on T ∗Tn, preserves

the standard symplectic 2-form ω =
∑n

i=1 dpi ∧ dqi.

A corollary of the preservation of the symplectic structure is

Theorem 2 (Liouville’s theorem) The flow of the time-dependant vector-
field X∗

H preserves the 2n-form ωn, hence the Lebesgue measure (volume).

Hamilton’s equations. We now deduce the structure of the vector-field X∗
H

(i.e. the structure of the Euler-Lagrange equations (E) seen from the cotangent
side) from the following characterization of integral invariants:
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(K) The 1-form �H is an integral invariant of the vector-field Ξ∗
H if and only

if, at each point (p, q, t) ∈ T ∗Tn ×R, the vector Ξ∗
H(p, q, t) belongs to the kernel

of the bilinear form d�H(p, q, t), i.e. if iΞ∗
H

d�H = 0.

The proof is a consequence of Stokes formula applied to oriented cylinders.
This determines the direction of Ξ∗

H , hence X∗
H , because the kernel of

d(p · dq − Hdt) =
n∑

i=1

[(
dpi +

∂H

∂qi
dt

)
∧

(
dqi −

∂H

∂pi
dt

)]
,

is easily seen to be 1-dimensional and generated at each point (p, q, t) by the
vector

(
−∂H

∂q (p, q, t), ∂H
∂p (p, q, t), 1

)
.

Finally, we get

X∗
H =

(
−∂H

∂q1
, · · · − ∂H

∂qn
,
∂H

∂p1
, · · · ∂H

∂pn

)
.

Hence, when transported in T ∗Tn by the Legendre diffeomorphism, the Euler-
Lagrange equations (E) take the particularly symmetric form of Hamilton’s
equations (or canonical equations) :

dpi

dt
= −∂H

∂qi
, i = 1 · · ·n,

dqi

dt
=

∂H

∂pi
, i = 1 · · ·n .

As the equations depend only on H, this justifies the notation X∗
H . It is fair

to remember that this particularly symmetric form of the equations of classical
mechanics already appear in Lagrange’s works.
Symplectic changes of coordinates. If Φ(p, q) = (a, b) is symplectic, that
is if dp ∧ dq = da ∧ db (or more correctly Φ∗(ω) = ω), the direct image of the
Hamiltonian vector-field X∗

H is the Hamiltonian vector-field X∗
H◦Φ−1 .

The Legendre transform in the convex case. It follows from Hamilton’s
equations that the Legendre transform L �→ H is involutive :

H(p, q, t) = p · q̇ − L(q, q̇, t), p =
∂L

∂q̇
(q, q̇, t),

L(q, q̇, t) = p · q̇ − H(p, q, t), q̇ =
∂H

∂p
(p, q, t).

This symmetry makes it natural to write the correspondance L ↔ H in the
following form, where the variables (q, t) play the role of mere parameters :

p · q̇ = L(q, q̇, t) + H(p, q, t).

The convexity of q̇ �→ L(q, q̇, t) is equivalent to that of p �→ H(p, q, t) and if a
function satisfies the general convexity hypotheses, so does its transform.
Young-Fenchel inequality. For all q, t, q̇, p, the following holds :

p · q̇ ≤ L(q, q̇, t) + H(p, q, t),

with equality if and only if p =
∂L

∂q̇
(q, q̇, t).
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Figure 3 illustrates in dimension 1 this variational definition of the Legendre
transform. One also reads on this figure the interpretation of the transform as
the passage from a punctual to a tangential equation.

Figure 3
Autonomous Lagrangians. These are the Lagrangians L(q, q̇) which do not
depend explicitely on time. It follows from Hamilton’s equations that the (au-
tonomous) vector-field X∗

H preserves the Hamiltonian H. In mechanics, this is
the preservation of the total energy.
An elegant way of proving this property is to notice that the property (K), that
is iΞ∗

H
d(p · dq − Hdt) = 0, is equivalent to

iX∗
H

ω = −dH,

where ω is the symplectic form (in the time-dependant case, one must replace
dH by ∂H = dH − ∂H

∂t ). Hence X∗
H is characterized by the property that, for

any vector field Y on T ∗Tn, one has

ω(X∗
H , Y ) = −dH · Y.

By analogy with the gradient of a Riemannian metric, one calls X∗
H the sym-

plectic gradient of H. The conservation of energy amounts now to the identity

LX∗
H

H = dH(X∗
H) = −ω(X∗

H , X∗
H) = 0.

An important feature of autonomous Hamiltonian systems is that up to the
parametrization, integral curves of the flow of X∗

H are completely determined
by the sole geometry of the level hypersurfaces of H : this is clear on figure 4 :
the direction of gradωH depends only on the direction of gradH and not on its
length or orientation.

Figure 4 (H and K are regular equations of H−1(h) = K−1(k) at x)
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From time-dependant to time-independant. A time-dependant system
can always be embedded into a time-independant one at the expense of adding
dimensions and loosing track of time origin : indeed, the vector-field X∗

K on
T ∗(Tn × R) corresponding to the extended Hamiltonian

K(p, E, q, τ) = E + H(p, q, τ)

restricts to Ξ∗
H = (X∗

H , 1) when one identifies the energy hypersurface K−1(0)
with T ∗Tn × R.
This extension may be useful even if H does not depend on time : because
of the last component equal to 1, the geometry of the energy hypersurface
K ≡ E + H(p, q, t) = 0 determines completely the vector-field Ξ∗

H , hence X∗
H .

The example of classical mechanics. The Lagrangian is the difference

L(q, q̇) =
1
2

q̇ · G(q)q̇ − V (q) =
1
2
g(q)(q̇, q̇) − V (q)

between kinetic and potential energy. The kinetic energy is defined by a Rie-
mannian metric g on M = Tn, that is for each q a positive definite quadratic
form g(q), represented by a symmetric matrix G(q). When there is no poten-
tial V , the extremals are the geodesics of the metric. The Legendre transform
p = G(q)q̇ defines the conjugate momenta (the impulsions) pi of the configura-

tion variables qi, the
∂L

∂qi
are the forces and the Hamiltonian is total energy, i.e.

the sum of kinetic and potential energies

H(p, q) =
1
2

q̇ · G(q)q̇ + V (q) =
1
2
p · G(q)−1p + V (q).

2 Complete integrability and the Hamilton-Jacobi
equation

2.1 The simplest example of a completely integrable sys-
tem : the geodesic flow of a flat torus

The Lagangian L : T ∗T2 = R2/(2πZ)2 × R2 → R is L(q, q̇) = 1
2 ||q̇||2. We shall

write the coordinates q = (ϕ, ψ) and q̇ = (ϕ̇, ψ̇) (figure 5).

Figure 5
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The Euler-Lagrange equation (E) is q̈ = 0 and the extremals, the geodesics of
T2, are the images by the canonical projection of the straight lines of R2 with an
affine parametrization. The Legendre diffeomorphism is defined by p = q and
fixing the energy H(p, q) = 1

2 ||p||2 amounts to fixing the norm of the velocity.
If the energy is different from 0, the energy hypersurface is diffeomorphic to
T3 = (R/2πZ)3. The flow is depicted on figure 6.

Figure 6

The whole phase space TT2 (or T ∗T2) is foliated by the 2-dimensional tori q̇ =
constant (or p = constant) which are invariant under the flow of XL (or X∗

H).
On these tori, the vector-field is constant (the flow is a flow of tranlations) and,
depending on the rationality or irrationality of ψ̇/ϕ̇, the integral curves on the
torus are all periodic or all dense.
Notice that the tori on which the integral curves are dense have a dynamical
definition, as the closure of any of the integral curves they contain. This is not
the case of the “periodic” tori which are a mere union of closed integral curves.

2.2 Opening of a resonance : the geodesic flow of a torus
of revolution

We embed the 2-torus T2 = R2/(2πZ)2 in R3 by the mapping (r < 1)

(ϕ, ψ) �→
(
(1 + r cos ψ) cos ϕ, (1 + r cos ψ) sinϕ, r sinψ

)
.

The image is invariant under rotation around the z-axis. The extremals of the
Lagrangian

L(ϕ, ψ, ϕ̇, ψ̇) =
1
2

(
(1 + r cos ψ)2ϕ̇2 + r2ψ̇2

)
are the geodesics of the induced metric, parametrized proportionnally to arc
length.
The Euler-Lagrange equations are

d

dt

(
1 + r cos ψ)2ϕ̇

)
= 0,

d

dt

(
r2ψ̇

)
= −r sinψ(1 + r cos ψ)ϕ̇2.

The first expresses the invariance under rotation around Oz and can be in-
terpreted as the conservation of the angular momentum around Oz. It is the
analogue of the conservation of the angle θ in the flat case. Fixing the energy is
fixing the velocity and the non-zero energy levels are diffeomorphic to the unit

11



tangent bundle T 1T2 ≡ T3 with global angular coordinates (ϕ, ψ, θ) defined by
choosing as third coordinate the Riemannian angle θ :

ϕ̇ =
cos θ

1 + r cos ψ
, ψ̇ =

sin θ

r
.

The first Euler-Lagrange equation becomes the constancy of the Clairaut inte-
gral :

(1 + r cos ψ) cos θ = constant.

Figures 8 represents the level curves of this function in the plane (ψ, θ). Figure
7 represents the level curves of the function θ, which plays for the flat torus the
role of the Clairaut integral.

Figure 7 Figure 8
In the coordinates (ϕ, ψ, θ), the equations become

dϕ

dt
=

cos θ

1 + r cos ψ
,

dψ

dt
=

sin θ

r
,

dθ

dt
=

− cos θ sinψ

1 + r cos ψ
.

Because of the invariance under rotation, they are independant of ϕ, hence they
admit a direct image in the torus (ψ, θ) which consists in ignoring the first
equation. The same is of course true for the flat metric. The integral curves
of this direct image are contained in the level curves of the Clairaut integral,
which explains the arrows of figures 7 and 8.
In each open band θ ∈ ]− π

2 +kπ, π
2 +kπ[ , k ∈ Z, the flow looks qualitatively like

the flow of a conservative pendulum. The rotations of the pendulum correspond
to integral curves belonging to invariant tori which, as in the flat case, project
biunivocally onto the configuration torus (ϕ, θ) (figure 9),

Figure 9
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while oscillations correspond to integral curves belonging to invariant tori which
project neither injectively nor surjectively but on an annulus whose boundary
is a caustic (figure 10). The latter tori fill the resonance zone.

Figure 10
As in the flat case, in each of these invariant tori, integral curves are either all
periodic or all dense.
A new feature is the existence in each non-zero energy level of 4 isolated periodic
solutions, which correspond to the 2 geodesics defined by the intersection of the
torus with the plane z = 0, each one with two possible directions of velocity.
The inner one (ψ = π, θ = 0 or ψ = π, θ = π) is hyperbolic hence unstable. The
set of integral curves with the same energy which are positively (negatively)
asymptotic to it define the stable (unstable) manifold of this periodic orbit.
These sets happen to coincide here. A corresponding geodesic is represented on
figure 11. Their union is a surface which makes the transition between the two
kinds of invariant tori oustside and inside the resonance zone. The outer one
(ψ = 0, θ = 0 or ψ = 0, θ = π) is elliptic, hence stable. In its energy level, it is
“surrounded” by invariant tori.

Figure 11

We have now two kinds of invariant sets dynamically defined : the invariant tori
with dense integral curves and the stable = unstable manifolds of the hyperbolic
periodic solutions.

2.3 Lagrangian submanifolds as geometric solutions of the
Hamilton-Jacobi equation

In both exemples above, most of the phase space T ∗T2 is foliated by invariant
tori on which the flow of X∗

H can be shown to be a flow of translations in
well chosen coordinates. This is obvious for the flat torus and a consequence
of the invariance under rotation for the torus of revolution. The existence of
such a foliation is a characteristic feature of the so-called completely integrable
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autonomous Hamiltonian systems. The following lemma shows that these tori
are very special :

Definition 3 A submanifold V of T ∗Tn is called isotropic if the pull-back j∗ω
of the canonical symplectic form is identically zero, where j : V → T ∗Tn is the
canonical inclusion.

Lemma 4 If the restriction of the flow of X∗
H to an invariant torus T is a flow

of translations with dense orbits, T is isotropic.

The proof is a consequence of the fact that ω = dλ, where λ =
∑n

i=1 pidqi is the
Liouville form on T ∗Tn. If j∗ω =

∑
i<j aij(u1, · · · , uk)dui ∧ duj in coordinates

u1, · · · , uk on T such that the flow of X∗
H becomes a flow of translations Φt(u) =

u + tv, the fact that Φ∗ω = ω implies that the functions aij are constant along
the integral curves contained in T (this would not be the case if dΦt(u) was not
the Identity). As these integral curves are dense, the aij are constant, hence
equal to 0 because j∗ω = d(j∗λ) is a coboundary.
Notice that in the completely integrable cases that we studied above, an easy
argument of continuity implies that all invariant tori (and not only the ones
with dense integral curves), and also the stable = unstable invariant manifolds
of the hyperbolic periodic solutions, share the property j∗ω = 0. This property
will play a fundamental role in the sequel :

Definition 5 (Definition-Proposition) The dimension of an isotropic sub-
manifold of T ∗Tn is at most n. If it is equal to n, the submanifold is called
Lagrangian.

The bound on the dimension is an exercise in symplectic algebra : at each point
(p, q), the bilinear form ω(p, q) is non degenerate, hence an isotropic subspace
(i.e. a linear subspace contained in its ω-orthogonal) is at most of dimension
2n/2 = n.
Each invariant Lagrangian submanifold that we found in the integrable examples
is contained in a single energy level. This is a consequence of the conservation
of energy when the submanifold is the closure of a single solution and the others
follow by continuity. This property has a very important converse :

Proposition 6 . let H : T ∗Tn → R be an autonomous Hamiltonian. Every
Lagrangian submanifold V of T ∗Tn contained in a regular energy level H−1(h)
is invariant under the flow of X∗

H .

The proof is again an exercise in symplectic algebra : because of the maximality
of the dimension of V among isotropic submanifolds, it is enough to show that
at each point m ∈ H−1(h), the vector X∗

H(m) belongs to (in fact generates) the
kernel of i∗hω(m) = d(i∗hλ)(m), where ih is the canonical injection of H−1(h) in
T ∗Tn and λ = p · dq is the Liouville form. Indeed, if X∗

H(m) was not contained
in TmV , the linear subspace generated by X∗

H(m) and TmV would be isotropic
of dimension n + 1, a contradiction.
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We have already proved this when X∗
H |H−1(h) is replaced by Ξ∗

H , H−1(h) is
replaced by K−1(0) ≡ T ∗Tn × R ⊂ T ∗(Tn × R), and the 1-form i∗hλ is replaced
by the Poincaré-Cartan integral invariant p · dq − Hdt. As this is the only case
that we need, we leave the general assertion as an exercise.
Remark. A Hamiltonian flow is a very particular one as it preserves the sym-
plectic 2-form ω, hence in particular the volume. Its restriction to a Lagrangian
submanifold V , on the contrary, does not satisfy any a priori constraint : every
vector-field X on V is the restriction of a Hamiltonian flow defined on a neigh-
borhood of V . The simplest example is obtained when V ≡ Tn is the zero-section
p = 0 of T ∗Tn : if X(q) is vector-field on V , the Hamiltonian H(p, q) = p ·X(q)
is such that the restriction of X∗

H to V coincides with X (but it is not convex
in p !).
Lagrangian graphs and the Hamilton-Jacobi equations. All invariant
tori of the geodesic flow of a flat torus are graphs of a mapping q �→ p(q), that
is sections of the projection (p, q, ) �→ q. For the torus of revolution, only those
not contained in the resonance zone are graphs in the same way. The invariant
manifolds of the hyperbolic periodic solutions are the union of two pieces, each
of which is a graph.

Lemma 7 If the Lagrangian submanifold V of T ∗Tn = (Rn)∗ × Tn is a graph,
it is the graph of a mapping of the form p = a+ds(q), where a = (a1, · · · , an) ∈
(Rn)∗ and s : Tn → R.

The proof is an easy calculation : the graph V of the mapping q �→ p(q) is
Lagrangian if and only if the 2-form

∑n
i=1 dp(q) ∧ dq =

∑
i,j

∂pi

∂qj
(q)dqj ∧ dqi on

Tn is identically 0. But this means that ∂pi

∂qj
(q) = ∂pj

∂qi
(q) for all i, j. This implies

that there exists a function σ : Rn → R such that for all i, pi(q) = ∂σ
∂qi

(q). Hence
there exist constants ai (the periods of σ) and a function s : Tn → R such that
for all i, pi(q) = ai + ∂s

∂qi
(q).

Corollary 8 A Lagrangian graph V contained in the energy level H−1(h) of
an autonomous Hamiltonian is of the form {(p, q), p = a + ds}, where s is a
solution of the partial differential equation H(a + ds(q), q) = h.

Definition 9 The time-independant Hamilton-Jacobi equations associated to
the Hamiltonian H(p, q) are the equations of the form H(ds(q), q) = h. The
time-dependant Hamilton-Jacobi equation associated to the Hamiltonian H(p, q, t)
is the equation ∂S

∂t (q, t) + H(∂S
∂q (q, t), q, t) = 0. After identification of K−1(0)

with T ∗Tn×R, it is nothing but the time-independant Hamilton-Jacobi equation
K(dS(q, t), q, t) = 0, where K is defined by K(p, E, q, τ) = E + H(p, q, τ).

The modified Hamiltonian and Lagrangian. According to the above
Corollary, each Lagrangian graph contained in an energy level of an autonomous
Hamiltonian is the graph of the derivative of a solution of the Hamilton-Jacobi
equation associated to a Hamiltonian

Ha(p, q) = H(a + p, q)
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where a ∈ (Rn)∗ should actually be thought of as a cohomology class in H1(Tn, R).
Such a Hamiltonian is easily seen to be the Legendre transform of the Lagrangian

La(q, q̇) = L(q, q̇) − a · q̇ = L(q, q̇) −
n∑

i=1

aiq̇i,

which satisfies the same hypotheses as the original one.
A remark which will play a fundamental role in the next section is that, while
the solutions of the Euler-Lagrange equations associated to La are independant
of a, the minimizing ones do indeed depend on a. The simplest example is the
geodesic flow of the flat torus : adding a mass to better distinguish between the
tangent and cotangent sides, let us take L(q, q̇) = m

2 ||q̇||2. The Lagrangian La

can be written

La(q, q̇) =
m

2
||q̇||2 − a · q̇ =

m

2
||q̇ − 1

m
a||2 − ||a||2

2m
,

and the minimizers are immediately seen to be such that q̇ = 1
ma, that is p = a.

We have “controlled” (the word is from Kaloshin) the velocity (or momentum)
of the minimizers.

2.4 Complete solutions and complete integrability

Let us suppose that to each a ∈ (Rn)∗ we can associate in a differentiable way
a solution ua of the equation

H(a + dua(q), q) = α(a),

where α is a smooth function. Setting S(a, q) = a · q + ua(q), this is equivalent
to

H

(
∂S

∂q
(a, q), q

)
= α(a).

Definition 10 Let f
(

∂S
∂q , q, S

)
= 0 be a first order partial differential equa-

tion, in a domain of R2n+1 (coordinates p, q, z) where at least one of the partial
derivatives ∂f

∂pi
(p, q, z) does not vanish. A (local) complete solution of the equa-

tion is a C1 map S(α, q) form an open subset O of R2n to R, such that the map
from O to R2n+1

(α, q) �→
(

∂S

∂q
(α, q), q, S(α, q)

)
is a (local) paramerization of the hypersurface of R2n+1 whose equation is f = 0.

If ∂2S
∂a∂q is invertible, the family f((a, q, t) = S(a, q) − α(a)t is called a complete

solution of the time dependant Hamilton-Jacobi equation ∂f
∂t + H(∂f

∂q , q) = 0.
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The function S is of course not Zn-periodic in q, that is not defined on Tn,
but its derivative is. Hence S can be used as the generating function of the
symplectic transformation

Φ : Rn × Tn → Rn × Tn, Φ(p, q) = (a, b),

defined by

p =
∂S

∂q
(a, q) = a +

∂ua

∂q
(q), b =

∂S

∂a
(a, q) = q +

∂ua

∂a
(q).

We have dp ∧ dq + db ∧ da = d2S = 0, hence da ∧ db = dp ∧ dq, which is the
preservation of the canonical symplectic form. This implies that in the new
coordinates (a, b), the Hamiltonian vector-field X∗

H becomes X∗
H◦Φ−1 , that is

X∗
α. As α does not depend on the variables b, Hamilton’s equations take the

particularly simple completely integrable form

dai

dt
= 0,

dbi

dt
=

dα

dai
(a),

which is similar to the one defining the geodesic flow of the flat torus.
This is not astonishing. If for each a there exists a unique solution ua which is
differentiable, the collection of the graphs of these functions defines a foliation of
the phase space by Lagrangian tori. The existence of such a foliation implies in
turn the existence of action-angle coordinates in which the flows on the invariant
tori are linear.
In the last two sections, we briefly describe what features of this integrable
picture do persist when the Hamiltonian is perturbed. It turns out that dy-
namically defined invariant objects can be proved to exist for the perturbed
Hamiltonian :
1) invariant Mather sets, hyperbolic in a weak sense, to which are attached
semi-invariant sets made of pieces of their stable or unstable manifolds. These
should be interpreted as torn remnants of invariant tori;
2) KAM invariant tori, which are the continuation of those invariant tori of the
integrable flow which, not only are densely filled by any of their trajectory (and
hence dynamically defined) but are so in a sufficiently uniform way.

3 Remnants of complete integrability (1) : weak
KAM solutions

A non-zero energy surface of the completely integrable geodesic flows that we
studied is filled, possibly up to a singular set of codimension one, by invariant
Lagrangian tori. Moreover, the connected components of the complement of
the singular set are symplectically diffeomorphic to T ∗Tn by a diffeomorphism
which transforms the tori into Lagrangian graphs (we did not prove that for
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the resonance zone but it is true). Finding invariant tori under X∗
H which are

Lagrangian graphs in the energy level H−1(h) of an autonomous Hamiltonian
H is the same as finding GLOBAL solutions of the Hamilton-Jacobi equations
associated to the Hamiltonians Ha (recall that the invariant tori are the graphs
of the derivative of such global solutions). Global solutions do not exist in gen-
eral but the K.A.M. theory, which will be quickly described in section 4), asserts
that a Cantor set of global solutions exists when H is a small Ck-perturbation of
a completely integrable Hamiltonian (k not too small). On the other hand, the
weak K.A.M. theorem of Fathi asserts that under the Tonelli convexity hypothe-
ses and without any condition of proximity to a completely integrable Hamil-
tonian, global solutions u exist in a weak sense, that is as Lipshitz functions
which are viscosity solutions of the equation in the sense of Lions, Papanicolaou,
Varadhan (who had already proved the theorem in the case of the torus). In
the non-regular case, the graphs of the derivatives of these weak solutions are
semi-invariant sets made of pieces of stable (resp. unstable) manifolds of weakly
hyperbolic invariant sets, the so-called Mather sets. They can be thought of as
the (generally) broken remnants of the invariant tori of the integrable case.

Minimization of the action plays a central role in weak KAM theory. To give
a flavor of its role, let us give another look at the trivial case of the flat torus :
lifted to the universal cover (the flat plane), the geodesics become staight lines
which form parallel families corresponding to Lagrangian submanifolds of the
cotangent bundle. In addition to the local minimizing property which defines
them, they do minimize the length (or the action) globally in R2, that is between
any two of their points. In his classical 1932 work on the geodesic flow of an
arbitrary metric on the 2-torus, G. Hedlund showed the existence in complete
generality of a kind of “integrable skeleton”, made of geodesics which have the
same property of minimizing the length between any two points of their lift to
the universal cover R2. For the torus of revolution, the “globally minimizing”
geodesics are the ones deprived of caustics, that is the ones which do not belong
to the resonance zone. In the general case, these geodesics form families which
define invariant sets called to day Aubry-Mather sets, which generalize the fam-
ilies of parallel straight lines of the flat case. They are the first example of non
trivial Mather sets. In the case of more degrees of freedom, the Mather sets
are defined as the union of the supports of probability measures invariant under
the Lagrange flow and minimizing the averaged action. An example already
given by Hedlund himself shows that the step from minimizing trajectories to
minimizing measures is a necessary one.
The basic technical tools are Tonelli and Weierstrass theories, which give respec-
tively the existence and the regularity of curves which minimize the Lagrangian
action under the fixed-ends condition. In the autonomous case, the weak KAM
solutions can all be obtained by appropriately truncating the image of a La-
grangian manifold under the Hamiltonian flow when the time grows indefinitely.
This makes the whole theory a vast generalization of the classical λ-lemma.
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3.1 A minimizing property of the local solution of the
Cauchy problem for the Hamilton-Jacobi equation

The geometric solution. We shall be at first interested in the time-dependant
equation. Solving the Cauchy problem with a function u : Tn → R as initial data
at a given time t0, amounts to understanding the evolution of the (Lagrangian)
graph of du(q) under the flow of X∗

H . The solution is contained in the figure 12
which explains how singularities (caustics) do occur which prevent the existence
of a global solution as a function but allow for the existence of a “multiform”
solution. The graph of the derivative of this multiform solution is the Lagrangian
submanifold of K−1(0) ≡ T ∗Tn×R ⊂ T ∗(Tn×R) which is defined as the union
of the images of the graph of du(q) under the flow of Ξ∗

H .

Figure 12

Characteristics. Let S(q, t) be a geometrical (i.e. a priori multivalued) solu-
tion. The projections on space-time Tn × R of the integral curves of Ξ∗

H con-
tained in the “graph” GS ⊂ T ∗Tn × R of the space derivative (q, t) �→ ∂S

∂q (q, t)
are called the characteristics associated to S. If we identify T ∗Tn × R with
K−1(0), where K is the extended Hamiltonian on T ∗(Tn × R), GS becomes a
Lagrangian submanifold of T ∗(Tn × R). The characteristics are the graphs of
the solutions t �→ q(t) of the multivalued differential equation

dq

dt
=

∂H

∂p

(
∂S

∂q
(q, t), q, t

)
:= gradLSt(q), (C)

which, by the Legendre diffeomorphism, is equivalent to ∂S
∂q (q, t) = ∂L

∂q̇ (q, dq
dt , t).

The multivaluedness is a reflection of the fact that beyond the caustic, several
characteristics pass through a given point (q, t) of space-time.

The Weierstrass theory. We consider now a (true, univalued) solution S(q, t),
defined on a certain interval of time [t0, t1], of the time-dependant Hamilton-
Jacobi equation ∂S

∂t + H
(

∂S
∂q , q, t

)
= 0. The differential equation (C) is now

univalued and the graphs of its integral curves, i.e. the characteristics associated
to S, form a field of extremals. Let c : [t0, t1] → Tn be a segment of extremal
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whose lift to T ∗Tn × R, C∗(t) =
(

∂L
∂q̇

(
c(t), ċ(t), t

)
, c(t), t

)
, is contained in the

Lagrangian graph GS defined by the equation p = ∂S
∂q (q, t).

Proposition 11 The segment of extremal c minimizes the action among abso-
lutely continuous paths γ : [t0, t1] → Tn with the same extremities, whose graph
remains in the domain of definition of S.

The idea of the proof is to lift to Γ∗(t) =
(

∂S
∂q (γ(t), t), γ(t), t

)
⊂ GS any curve

γ(t) that we want to compare to c(t) (figure 13) and to use the fact that GS is
exact Lagrangian, to get

AL(c) =
∫

Γ∗
(p · dq − H(p, q, t)dt).

Indeed, on GS , we have p · dq − H(p, q, t)dt = dS(q, t) because p = ∂S
∂q (q, t) and

H(p, q, t) = −∂S
∂t (q, t). This implies that

AL(c) =
∫

C∗
(p · dq − H(p, q, t)dt) =

∫ t1

t0

d
(
S(q(t), t)

)
=

[
S

(
q(t), t

)]t1

t0

does not depend on the path on which one integrates as long as this path is
contained in GS .
The Young-Fenchel inequality then implies that the difference of the actions

AL(c) −AL(γ) =
∫ t1

t0

[
π(t) · γ̇(t) − H

(
π(t), γ(t), t

)
− L

(
γ(t), γ̇(t), t

)]
dt,

where π(t) = ∂S
∂q

(
γ(t), t

)
, is the integral of an everywhere ≤ 0 function.

Figure 13 (in T ∗Tn × R ≡ K−1(0))
Corollary. The solution S(q, t) of the time-dependant Hamilton-Jacobi equa-
tion defined on the (small enough) interval [t0, t] with initial condition S(q, t0) =
u(q) is given by :

S(q, t) = min
γ,γ(t)=q

[
u(γ(t0)) +

∫ t

t0

L
(
γ(s), γ̇(s), s

)
ds

]
,
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where the min is taken over all absolutely continuous paths γ : [t0, t] → Tn such
that γ(t) = q.
The proof is the same as for the Proposition : c is replaced by the unique
extremal whose graph is the characteristic associated to S such that c(t) = q
and γ by a path defined on the interval [t0, t] and such that γ(t) = q. Then, as
above,

AL(c) =
∫

C∗
(p · dq − Hdt) =

∫
∆∗

(p · dq − Hdt),

where ∆∗ is composed of the lift to GS of a path in Tn × {t0} joining c(t0) to
γ(t0), followed by the lift Γ∗ of γ (figure 14). One concludes because the part
of GS above t = t0 coincides with the graph of du.

Figure 14

3.2 Global Lipschitz solutions of the Hamilton-Jacobi equa-
tion : the Lax-Oleinik semi-group

The Lax-Oleinik semi-group (autonomous case). The solution of the
Cauchy problem defined above is in general only local in time : caustics appear
as soon as the extremals in the corresponding field start intersecting each other.
We now globalize it at the expense of regularity by taking in the global situation
the same formula as in the local one : this amounts to cutting the swallowtails of
the graph of the multiform function S. By keeping only for each (q, t) the lowest
of the values of S(q, t), one obtains the (discontinuous) graph of a Lipschitz
solution of the Hamilton-Jacobi equation (figure 15) .

Figure 15
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An astonishing feature of the result is that we get a global (weak) solution of
the Cauchy problem even when the initial condition u(q) is only continuous.
If we approach u by C1 functions un, the behaviour of the derivatives dun

may become wild as n tends to infinity but still the truncated global solutions
corresponding to initial conditions un have a nice limit.
The complete statement (in the autonomous case) is the following :

Theorem 12 (Existence of the Lax-Oleinik semi-group) 1) The formula
(for t ≥ 0) (

T−
t u

)
(q) = inf

γ

[
u
(
γ(s)

)
+

∫ t

0

L
(
γ(s), γ̇(s)

)
ds

]
,

where the inf is taken over all absolutely continuous paths γ : [0, t] → Tn such
that γ(t) = q, defines a semi-group {T−

t }t≥0 of mappings from the space of
continuous functions C0(Tn, R) to itself;
2) For all q, t, there exists a minimizing extremal γ : [0, t] → Tn such that
γ(t) = q and

(T−
t u)(q) = u(γ(0)) +

∫ t

0

L
(
γ(s), γ̇(s)

)
ds; (∗)u,q,t

3)||T−
t u − T−

t v||0 ≤ ||u − v||0;
4) T−

t (u + c) = (T−
t u) + c;

5) At each point where S(q, t) = (T−
t u)(q) has a derivative, it is a true solution

of the time-dependant Hamilton-Jacobi equation;

6) The same is true for the semi-group {T+
t }t≥0 defined by

(T+
t u)(q) = sup

γ

[
u
(
γ(0)

)
−

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds

]
,

where the sup is taken over absolutely continuous paths [−t, 0] → Tn such that
γ(−t) = q.

We refer to [C1] for a sketch of the proof and to [Fa] for the details. The main
tools are
1) the existence, thanks to our convexity hypotheses, of minimizing extremals
among absolutely continuous curves with given end-points (Tonelli’s theorem);
2) the regularity of minimizing extremals, based on the minimizing property of
small enough extremals and on their uniqueness (Weierstrass local theory);
3) an easy but fundamental lemma of a priori compactness asserting that there
is an a priori bound on the velocities of a minimizing extremal, which depends
only on the length of its interval of definition.
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Differentiability of T−
t u and the unicity of characteristics. The point

(q, t) is a point of differentiability of S(q, t) = (T−
t u)(q) if and only if it is an

endpoint of a unique characteristic.
Figure 16 illustrates this :

Figure 16

3.3 Fathi’s weak KAM solutions and Aubry Mather-Mañé
invariant sets as substitutes of invariant tori

Following Fathi, we deduce from the existence of the Lax-Oleinik semi-group
the existence of weak KAM solutions (in fact viscosity solutions) of the time-
independant Hamilton-Jacobi equation H(du(q), q) = c for a well-chosen c
(equal to α(0) in Mather’s notation).
For this, one notices that the following properties are equivalent to each other:

(1) ∃c, H(du(q), q) = c

(2) ∃c,
∂S

∂t
+ H

(∂S

∂q
, q

)
= 0, where S(q, t) = u(q) − ct;

(3) u is a fixed point of the semi-group u �→ T−
t u + ct;

(4) u represents a fixed point of T−
t u in C0(Tn, R)/R.

One then proves the existence of a fixed point by a Leray-Shauder type fixed
point argument. To conveniently state the theorem, we introduce the following
definitions :
Domination. Given a real number c, we say that the function u : Tn → R is
dominated by L+ c (and we write u ≺ L+ c) if for any interval [a, b], a ≤ b and
any absolutely continuous curve γ : [a, b] → Tn we have

u
(
γ(b)

)
− u

(
γ(a)

)
≤

∫ b

a

L
(
γ(s), γ̇(s)

)
ds + c(b − a).
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One can prove that u ≺ L + c if and only if u is locally Lipschitzian and
H(du(q), q) ≤ c at each point q where u has a derivative.

Calibration. We suppose that u ≺ L + c. The curve γ : [a, b] → Tn is said to
be (u, L, c)-calibrated if

u
(
γ(b)

)
− u

(
γ(a)

)
=

∫ b

a

L
(
γ(s), γ̇(s)

)
ds + c(b − a).

Weak KAM theorem. Let L(q, q̇) be a time-independant Lagrangian on TTn

of class (at least) C3, which satisfies the general convexity hypotheses. There
exist Lipschitz functions u−, u+ : Tn → R and a constant c ∈ R (the Mañé’s
critical energy) such that
1) u−, u+ ≺ L + c,
2) ∀q ∈ Tn, there exists γq

− :] − ∞, 0] → Tn and γq
+ :]0,+∞] → Tn with

γq
−(0) = γq

+(0) = q, such that, for all t ≥ 0,

u−(q) − u−(γq
−(−t)) = ct +

∫ 0

−t

L
(
γ(s), γ̇(s)

)
ds,

u+(γq
+(t)) − u+(q) = ct +

∫ t

0

L
(
γ(s), γ̇(s)

)
ds,

3) u± satisfies H(du±(q), q) = c at each point q where it has a derivative.

Properties of weak KAM solutions. u± are not necessarily unique (the
simplest example is the “two-fold covering” of the pendulum).
The following property is the analogue of the one that we discussed for T−

t u :
the discontinuities of the derivative of a weak KAM solution are the intersection
points of at least two rays (characteristics).

Proposition 13 (differentiability and unicity of calibration) A weak KAM
solution u− has a derivative at q if and only if there exists a UNIQUE (L, c, u−)-
calibrated path γq

− :]−∞, 0] → Tn such that γq
−(0) = q (in other words, there is

a unique characteristic which arrives at q).

A consequence is that u− is differentiable at every point of a characteristic
except possibly at its extremity. This comes from the fact that, because they
are necessarily regular, two characteristics cannot meet except at a common
end-point.

Invariant measures and unicity of Mañé’s critical energy. Let ML be
the set of all Borel probability measures µ on TM which are invariant under
the flow of XL. If (qs, q̇s) = ϕs(q0, q̇0) ∈ TTn is an extremal, i.e. an integral
curve of XL, integrating the domination inequality against an invariant measure
µ ∈ ML, we get∫

TT n

(
u−(qt) − u−(q0)

)
dµ ≤

∫
TT n

dµ

[∫ t

0

L(ϕs(q0, q̇0))ds + ct

]
.
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Dividing both sides by t and using the invariance of µ we get, when t → ∞,

c = − inf
µ∈ML

∫
Ldµ.

Minimizing measures can indeed be constructed which are supported in the α-
limit sets of the minimizing extremals γq

− (figure 17) or the ω-limit sets of the
γq
+ : let tn be a sequence of times tending to +∞, µn be defined by

µn(f) =
1
tn

∫ 0

−tn

f
(
γq
−(s), γ̇q

−(s)
)
ds

and µ be the weak limit of a subsequence of the µn’s. One easily checks that∫
Ldµ = −c.

Figure 17

Mañé’s critical energy and Hill’s region for classical systems. When
L(q, q̇) = 1

2 ||q̇||2 − V (q), c = maxq V (q), i.e. the value of the energy under
which the Hill’s region (projection on Tn of an energy level) is not the whole
configuration space Tn.

The fundamental Lipschitz estimates. A well known property of solutions
of the Hamilton-Jacobi equation is that as soon as they are of class C1, their
derivative is automatically Lipshitz. Classical examples are the so-called Buse-
man functions, that is the solutions of the time independant Hamilton-Jacobi
equation associated to the geodesic flow of the flat metric on Rn :

||gradu|| = 1.

Such functions cannot be C1 without being C1,1. Another one is Birkhoff’s the-
orem which asserts that a homologically non trivial continuous curve invariant
under a “monotone twist map” of the annulus is necessarily a Lipschitz graph
(see [Mo] and section 3.4). The following proposition gives a general statement
of this kind (for a sketch of proof, see [C1] and for a complete one, see [Fa]) :

Proposition 14 The following assertions are equivalent :
1) u : Tn → R is of class C1 and belongs to S−;
2) u : Tn → R is of class C1 and belongs to S+;
3) u : Tn → R belongs to S− ∩ S+;
4) u : Tn → R is of class C1 and ∃c ∈ R such that H(du(q), q) = c.
IN ALL CASES, du(q) IS LOCALLY LIPSCHITZ (i.e., u is not only C1 but
C1,1).
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The Mather set. The graph of the derivative of a weak KAM solution is
semi-invariant under the flow of XH . Mather’s theory shows that it is, in a
generalized sense, made of pieces of invariant manifolds of a ”weakly hyperbolic”
fully invariant set, the (image under the Legendre diffeomorphism of the) Mather
set :

Definition 15 The Mather set M̃0 ⊂ TTn is the closure of the union of the
supports of all invariant Borel probability measures which minimize

∫
Ldµ, that

is such that
∫

Ldµ = −c, where c is the Mañé energy. M̃0 is invariant under
the flow ϕt of XL.

Integrating the inequality u ≺ L + c against an invariant measure, one gets

Proposition 16 (universal calibration) Let (q, q̇) ∈ M̃0 and let γ(t) be the
extremal with initial conditions (q, q̇), that is ϕt(q, q̇) = (γ(t), γ̇(t)) ∈ M̃0.
Then, for any u ≺ L + c and any t ≤ t′, γ|[t,t′] is (L, c, u)-calibrated.

As such a u exists (for instance a weak KAM solution), this proposition implies
that the extremals contained in the projection M0 of M̃0 on Tn are minimizing.

Finally, we state without proof the generalization of the theorem of Birkhoff on
Lipschitz graphs that we just recalled :

Theorem 17 (The structure theorem) The Mather set M̃0 ∈ TTn is a
Lipschitz graph over its projection M0 in Tn. Its image under the Legendre
diffeomorphism Λ : TTn → T ∗Tn (which is well defined in the autonomous
case) is contained in the critical energy level H−1(c).

Conjugate weak KAM solutions. Weak KAM solutions are determined by
their restriction to the Mather set M0. This allows to pair weak KAM solutions
u+, u− so that the graphs of their (almost everywhere defined) derivatives play
the role of (generalized) stable and unstable manifolds to M̃0.

Figure 18 the trivial case of the pendulum
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Convergence of the Lax-Oleinik semi-group in the autonomous case.
This is a kind of a generalized λ-lemma, which states that (in the autonomous
case only), for any u ∈ C0(M, R), the limits when t → ∞ of T−

t +ct and T+
t −ct

exist and are weak KAM solutions u− or u+. The following picture illustrates
this theorem in the simple case of a constant function u and the flow of the
pendulum.

Figure 19 (convergence of the semi-group for the pendulum)

Mather’s alpha function as an averaged Hamiltonian.
Using a control, that is replacing L(q, q̇) by La(q, q̇) = L(q, q̇)−a·q̇, one defines a
critical energy ca and a Mather set Ma. We noted already that, if replacing L by
La does not change the Euler-Lagrange equations, it does change the minimizers
of the action integral.

Definition 18 (Definition-Proposition) Mather’s alpha function is the func-
tion

α : H1(Tn, R) ≡ (Rn)∗ defined by α(a) = ca.

It is convex and superlinear.

It can be checked that for any compact manifold M , α is naturally defined on
the first cohomology group of M , that is : the Mañé energy c(L − �) depends
only on the cohomology class of the closed 1-form �.
In the case of the torus, we can interpret α as an averaged Hamiltonian in the
following sense : let us pretend that to each a ∈ (Rn)∗ we can associate in
a differentiable way (even continuity is false because of non-unicity !) a weak
KAM solution ua. At each point q where ua is differentiable, we have

H(a + dua(q), q) = α(a),

and, as we explained in section 2.4, the function S(a, q) = a · q + ua(q) would
be the generating function of a coordinate change leading to action-angle coor-
dinates a, b which transforms the system into the particularly simple completely
integrable form

dai

dt
= 0,

dbi

dt
=

dα

dai
(a).
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This is not astonishing. If for each a there exists a unique weak KAM solution
ua which is differentiable, the collection of the graphs of these functions defines
a foliation of the phase space by Lagrangian tori.
In general, this foliation is neither uniquely nor eveywhere defined but neverthe-
less, it can be thought of as a kind of (non uniquely defined) integrable skeleton
made of KAM tori which are graphs (if they exist) and (non uniquely defined)
pieces of stable and unstable manifolds of “weakly hyperbolic” Mather sets. In
the case of the geodesic flow of a torus of revolution, this amounts to forgetting
the whole (open) resonance zone. In the case of a monotone twist map (see
section 3.4), we get the union of the invariant curves and (non uniquely defined)
pieces of stable and unstable manifolds of the Aubry-Mather sets.

Mather’s theory of minimal measures as a generalization of Hedlund’s
theory. The following theorem of Mather relates the Mather sets and the T̃n-
minimizers, that is the extremals which, when lifted to the universal covering Rn

of Tn, minimise the action integral between any two of their points. They are
the natural generalization to higher dimensions of Hedlund’s class A geodesics
on the 2-torus.

Theorem 19 For any a ∈ (Rn)∗, an extremal which is contained in Ma is a
T̃n-minimizer.

This does not mean that any vector ρ can be the rotation vector of a T̃n-
minimizer. In fact, if Hedlund had shown that for any Riemannian metric on
the 2-torus and any real number ρ, there exist class A geodesics which, in the
universal covering R2, stay at a bounded distance of a straight line of slope ρ and
hence have the rotation number ρ, he had also given an example of a Riemannian
metric on T3 for which class A geodesics exist only for three rotation vectors.
Indeed, to achieve a rotation vector, one needs in general to take averages on a
set of extremals, not on a single one. This example was generalized by Bangert.

Gaps ? Mather sets can in general have gaps, which means that they do not
cover the whole of Tn. To get an idea of why this is so, one can notice that
if we deform the flat metric by making a localized bump, T̃n-minimizers will
avoid the bump to stay minimizing and this will create a gap. On the other
hand, the KAM theorem, described in section 4, will tell us that such gaps do
not exist if the perturbation is small enough and the Mather set in question is
a perturbation of an invariant torus of the flat geodesic flow, which is filled by
the solutions in a “sufficiently uniform way”.

3.4 History: monotone distortions of the annulus

The planar circular restricted 3-body problem is the model of a non-integrable 2
degrees of freedom autonomous Hamiltonian system whose study, for well chosen
values of the energy (the Jacobi constant) can be completely reduced to the
study of the Poincaré return map of the flow in a surface of section, which is an
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annulus. The Hamiltonian character of the flow translates in the preservation of
the area by the return map while the convexity of the Hamiltonian is translated
into the monotone twist property of the map (see [Mo]). The equations are
similar to those of the geodesic flow on a slightly deformed 2-sphere, a fact
of which Poincaré was well aware. Such area preserving twist maps of the
annulus were intensely studied by Birkhoff. In the eighties, Serge Aubry and
John Mather independently discovered the existence of the so-called Aubry-
Mather invariant sets which are action-minimizing and replace in some sense
the invariant curves which exist in the integrable case (see [Mo, C2]). These
invariant sets share with the invariant curves the property of being Lipschitz
graphs of functions on the circle (for the invariant curves, this property was
discovered by Birkhoff, see [H]). It was then pointed out by Jurgen Moser that
Aubry and Mather’s works had considerable overlap with Gustav Hedlund’s
paper in 1932 which studied arbitrary metric on T2. All the theories coincide
when the geodesic flow of the torus admits a global surface of section, which is
for instance the case when the metric is a small perturbation of the flat metric or
more generally of a metric whose geodesic flow is integrable. Also, it was shown
by Moser that a monotone twist map is always the Poincaré return map of the
Euler-Lagrange flow of a periodic Lagrangian satisfying the general convexity
hypotheses [Mo]. Finally, the weak KAM theory extends to such maps and puts
both Hedlund’s and Aubry-Mather’s works in a common framework.

4 Remnants of complete integrability (2) : KAM
tori

In this section, M is still supposed to be the n-torus. What is the structure of a
typical Mather set ? The KAM theory gives a partial answer for Hamiltonians
close enough in Ck topology (k big enough, say ≥ 4) to a completely integrable
one. It asserts that if some non-degeneracy hypotheses are satisfied (and it is
the case for the convex Hamiltonians that we are considering) there exists a
big (in the sense of measure theory) set of “regular” Mather sets : these are
invariant tori which are each the closure of any orbit they contain (i.e. which
are “dynamically defined”). In other words, in the convex case where Mather’s
theory applies, the KAM theorem can be viewed a posteriori as a regularity result
about Mather sets.
From the resolution above of the Cauchy problem for Hamilton-Jacobi equa-
tions, it is clear that looking in this purely geometric way for a solution which is
at the same time global and regular is hopeless. Writing the equation in global
coordinates q ∈ Rn, one looks indeed for a geometric solution which is not only
caustic-free (that is the graph of the derivative, up to a constant, of a univalued
function) but also Zn-periodic in q. It is Kolmogorov who first understood that
instead of solving the Cauchy problem one must specify a priori the dynamics
on the Lagrangian manifold (torus) whose existence is seeked for.
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4.1 Small denominators : the example of flows on the
torus

For the completely integrable Hamiltonian H(a, b) = α(a), each torus Tâ of
equation a = â (where â = (â1, . . . , ân) and the âi are constants) is invariant
under the Hamiltonian flow and the restriction to such a torus of the vector-field
X∗

H is constant:

a = â,
dbi

dt
=

∂α

∂ai
(â) = ω̂i.

Exercise: each integral curve on Tâ is dense in Tâ if and only if the frequencies
ω̂i are non resonant, in the sense that

∀k = (k1, . . . , kn) ∈ Zn,

n∑
i=1

kiω̂i = 0 implies k = 0.

As Poincaré had already noticed, an invariant 2-torus filled in by a family of
periodic trajectories is nothing but the collection of these trajectories, and is
usually destroyed by a perturbation. The opening of a resonance that we noticed
when replacing the flat torus by a torus of revolution can be turned into an
example of this. What remains is a (usually) finite set of periodic trajectories,
the invariant manifolds of the “hyperbolic ones” containing the graphs of the
derivatives of weak KAM solutions. The higher dimensional situation is more
complicated but the underlying intuition is the same. One could think that for
a torus Tâ to resist to a small perturbation the density of the trajectories would
be enough but it is not so. The original KAM theorem asserts that there is
indeed persistance, but only for those tori Tâ which are filled in in a sufficiently
uniform way, namely those whose frequencies ω̂i satisfy a diophantine condition
HDγ,τ of the form:

∀k = (k1, . . . , kn) ∈ Zn \ 0, |
n∑

i=1

kiω̂i| ≥ ||k||−τ ,

where ||.|| is some norm on Rn.
Let us give a simple, but paradigmatic, example where such diophantine con-
ditions appear naturally (generalization to arbitrary dimension n is straightfor-
ward): suppose that we want to find a C∞ function f : T2 → R such that

ω1
∂f

∂q1
+ ω2

∂f

∂q2
= g,

where g : T2 → R is given (in other words, the Lie derivative LXf of f along
the constant vector-field X = (ω1, ω2) must be equal to g). A necessary con-
dition is obviously that g be of zero mean on the torus. Moreover, the Fourier
expansions

∑
(k1,k2)∈Z2 fk1k2e

k1q1+k2q2 and
∑

(k1,k2)∈Z2 gk1k2e
k1q1+k2q2 of f and

g must satisfy the equations:

(k1ω1 + k2ω2)fk1k2 = gk1k2 , (E)
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which even in the absence of resonance (i.e. when ω1/ω2 is irrational) leads to
arbitrarily small denominators in the Fourier coefficients of f , a problem well
known to astronomers since the eighteen century. In order to control the growth
of these coefficients, henceforth the regularity of f , one must control the rational
approximations of the ratio ω1/ω2. The following lemma (see [B]) is (or should
be) a classical (but not completely obvious) exercise on Fourier series:

Lemma 20 The frequency vector ω = (ω1, ω2) satisfies the diophantine con-
dition HDγ,τ if and only if equation (E) has a C∞ solution (unique up to the
addition of a constant) f for any given C∞ function g with zero mean.

This fact is crucial in the proof of the following normal form theorem of Arnold
and Moser: among the perturbations of a constant vector-field (ω1, ω2) on T2,
are constant vector-fields with different frequencies (ω′

1, ω
′
2), and in particular

whith a different ratio ω′
1/ω′

2 �= ω1/ω2 hence a completely different dynamics.
This can be corrected trivially by adding a correction (∆ω1,∆ω2) of the fre-
quencies. In other words, a given constant vector-field is of codimension 2 in
the set of all constant vector fields The normal form theorem of Arnold and
Moser states that among all C∞ vector-fields on T2 close enough to a constant
vector-field whose frequencies satisfy HDγ,τ , the ones which are C∞-conjugated
to it form a submanifold of codimension 2. More precisely, the mapping

Φω : Diff∞(T2, 0) × R2 → X∞(T2)

defined by Φω(h, λ) = h∗ω + λ is a C∞ (i.e. “tame” in the sense of Hamilton)
diffeomorphism of a neighborhood of (Id, 0) onto a neighborhood of ω. In other
words, a mere translation by λ close to zero in R2 is enough to transform any
vector-field close enough to the constant vector field ω into one which is C∞-
conjugated to ω. The proof, which works for tori of any dimension n, uses a
“hard” implicit function theorem, that is one valid in a scale of Fréchet spaces.
The key feature of such theorems is the necessity of inverting (or inverting
approximately) the differential of the mapping Φω not only at the given point
(Id, 0) but in a whole neighborhood (invertibility is not an open property in
Fréchet spaces). A simple example of this (serious) difficulty is the mapping
f �→ ef from the space of C0 real functions on R to itself. The derivative at
f = 0 is the Identity but the image of the mapping, which is the set of positive
functions, is not a neighborhood of the constant function 1 in the compact-open
topology. This nasty phenomenon indeed disappears when one restricts the
functions to a compact interval.

4.2 Herman’s normal form theorem

Herman’s normal form theorem follows exactly the same scheme as the Arnold-
Moser theorem. Indeed, the Arnold-Moser theorem is but a special case of it. We
study hamiltonians H(r, θ) on T ∗Tn ≡ Tn×Rn. The role of the constant vector
field of frequencies ω on the torus is now held by the set Nω of normal forms
N(r, θ) = Nω(r) + O(r2), where Nω(r) = ω · r. This is the set of Hamiltonians
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whose Hamiltonian vector-field leaves invariant the torus r = 0 and induces on
it the constant vector-field with frequency vector ω. Let also G be some space
(which we will not describe, see [Fe]) of Hamiltonian diffeomorphisms close to
Identity, defined on a neighborhood of Tn × {0} in Tn ×Rn. Let C∞

+ (Tn ×Rn)
be the quotient of the space of Hamiltonians by the real constants.

Theorem 21 (Herman’s normal form) For every ω ∈HDγ,τ and for every
No ∈ Nω, the map

Φω : Nω × G × Rn → C∞
+ (Tn × Rn)

(N, G, ∆ω) �→ H = N ◦ G + N∆ω,

is a local C∞-diffeomorphism in a neighborhood of (No, id, 0). Moreover, the
inverse map Φ−1

ω depends smoothly in the sense of Whitney of ω ∈ HDγ,τ .

As in the Arnold-Moser theorem, this theorem asserts that the set of Hamiltoni-
ans which are conjugated to a normal form with a diophantine frequency vector
(i.e. those of the form H = N ◦G with N = Nω +O(r2)) form a submanifold of
codimension n of the set of Hamiltonians modulo constants. Herman’s theorem
is in fact more general (see [Fe]) in that it works also with normal forms which
leave invariant tori of dimension lower than n. For the proof, one needs as above
inverting the dΦω on a whole neighborhood of (N0, Id, 0).

4.3 From Herman’s normal form to Kolmogorov’s theo-
rem: the non-degeneracy as a source of parameters

The above normal form is certainly beautiful but a priori not very useful to
understand the dynamics of X∗

H , ... unless in case ∆ω = 0. In order to achieve
this, it is natural to seek for parameters which allow a control of the frequency
correction ∆ω. In the non-degenerate case studied by Kolmogorov, the control
parameters are the actions.
In order to get some understanding of how it can be done, let us apply the
theorem to the trivial case of a completely integrable hamiltonian in action-
angle variables, i.e. a hamiltonian H0(r) depending only on the action variables
r = (r1, . . . , rn). To H0, we associate the n-parameter family of normal forms

Ns(r) = H0(s + r) − H0(s).

(Recall that we focus only on the invariant torus r = 0.) It follows from Taylor
formula that

Ns ∈ Nω0
s
, where ω0

s =
∂H0

∂r
(s).

Now, for a given s, and a given frequency vector ω close to ω0
s , we can write in

a unique way

Ns = N + N∆ω, with N ∈ Nω and ∆ω = ω0
s − ω,
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that is Ns = Φω(N, Id, ω0
s − ω), which relates Ns to the normal forms of fre-

quency vector ω = ω0
s + δω instead of ω0

s .
In other words, in the completely integrable case, we can trade the “a posteriori”
frequency correction ∆ω for an “a priori” frequency correction δω = −∆ω.
Let us consider now a Hamiltonian H : Tn × Rn → R defining what Poincaré,
at the beginning of the New Methods of Celestial Mechanics, called “the general
problem of dynamics”, that is

H(r, θ) = H0(r) + H1(θ, r),

where H0, depending only on the action variables r = (r1, . . . , rn), is completely
integrable and H1 is a small perturbation (in a well chosen topology) which
depends on both angle and action variables (θ, r) = (θ1, . . . , θn, r1, . . . , rn). To
H we can also associate the n-parameter family of Hamiltonians

Hs(θ, r) = H(θ, s + r) − H0(s) = Ns(r) + H1(θ, r).

Let us first pretend that Herman’s normal form theorem is true for any fre-
quency vector ω. This is not true of course but, thanks to the Whitney-smooth
dependance of Φ−1

ω (Hs) = (N, G, ∆ω) in ω, the Whitney extension theorem
allows us to extend to all ω (in a smooth but highly non unique way) the map-
ping (s, ω) �→ ∆ω, where ∆ω is the projection on Rn of Φ−1

ω (Hs). But Hs is a
small perturbation of Ns for which ∆ω = ω0

s −ω, whose derivative with respect
to ω is −Id; one then deduces from the usual implicit function theorem in Rn

that the equation ∆ω = 0 defines the graph of a mapping s �→ ω̄s close to the
mapping s �→ ω0

s .
The problem is of course that, for a given s, ω̄s has no reason to be a diophantine
frequency vector, which seems to deprive our result of any meaning. But s is
a parameter that we can choose. If we suppose that H0 is Kolmogorov non-
degenerate in the neighborhood of r = ŝ, that is if

∂2H0

∂r2
(ŝ) is invertible, (N.D.)

it follows that the frequency map s �→ ω0
s and also s �→ ω̄s covers a full neigh-

borhood of the frequency vector ω0
ŝ . Hence, we have a set of large relative

Lebesque measure of values of s close to ŝ such that ω̄s is indeed diophantine
and Herman’s theorem applies (figure 20).

Figure 20
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This implies the famous

Theorem 22 (Kolmogorov theorem) Let H(θ, r) = H0(r) + H1(θ, r) be a
small perturbation (in a smooth enough topology) of the completely integrable
Hamiltonian H0(r). If H0 is non-degenerate in the neighborhood of r = ŝ,
that is if ∂2H0

∂r2 (ŝ) is invertible, the hamiltonian vector-field X∗
H leaves invariant,

close to r = ŝ, a set of large relative Lebesgue measure of tori, on each of which
it is conjugate to a diophantine constant vector-field.

Using the normal form theorem, the non-degeneracy hypothesis in Kolmogorov’s
theorem can be greatly weakened in the analytic case. Indeed, thanks to the
following beautiful result, it is enough to suppose that the image of the mapping
s �→ ω0

s does not lie in a proper vector subspace of Rn :

Theorem 23 (Arnold, Margulis, Pyartli) If some real-analytic map s �→
ωo

s from a domain of Rp to Rn is non-planar in the sense that its image is
nowhere locally contained in some proper vector space of Rn, the Lebesgue mea-
sure of {s, ωo

s ∈ HDγ,τ} is positive provided that γ is small enough and τ large
enough.

4.4 The problem of Arnold diffusion

I just mention this important problem to which much research activity was de-
voted in recent years. This problem appears only for systems with three and
more degrees of freedom. For one degree of freedom, a Lagrangian invariant
torus, which has dimension n, is a component of an energy level curve. For two
degrees of freedom, an energy manifold has dimension three and it is seprated
into two regions by a torus of dimension two. For three degrees of freedom, a
3-torus no more separates a five dimensional energy manifold and this leaves
place a priori for a leaking (diffusion) of trajectories through the (Cantor) set
of invariant tori given for example by Kolmogorov theorem. The theorem of
Nekhoroshev, a refined version of classical estimates on divergent series, says
that if such a diffusion occurs, it must occur very (exponentially) slowly for sys-
tems close to integrable. Arnold was the first to build an ad hoc perturbation of
an integrable hamiltonian for which this phenomenon does occur. More recently,
a genericity result for three degrees of freedom hamiltonians was announced by
John Mather.
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