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Let C(t) =
(
q(t + 1), q(t + 2), . . . , q(t + n) = q(t)

)
be a planar choreography of period

n of the n punctual masses m1,m2, . . . ,mn, that is a planar n-periodic solution of the
n-body problem where all n bodies follow one and the same curve q(t) with equal time
spacing (see [CGMS]). In the sequel, we shall identify the planar curve q(t) with a mapping
q : IR/nZZ → CI (for convenience of notation, we have chosen the period to be n; well chosen
homotheties on configuration and velocities reduce the general case to this one).

Question. Does there exist planar choreographies (with equal time spacing) whose masses
are not all equal ?

The following proposition says that it is enough to study planar choreographies with equal
masses.

Proposition 1. The curve C(t) is still a planar choreography, with the same center of
mass (and the same sum of the masses), when each mass mj is replaced by the arithmetic
mean m =

∑
mi/n.

Notations. We shall denote respectively by ρj and aj the complex numbers denoted by
zjn and ajn in [C], that is

ρj(t) = q(t+ j)− q(t), aj(t) =
ρj(t)

|ρj(t)|3
if j 6= n, an(t) = 0.

We can suppose that the center of mass is at 0, that is

n∑

i=1

miq(t+ i) = 0.

In particular, translating the time by integers, we get that for any t we have



m1 m2 · · · mn

mn m1 · · · mn−1

· · · · · · · · · · · ·
m2 m3 · · · m1






q(t+ 1)
q(t+ 2)
· · ·

q(t+ n)


 =




0
0
·
0


 .

In the same way, Newton’s equations

∀s, 1 ≤ s ≤ n, q̈(t+ s) =
∑

1≤k≤n, k 6=s
mk

q(t+ k)− q(t+ s)

|q(t+ k)− q(t+ s)|3 ,
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may be written

∀s, q̈(t) =
n−1∑

j=1

mj+s
q(t+ j)− q(t)
|q(t+ j)− q(t)|3 ,

that is 

m1 m2 · · · mn

mn m1 · · · mn−1

· · · · · · · · · · · ·
m2 m3 · · · m1






a1(t)
a2(t)
· · ·
an(t)


 =



q̈(t)
q̈(t)
·

q̈(t)


 .

Let us denote by M the above “circulant” n × n matrix of masses. We shall use the
following property of such matrices (see [MM]):

Lemma 1. The matrixM is diagonalisable over CI . An orthogonal basis of CI n is defined
by the eigenvectors Xk = (ζk, ζ2k, . . . , ζnk = 1), where ζ = e2πi/n. The corresponding
eigenvalues are the λk = m1+m2ζ

k+· · ·+mnζ
(n−1)k. As the masses are positive, it follows

that the image ofM always contains the line generated by (1, 1, . . . , 1) and that its kernel
is always contained in the hyperplane H =

{
(z1, z2, . . . , zn) ∈ CI n, z1 + z2 + · · ·+ zn = 0

}
.

Here, U = (u1, . . . , un) and V = (v1, . . . , vn) orthogonal means that
∑
uivi = 0.

It is important to notice that the Xk are independent of the masses mi. Indeed, they are
also the eigenvectors, with eigenvalues ζk, of the “circular permutation matrix” (endomor-
phism of CI n which acts by a circular permutation of the coordinates)

P =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
1 0 0 · · · 0


 .

As the circulant mass matrix isM = m1Id +m2P +m3P2 + · · ·+mnPn−1, this is indeed
the key to the proof of the lemma.

Proof of Poposition 1. One immediately deduces from the fact that X0 = (1, 1, . . . , 1)
is an eigenvector with associated eigenvalue the sum M =

∑
mi of the masses that, if

ãi(t) = ai(t)−
1

M
q̈(t),

we have 

m1 m2 · · · mn

mn m1 · · · mn−1

· · · · · · · · · · · ·
m2 m3 · · · m1






ã1(t)
ã2(t)
· · ·
ãn(t)


 =




0
0
·
0


 .

¿From Lemma 1 it then follows that for all t,

n∑

j=1

q(t+ j) = 0, and

n∑

j=1

ãj(t) = 0.
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The last identity may also be written

q̈(t) =

∑
mi

n

n−1∑

j=1

q(t+ j)− q(t)
|q(t+ j)− q(t)|3 ,

which proves the proposition.

Before stating the next proposition, we recall from [C] some terminology.

Definition 1. A solution R(t) = (~r1(t), . . . , ~rn(t)) of the n-body problem with masses
m1, . . . ,mn is called perverse if it is also a solution for at least another set of masses. Any
set of masses for which R(t) is a solution will be called admissible.

Corollary 1. The choreographies whose masses are not all equal are exactly the perverse
choreographies.

Notation.

µi = mi −
M

n
.

One deduces from the definitions and from Proposition 1 that, for all t,

(∗)
n∑

i=1

µi = 0,
n∑

i=1

µiρi(t) =
n∑

i=1

µiq(t+ i) = 0,
n∑

i=1

µiai(t) =
n∑

i=1

µiãi(t) = 0.

Definition 2. A non-trivial P-decomposition of CI n is an orthogonal decomposition

CI n = (1, 1, . . . , 1)CI ⊕K ⊕ L

into P-invariant subspaces such that: (i) each subspace K,L is invariant under complex
conjugation, (ii) neither K nor L is reduced to {0}. It will be noted (K,L).

Definition 3. Let C = C(t) =
(
q(t + 1), q(t + 2), . . . , q(t + n) = q(t)

)
be a planar chore-

ography of period n whose all masses are equal to m and whose center of mass is at 0. A
P-decomposition (K,L) of CI n is said to be adapted to C if it is non-trivial and such that(
q(t+ 1), q(t+ 2), . . . , q(t+ n)

)
and

(
ã1(t), ã2(t), . . . , ãn(t)

)
belong to K for all t.

Proposition 2. Let C(t) =
(
q(t+1), q(t+2), . . . , q(t+n) = q(t)

)
be a planar choreography

of period n whose all masses are equal to m and whose center of mass is at 0. It is perverse
(= really perverse) if and only if there exists an adapted P-decomposition (K,L). If this
is the case, the admissible sets of masses (m1, . . . ,mn) are exactly the ones of the form
mi = m+ µi > 0, where (µ1, µ2, . . . , µn) is a real vector belonging to L.

Proof of Proposition 2. Let (µ1, µ2, . . . , µn) 6= (0, 0, . . . , 0),
∑
µi = 0, be such that

C(t) is still a choreography when the bodies are endowed with the masses mi = m + µi.
By the proof of proposition 1, the (complex) vectors

(
q(t + 1), q(t + 2), . . . , q(t + n)

)
and(

ã1(t), ã2(t), . . . , ãn(t)
)

must be contained in the kernel K of M, that is in the space
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generated by the eigenvectors Xk such that λk = m1 +m2ζ
k+ · · ·+mnζ

(n−1)k = 0. As Xk

is also an eigenvector of P, K is P-invariant; as λn−k = λk is also equal to zero if λk is, K
is invariant under complex conjugation. Finally, K is neither reduced to {0} (the bodies
would be in collision) nor to the orthogonal H of (1, 1, . . . , 1) (all the masses mi should be
equal). This proves that if L is the space generated by the eigenvectors Xl 6= (1, 1, . . . , 1)
not belonging to K, the pair (K,L) is an adapted P-decomposition. The condition λk = 0
may be written ζk(µ1 +µ2ζ

k + · · ·+µnζ
(n−1)k) = 0, that is (µ1, µ2, . . . , µn) orthogonal to

Xk. As by hypothesis it is already orthogonal to (1, 1, . . . , 1), it belongs to L.

In the other direction, let us suppose that (K,L) is an adapted P-decomposition, and let
(µ1, µ2, . . . , µn) be any real vector in L. As such, it is orthogonal to (1, 1, . . . , 1) and to
any vector in K. In particular (∗) is satisfied. But C(t) is a choreography with all masses
equal to m and center of mass at zero, hence

n∑

i=1

mq(t+ i) = 0 and q̈(t) =

n−1∑

j=1

maj(t).

Comparing to (∗), one obtains that C(t) is also a choreography with masses mi = m+ µi
and center of mass at zero.

Equations. As the decomposition CI n = (1, 1, . . . , 1)CI ⊕K⊕L is orthogonal, it is easy to
write equations of a subspace K belonging to a non-trivial P-decomposition (K,L). As it
is invariant under complex conjugation, one can find real equations: it is enough to write
that K is the set of vectors orthogonal to (1, 1, . . . , 1) and to the vectors

cl = (1/2)(Xl +X l) =

(
cos

2lπ

n
, cos

4lπ

n
, . . . , cos

2(n− 1)lπ

n
, 1

)
,

sl = (1/2i)(Xl −X l) =

(
sin

2lπ

n
, sin

4lπ

n
, . . . , sin

2(n− 1)lπ

n
, 0

)
,

where the eigenvectors Xl, l = l1, . . . , ls ≤ n/2, span L.

Starting from this set of equations for K, we now get the following criterion. Let us say
that a set of integers 1 < l1 < · · · < ls ≤ n/2 is non-trivial if, defining L as the subspace
of CI n generated by Xl1 , X l1 , . . . , Xls , X ls , the pair (K,L) is non-trivial.

Corollary 2. Let C(t) =
(
q(t+1), q(t+2), . . . , q(t+n) = q(t)

)
be a planar choreography of

period n whose all masses are equal and whose center of mass is at 0. It is perverse (= really
perverse) if and only if there exists a non-trivial set of integers 1 < l1 < · · · < ls ≤ n/2
such that, for all t, the following vectors in CI n−1,

R(t) =
(
ρ1(t), . . . , ρn−1(t)

)
, A(t) = (a1(t), . . . , an−1(t)) =

(
ρ1(t)

|ρ1(t)|3 , . . . ,
ρn−1(t)

|ρn−1(t)|3
)
,

belong to the kernel of the

Cl1,...,ls = CL =




cos 2l1π
n cos 4l1π

n · · · cos 2(n−1)l1π
n

sin 2l1π
n sin 4l1π

n · · · sin 2(n−1)l1π
n

· · · · · · · · · · · ·
cos 2lsπ

n cos 4lsπ
n · · · cos 2(n−1)lsπ

n

sin 2lsπ
n sin 4lsπ

n · · · sin 2(n−1)lsπ
n



.
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Proof of Corollary 2. The orthogonality of the vectors
(
q(t+ 1), q(t+ 2), . . . , q(t+ n)

)

and
(
ã1(t), ã2(t), . . . , ãn(t)

)
to (1, 1, . . . , 1) just states that C(t) is a planar choreography

of period n whose all masses are equal to m and whose center of mass is at 0 (compare to
Proposition 1). It is equivalent to

q(t) = − 1

n

n−1∑

j=1

ρj(t) and
1

m
q̈(t) =

n−1∑

j=1

ρj(t)

|ρj(t)|3
·

As L is orthogonal to (1, 1, . . . , 1), the orthogonality of
(
q(t+ 1), q(t+ 2), . . . , q(t+n)

)
and(

ã1(t), ã2(t), . . . , ãn(t)
)

to the cl and sl is equivalent to the orthogonality of

(
ρ1(t), . . . , ρn−1(t), 0

)
=
(
q(t+ 1), q(t+ 2), . . . , q(t+ n)

)
− q(t)(1, 1, . . . , 1),

(
ρ1(t)

|ρ1(t)|3 , . . . ,
ρn−1(t)

|ρn−1(t)|3 , 0
)

=
(
ã1(t), ã2(t), . . . , ãn(t)

)
+

1

nm
q̈(t)(1, 1, . . . , 1),

to the cl and sl. This shows the Corollary.

Remark 1. The rank of CL equals the dimension of L. This is because the rank of CL
does not change if one adds to CL the nth column (1, 0, . . . , 1, 0, . . . , 1, 0), whose sum with
the (n − 1) columns of CL is 0. But the lines of the extended matrix are the vectors
cl1 , sl1 , . . . , cls , sls which generate L.

The end of the paper is devoted to the proof of

Proposition 3. For n ≤ 5, the planar n-body problem does not possess any perverse
choreography.

This is a very modest result: comparing to Proposition 3 of [C], which asserts that the
planar n body problem does not possess any really perverse solution for n ≤ 4, we gain
only the case n = 5. To go further, one should take into account dynamical considerations
and not only algebraic ones.

Proof of Proposition 3.

We start we some general remarks.

1) Saying that all masses are necessarily equal amounts to saying that the kernel of M
must coincide with the orthogonal H of (1, 1, . . . , 1), that is

∀k ∈ ZZ , 1 ≤ k ≤ n− 1, λk = 0

(as the eigenvalues go by conjugate pairs λn−k = λk, it is sufficient to take 1 ≤ k ≤ n
2 ).

This is of course the same as saying that every adapted P-decomposition must be trivial.

2) The bigger K is, the less constrained the motion is but the more restricted the masses
are (L small).
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2-i) n even: at the two extremes we have
– a 1-dimensional K generated by Xn/2 = (−1, 1,−1, 1, . . . ,−1, 1), which is ruled out
because it implies collisions,
– a 1-dimensional L generated by Xn/2 = (−1, 1, . . . ,−1, 1), that is

K =
{

(z1, . . . , zn) ∈ CI n, z1 + z3 + · · ·+ zn−1 = 0, z2 + z4 + · · ·+ zn = 0
}
.

In this case, in fact as soon as L contains Xn
2

, each (n/2)-tuple 1, 3, . . . , n−1 and 2, 4, . . . , n
is a choreography when the bodies are endowed with masses all equal to 2m. Indeed, one
deduces from the fact that (q(t+1), q(t+2), . . . , q(t+n)) and (ã1(t), ã2(t), . . . , ãn(t)) belong
to K that:

q(t+ 2) + q(t+ 4) + · · ·+ q(t+ n− 2) + q(t) = 0,

q(t+ 2)− q(t)
|q(t+ 2)− q(t)|3 +

q(t+ 4)− q(t)
|q(t+ 4)− q(t)|3 + · · ·+ q(t+ n− 2)− q(t)

|q(t+ n− 2)− q(t)|3 =
1

2m
q̈(t),

and permutations.

As Xn
2

is either orthogonal to L (that is λn
2

= m1−m2 +m3−m4 + · · ·+mn−1−mn = 0)
or contained in L (that is λn

2
6= 0), we can state the

Lemma 2. For any choreography with an even number n of bodies, either

m1 +m3 + · · ·+mn−1 = m2 +m4 + · · ·+mn ,

or each (n/2)-tuple 1, 3, 5, . . . , n− 1 and 2, 4, . . . , n is itself a choreography when endowed
with masses all equal to 2M/n. In this last case, one could freely transfer mass from one
(n/2)-tuple to the other.

2-ii) n odd: at the two extremes we have

– a 2-dimensional K generated by Xk and Xk for some k between 1 and (n− 1)/2.

– a 2-dimensional L generated by Xl, X l, for some l between 1 and (n− 1)/2.

Lemma 3. For any non trivial P-decomposition satisfying the conclusions of Proposition
2, the dimension of K must be strictly bigger than 2.

Remark 2. If K is of dimension 2, either k > 1 is not prime to n and any configuration
in K must have collisions, or the configuration is at all times the image by a linear trans-
formation of the standard (stellated if k 6= 1) regular n-gon. Indeed, if k is not prime to n,
at least two coordinates of Xk are equal. Otherwise, the coordinates of Xk are exactly the
vertices of a direct regular n-gon (stellated if k 6= 1). The conclusion follows from the fact
that the linear transformations of IR2 = CI are exactly those of the form z 7→ αz + βz.

Note that choreographies whose configuration at all times is the linear image of a fixed
regular polygon do exist: relative equilibria with a regular polygon configuration of course,
but also any choreography with n ≤ 3 bodies (because any triangle is the linear image
of an equilateral one), and Gerver’s supereight for four bodies where the configuration is
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always symmetric with respect to the origin (that is a parallelogram), which is equiva-
lent to being a linear image of the square (the existence of this orbit is for the moment
known only numerically, see [CGMS]). This does not mean that these solutions possess an
adapted P-decomposition with dimK = 2; for this, we should have asserted also that the
configurations of the ãi(t) are a linear image of the same fixed regular polygon.
Indeed, none of these choreographies is perverse. In the case of 3 or 4 bodies this is stated
in Proposition 3. In the case of relative equilibria with regular polygon configuration, this
is implied by [E] or [PW] but we shall give a direct proof (Proposition 5).

Proof of Lemma 3. We have already ruled out the case dimK = 1 because it implies
collisions for the configuration, so let us suppose that dimK = 2.

Corollary 2 asserts that R(t) =
(
ρ1(t), . . . , ρn−1(t)

)
and A(t) =

(
ρ1(t)
|ρ1(t)|3 , . . . ,

ρn−1(t)
|ρn−1(t)|3

)

both belong to the kernel K̃ of CL. By Remark 1, the rank of CL is equal to the dimension
of L, that is to n − 3 (the number of bodies must be at least 4 for the P-decomposition
to be non trivial). Hence the dimension of K̃ is equal to 2. In particular, there exists two
indices 1 ≤ j 6= k ≤ n − 1, such that the projection of K̃ on the plane generated by the
j-th and the k-th elements of the canonical basis of CI n−1 is injective. In other words, K̃
can be defined by equations of the form ui = αiuj +βiuk, i ≤ n−1, i 6= j, k. Moreover, K̃
being invariant under conjugation, such equations exist with real coefficients αi, βi. This
implies that for all t and all 1 ≤ i ≤ n− 1, i 6= j, k,





ρi(t) = αiρj(t) + βiρk(t),

ρi(t)

|ρi(t)|3
= αi

ρj(t)

|ρj(t)|3
+ βi

ρk(t)

|ρk(t)|3 .





(∗∗)

The coefficients αi and βi are both different from 0. Otherwise, if for example αi = 0, the
coefficient βi satisfies |βi|3 = 1, that is βi = 1, which implies collision.
Now, either t is such that ρj(t) and ρk(t) are independent over the reals, and equations
(∗∗) imply the equality of the norms |ρi(t)|, |ρj(t)| and |ρk(t)| for all i 6= j, k, or, on the
contrary, t is such that ρj(t) and ρk(t) are dependent over the reals, and equations (∗∗)
imply that the n bodies q(t + 1), q(t + 2), . . . , q(t + n), are collinear. As one cannot pass
from one situation to the other without avoiding a collision, one of them must be realized
all the time. But perpetual collinearity for a choreography would imply collision at some
time (in fact it was proved in 1904 by Pizzetti that this condition forces the solution to be
homographic). Hence the equality of the norms |ρi(t)|, |ρj(t)| and |ρk(t)| for all i 6= j, k is
realized at all times. Replacing t by t + 1, t + 2, . . ., this implies the equality at all times
of all the mutual distances between the bodies. But for more than three bodies, this is
impossible in the plane.

Remark 3. We showed in Remark 2 that if dimK = 2, a configuration in K either has
a collision, or is the linear image of a regular n-gon. In this last case, if n is even, such
a configuration is symmetric with respect to the origin. This is more generally the case
if, n being even, K is generated by eigenvectors Xk sharing this symmetry property, that
is if all the corresponding indices k are odd. Then the motion of each pair (i, i + n/2) of
symmetric bodies endowed with equal masses must be also a choreography with center of
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mass at zero:





q(t+ n/2) + q(t) = 0,

q(t+ n/2)− q(t)
|q(t+ n/2)− q(t)|3 =

2

M
q̈(t) (and permutations).

As each couple must lie on one and the same circle, the configuration would be at all times
a regular n-gon with uniform motion. By Proposition 5 this is impossible if not all masses
are equal.

End of the proof of Proposition 3.

1) For n = 3, any P-decomposition is trivial.

2) For n = 4 or n = 5, in any non-trivial P-decomposition, the dimension of K cannot
exceed 2, and one concludes with Lemma 3.

Choreographies with 6 bodies. There remains three cases to study:

1) K is of dimension 4, generated by X1, X1, X2, X2,

2) K is of dimension 3, generated by X1, X1, X3,

3) K is of dimension 3, generated by X2, X2, X3.

Case 1 The equations of L give that

m1 = m3 = m5, m2 = m4 = m6.

According to Lemma 2, if not all the masses are equal, the motion of the three bodies 2,4,6
(resp. 1,3,5) endowed with equal masses m1 + m2 = M/3, is also a choreography with
center of mass at zero.

If the three-body choreography is Lagrange relative equilibrium motion (equilateral trian-
gle, the configuration must be at all times a regular hexagon and the motion is uniform.
By Proposition 5 this is impossible if not all masses are equal.

If the three-body choreography is the “eight”, a collision occurs each time one of the triples
is in Euler (=collinear) configuration.

It remains to understand the case of an arbitrary three-body choreography...

Case 2. Corollary 2 gives the relations

ρ3 = ρ1 + ρ4 = ρ5 + ρ2,
ρ3

ρ3
3

=
ρ1

ρ3
1

+
ρ4

ρ3
4

=
ρ5

ρ3
5

+
ρ2

ρ3
2

.

This implies |ρ1| = |ρ2| = |ρ3| = |ρ4| = |ρ5|. Translating the time, we get that the mutual
distances between the six bodies must all be the same at all times, which is impossible in
the plane.

One could also have remarqued that a configuration in K is necessarily symmetric with
respect to 0 and conclude as in Remark 3.
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Case 3. Corollary 2 gives the relations

ρ3 = ρ1 − ρ4 = ρ5 − ρ2,
ρ3

|ρ3|3
=

ρ1

|ρ1|3
− ρ4

|ρ4|3
=

ρ5

|ρ5|3
− ρ2

|ρ2|3
.

This implies |ρ1| = |ρ2| = |ρ3| = |ρ4| = |ρ5| and one concludes as in Case 2.

Finally, we have proved the

Proposition 4. A perverse choreography of 6 bodies could only be of the following type:
m1 = m3 = m5 6= m2 = m4 = m6 and each triple 1,3,5 and 2,4,6 is itself a three-
body choreography with the same center of mass when endowed with masses all equal to
m1 +m2 = M/3.

Polygonal relative equilibria. We extract from [PW] a proof of the

Proposition 5. The relative equilibrium choreographic solutions of the regular n-gon are
not perverse.

Proof. Let C(t) =
(
q(t + 1), q(t + 2), . . . , q(t + n)

)
be the choreography (with all masses

equal to 1) defined by

q(t) = rζt, ζ = e
2πi
n , 4π2r3 = n2

n−1∑

k=1

αk, αk =
1− ζk
|1− ζk|3 , k = 1, . . . , n− 1.

As we have



(
q(t+ 1), q(t+ 2), . . . , q(t+ n)

)
= rζt(ζ, ζ2, . . . , ζn),

(
ã1(t), ã2(t), . . . , ãn(t)

)
=

1

r2
ζt
[
(α1, α2, . . . , αn−1, 0) +

4π2r3

n3
(1, 1, . . . , 1)

]
,

it is enough, by Proposition 2, to prove that the smallest subspace of CI n which is invariant
under P and complex conjugation and contains the vectors

X = (ζ, ζ2, . . . , ζn), Y = (α1, α2, . . . , αn−1, 0) and (1, 1, . . . , 1),

coincides with CI n.
Let us introduce the circulant matrix U whose columns are Pn−1Y,Pn−2Y, . . . ,PY, Y (this
is the transposed (=complex conjugate) of the matrix A = C0 of [PW]):

U =




αn αn−1 . . . α2 α1

α1 αn . . . α3 α2

. . . . . . . . . . . . . . .
αn−2 αn−3 . . . αn αn−1

αn−1 αn−2 . . . α1 αn


 (we have set αn = 0).

By Lemma 1, the eigenvalues of U are, for k = 1, . . . n,

λk = αn + αn−1ζ
k + . . .+ α1ζ

(n−1)k =

n−1∑

l=1

ζlk − ζl(k−1)

|ζlk − ζl(k−1)|3 = −1

4

n−1∑

l=1

sin[(2k − 1)πln ]

sin2 πl
n

.

(Note that we call λk what is called λn−k+1 in [PW]). One sees immediately that

λn−k+1 + λk = 0.

This implies that, if n = 2p+ 1, one has λp+1 = 0. Moreover, λn = −λ1 = 4π2r3/n2 > 0.
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Lemma 4. With the exception of λp+1 when n = 2p + 1, all the eigenvalues of U are
different from 0. In particular, the rank of U is equal to n − 1 if n = 2p + 1 and to n if
n = 2p.

We have already noticed that λ1 = −λn = −4π2r3/n2 is strictly positive. For the remain-
ing eigenvalues λ2 = −λn−1, · · · , λ[n/2] = −λn+1−[n/2], an elementary but clever proof of
Lemma 4 is given in [PW] (lemmas 10,11,12).

Corollary 3. The smallest subspace of CI n which is invariant under P and complex con-
jugation and contains Y = (α1, α2, . . . , αn−1, αn = 0) coincides with CI n.

Proof of Corollary 3. It follows from Lemma 4 that the subspace generated by Y and
its images under the iterates of P is CI n if n is even and the orthogonal of the complex line
generated by the eigenvector Xp+1 = (ζp+1, ζ2(p+1), . . . , ζn(p+1)) corresponding to λp+1 if
n = 2p+ 1 is odd. In this last case, the complex conjugate X̄p+1 of Xp+1 is orthogonal to
Xp+1:

ζp+1ζp+1 + ζ2(p+1)ζ2(p+1) + · · ·+ ζn(p+1)ζn(p+1) = ζ + ζ2 + · · ·+ ζn = 0.

This proves Corollary 3 and hence Proposition 5.

Remark 4. Let us call βk = 1−ζk, V the matrix obtained from U by replacing the alphas
by the betas and µ1, . . . , µn the eigenvalues of V :

µk = βn + βn−1ζ
k + · · ·+ β1ζ

(n−1)k =
n−1∑

l=1

(ζlk − ζl(k−1)) = −2
n−1∑

l=1

sin
πl

n
sin[(2k − 1)

πl

n
].

As
(βk, βk+1, . . . , βk−1) = (1, 1, . . . , 1)− ζk−1(ζ, ζ2, . . . , ζn),

the image of V is generated by the eigenvectors (ζ, ζ2, . . . , ζn) and (1, 1, . . . , 1) whose
eigenvalues are respectively µ1 = −n and µn = n. This implies that

µ2 = µ3 = · · · = µn−1 = 0.

On one hand, this remark “explains” the nature of Lemma 4: as always in these questions
(compare [C]), we had to show that for a certain collection of vectors ~A, ~B, ~C, . . . such that
~A+ ~B + ~C + . . . = ~0, one has

~A

| ~A|3
+

~B

| ~B|3
+

~C

| ~C|3
+ . . . 6= ~0

(take ~A = sin πl
n e

i(2k−1)πln , etc...)

On the other hand, it is with Lemma 4 the key of the proof in [PW] that the regular
n-gon with at least four vertices is a central configuration only when all masses are equal:
indeed, the condition is easily seen to be that the mass vector (m1,m2, . . . ,mn) belongs to
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the kernel of the matrix C−ω2

M

of [PW], which is the transposed (=complex conjugate) of

U − 4π2r3

n3 V . As the circulant matrices U and V have the same eigenvectors, one deduces

from the computation of the n numbers λk − 4π2r3

n3 µk, k = 1, . . . , n, that the kernel of

U − 4π2r3

n3 V is generated by X1 = (ζ, ζ2, . . . , ζn) and Xn = (1, 1, . . . , 1) if n = 2p and by

X1, Xn and the supplementary vector Xp+1 = (ζp+1, ζ2(p+1), . . . , ζn(p+1)) if n = 2p + 1.
When n = 2, X1 and X2 generate CI 2, when n = 3, X1, X2, X3 generate CI 3, but as soon

as n ≥ 4, the kernel of U − 4π2r3

n3 V does not contain real vectors other than the multiples
of (1, 1, . . . , 1).

Two questions.
1) Choreographies also exist in three-space. The problem of their possible perversity is
completely open.

2) It is natural to wonder about the existence of choreographies with unequal masses and
unequal time spacings between the bodies. This leads for example to the following unsolved
question: is the regular n-gon with equal masses the sole central configuration such that

1) all the bodies lie on a circle,
2) the center of mass cöıncides with the center of the circle?

The question of the existence of choreographies with unequal masses was raised during e-
mail discussions relative to the writing of [CGMS]. It is a pleasure to thank Joseph Gerver,
Richard Montgomery and Carles Simó for these stimulating conversations. Thanks also to
the referee for stylistic corrections.
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