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En raison des difficultés techniques, il a été décidé de faire
paraitre ce cours sous la forme d'un fascicule par chapitre. De ce fait
les références aux chapitres non publiés ne peuvent pas &tre précisées.

I1 gs'agit ici de références a un chapitre 0 d'introduction, comportant

la définition des catégorieéqDIFF, PL et TOP, quelques résultats élémen-
taires sur les fibrés, les énoncés des théorimes de plongement de Whitney,
de voisinages tubulaires et de voisinages colliers, ainsi que la démons-
tration d'un lemme de position générale en PL. Ah dernier paragraphe de

ce chapitre I, on trouvera ausBi des références au chapitre V, intitulé

nfibré de Hurewicz',

Pour les questions concernant les variétés différentiables, le
lecteur peut se reporter au livre de J. Munkres [17]. Sur la topologie:
PL, on peut lire E. Zeeman [23] ou Hudson (Piecewise linear topology,
Benjamin 1969). Enfin sur les fibrés localement triviaux et sur les

fibrés de Hurewicz on peut lire D. Husemoller (Fibre bundles, Mc Graw-Hill
1966).
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1.2

§1. ENONCE DU PRINCIPE D'ISOMORPHISME STABLE 3 EXEMPLES

.

Rappelons que si M est une variété de la éatégorie DIFF, PL ou
TOP, t(M) désigne son fibré (ou microfibré) tangent dans la catégorie.

Le but de ce chapitre est de discuter de plusieurs points de vue le

1.1 Théoreme : Principe d'isomorphisme stable (Mazur).

Soient My et M2 deux variétés métrisables sans bord de dimension
n(n<+=), dans la catégorie & (= DIFF, PL, TOP), et soit f : My~ M,
une équivalence d'homotopie dans £. Pourqu'il existe un entier N et un
isomorphisme F : Mlx IRN-‘M2 xllRN homotope a fxlllRN, il faut et il suf-
fit que les fibrés f“T(Mz) et T(Ml) soient stablement isomorphes,
c'est-a~dire isomorphes aprés addition a chacun d'eux d'un fibré tri-

vial de dimension convenable.

La nécessité de la condition est facile a voir.

L'isomorphisme F donne un isomorphisme de F*T(szlRN) avec T(MlleN).

De la commutativité a homotopie pres du diagramme

o
M, x g\ . F M, x &Y
XCI ' I x0
£
M, M,

on déduit que f*T(Mg)&)eN est isomorphe a T(M1)€>EN, ol eN est trivial

de dimension N.

1.2 Remarques et exemples : Pour l'uniformité de 1'énoncé on a supposé

que f est une équivalence d'homotopie dans la catégorie £ de M, et M,.
Si © = DIFF ou PL, la notion d'équivalence d'homotopie dans € est a
priori plus restrictive que la notion ordinaire d'équivalence d'homo-

topie. Rappelons qu'en fait si ® = DIFF ou PL il y a des théoréemes
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d'approximation des applications continues par des applications dans &

qui permettent de remplacer une application continue par une applicatic
dans & tout en restant dans la méme classe d'homotopie ; ces théoremes
permettent aussi de remplacer une homotopie continue entre deux appli-
cations, qui sont dans &, par une homotopie dans ¥ entre ces deux méme:
applications. (voir Munkres [17] pour & = DIFF ; pour € = Pvaoir le

théoreéme d'approximation simpliciale : Spanier [19 ; p.126]).

Montrons par des exemples que 1l'on ne peut pas espérer un 1somor-
phisme entre M et M2 méme si 1l'on suppose que f*T(Mz) est isomorphe

a T(Ml).

Exemple 1 : Soit M1= int D - {deux points} et soit M2 Slxsl—{un po:

T(Ml) et T(M2) sont deux fibrés triviaux. D'autre part, M1 et M2 ont 1

méme type d'homotopie qu'un bouquet de deux cercles :

--—

Alors le principe d'isomorphisme stable dit que M1 et M2 sont stableme
isomorphes : en effet, il est facile de voir un isomorphisme entre
Mletet szﬁh (Elles sont toutes les deux isomorphes & l'intérieur

du tore plein & deux trous).

Maisg M1 n'est pas homéomorphe a M2 : les compactifiés d'Alexandron

-~

M1 et M2 sont respectivemént 82 ou trois points sont identifiés, et un
tore, c'est-a-dire deux espaces n'ayant pas le méme type d'homotopie.

En effet nz(fag) = (s xS ) = 0. Mais n (M ) est différent de 0 pour

la raison suivante : il existe une suite d'appllcatlons S S M1 g s

ol f identifie a un point trois points de la sphére et ol gf identifie
a un point un disque contenant ces trois points. Il est elementalre de
voir que (gf), : H (S ) ~ H, (S ) = 7 est un isomorphisme.

Donc f n'est pas homotope a zéro.

Ce que nous venons en fait de voir c'est qué Ml gt'M2 n'ont pas le

méme type d'homotopie propre.
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Exemple 2 : Un autre exemple traitant cette fois le cas des variétés
différentiables fermées (compactes, sans bord) est fourni par les es-
;= L(7,1) et M, = L(7,2). Ce

sont deux variétés parallélisables ayant le méme type d'homotopie,

paces lenticulaires de dimension 3 : M

donc stablement isomorphes. Mais elles ne sont pas homéomorphes. D'ail-
leurs M1 xDN n'est, pour aucune valeur de N, difféomorphe a M xDN bien

que int(MlxDs) = 1nt(M “xD°). (Voir Milnor [13]).

La classe des variétés DIFF fermées, ayant le type d'homotopie
d'une n-sphére fournit d'autres exemples. Pour n = 7, Milnor [10]
donne plusieurs telles variétés non difféomorphes. Elles sont toutes
parallélisables car n6(80(7)) = 0. On déduit ce dernier fait de la
nullité de = (SO(n)) pour n = 8 (perlodlclte de Bott Cf. Milnor
[111) et de la trivialité b1en connue de T(S )(C£. Steenrod [20;p.140]
grace a la suite exacte Z = = (S ) n (SO(7)) -7 (SO(8)) = 0 du fibré
principal de T(S7) : S0(7) - SO(8)—» ; en effet 8(1) classifie T(S )
(Cf.Steenrod[20;p.98DBeseﬁemp1es sont tous homéomorphes (Cf.[15 ; p.109].

I1 est beaucoup plus difficile de trouver des exemples traitant le cas

- de variétés simplement connexes et fermées dans les catégories TOP ou

PL. Mais ils existent : Lashof -Rothenberg [(7].

La classification des variétés & isomorphisme stable pres est donc

beaucoup moins fine que leur classification a isomorphisme pres.

Nous devons le principe d'isomorphisme stable a B. Mazur. Il 1'a
démdntré d'abord pour les variétés DIFF fermées. (Cf. [8 ]). M. Hirsch[4]
a démontré le cas de notre énoncé ou f est une équivalence d'homotopie
propre, c'est-a-dire une application propre qui est une équivalence d'ho-

motopie dans la sous-catégorie des applications propres. Remarquons que

le premier exemple cidessus n'est pas couvert par le théoreme de Hirsch:
il n'y a pas d'homotopie équivalence propre Mlﬂ M2. Mazur a proposé une
démonstration générale darns [9 ]. A cause d'une lacune* dans sa

démonstration nous ne l'exposerons pas.

*Dans [ 9 ] la démonstration de la proposition 3, p.391 commence avec

une affirmation fausse : le deuxiéme diagramme p.392 n'est pas commu-
tatif.
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La démonstration compléte que nous donnerons sera fondée sur la
méthode d'engouffrement de Stallings et sur une astuce de Hirsch qui
permet de démontrer seulement le cas DIFF pour en déduire les autres
cas . La longueur de ce chapitre est due au fait que nous y démontrons
le théoreme d'engouffrement dont nous avons besoin. D'ailleurs nous
commencerons par esquisser la démonstration de Hirsch, a cause des

trois raisons suivantes

‘a) La démonstration de Hirsch englobe le cas central des variétés

fermées, pour Les trois catégories considérées. Elle est un prolonge-
ment simple de la démonstration de Mazur (modifiée par Milnor) pour

les variétés DIFF fermdes.

- B}

b) Si le lecteur réussit a démontrer directement dans le cas général
que, pour s assez grand, fxlhRs s MleRS—»M2xIRS est homotope a une
équivalence d'homotopie propre, alors il aura évidemment une démons-

tration compleéte.

¢) En ajoutant aux idées de Hirsch une astuce que nous a communiquée
N. Kuiper, on peut démontrer un principe d'isomorphisme stable pour le:
variétés hilbertiennes. (Voir §2).

® =

Esquisse de la démonstration donnée par Hirsch pour le cas on

f : Ml-*M2 est une équivalence d'homotopie propre.

Donnons d'abord la démonstration dans le cas DIFF, les détails
étant laissés en exercice. L'astuce de Hirsch qui permet d'en déduire
le méme résultat pour TOP et PL est expliquée dans notre démonstration
générale a partir de la p.I.26 . Elle consiste & remplacer M (i=t 2)
par l'espace total lisse d‘uan ~-fibré normal a un plongement de M

dans BR" k, pour k assez grand.

Exercice : Si g : X—-Y est une application propre de DIFF et si d est

une métrique sur X, il existe une fonction continue ¢ : X- ]0, +=[ de
telle sorte que toute application continue g' : X~Y, qui satisfait a

d(g'(x), g(x))<e(x) pour tout x€X, est elle-méme propre et proprement
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homotope a g. (Employer un tube normal a un plongement propre de Y

dans un espace euclidien).

Soit n = dim Mi et soit un entier s2n+3. Il existe une applica-
tion propre f' :M1~M2XDS, qui est proprement homotope a f et qui
plonge M1 dans sz (int D° - 0). Pour trouver f', il suffit d'employer
le théoréme de plongement de Whitney (Cf. ch. 0 ) en approximant

n{xo‘! : M1-:(2x (int D° -0), o<|lx ll<1.

Le fibré normal v de f' satisfait a

T(M1)$vs = f""("r(Mz)GB es): i*T(Mz)GB e,

Donc dans le groupe des classes d'isomorphisme stable on a :

<> = (<E*T(My)> - <T(M;)>) + <e®> =0 + 0
c'est-a-dire, v° est stablement trivial. Puisque s > n, il est en fait
trivial (Cf. ch. 0 ). Donc il exis;e un plongement propre
F : MlxDs—ongDS tel que F(m,0) = f'(m), pour tout mEMl, et que
F(MlxDs)CM2xint.Ds. Notons T = F(MlxDS). Si nous démontrons :

~

(*) szms— int.T = bTx [0,1[,

le théoréme sera démontré : étant donné que My xR° - int(MlxDs) est

isomorphe a Mibesx [0,1[, il existe un difféomorphisme de MlleS-*M2les,

prolongeant F. (Cf. théoréme des voisinages colliers (cf. ch. 0)).

. I1 ne nous reste qu'a démontrer (*).

B o =

Affirmation : Il existe un difféomorphisme ¢ de M2xDs sur lui-méme,
de telle sorte que qJIszSs_l = identité, et que

9(1/27) ©cM, x 1/2D° < p(T) CCM, x D°
(X €EY veut dire X © int Y et 1/2 T = F(M, x 1/20%)).




cobordismes produits

En démontrant (*I) nous pouvons donc supposer
1/21 ccM, x (1/2D°)EcT cEM, x D°

Or le difféomorphisme

(M) M, x DS - int(M, x 1/2 %)= M, x s571 x [0,1]
montre que le cobordisme de bT a M2XSS-'1
c = (szDs— int T 5 bT, szss'l)
admet un cobordisme inverse & gauche d donné par T - int(ng 1/2 Ds)
tel que le composé dc sait le cobordisme produit trivial donné par (
de ngss"l a lui-méme. (Voir [15,p.2] pour la notion de cobordisme).

De méme le difféomorphisme
(8) T - int(1/27)= bTx[0,1]

arantit un inverse a gauche ¢! pour d.
Y

Alors ¢’= (e'd)c.= ¢! (de) = ¢', donc ¢d et dec sont des cobordismes

produits. Maintenant, 1'identité de produits infinis

(cd)(cd)(cd) ... =c(de)(dec)(de) ...

s'interpréte en disant que bT x [0,») est difféomorphe a 1'espace
obtenu a partir de (M2xDS- int T) en lui attachant sur b(M2xDS) un
collier b(ngDS) x [0,=), espace qui est isomorphe a M2 x B® - int '

Donc (*) est démontré.
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Pour justifier notre affirmation, construisons un automorphisme ¢
de szns de telle sorte ¢|M2xss'1 = identité, et que M,x1/2 p°c ¢ (int T).
Pour ensuite obtenir ¢ le lecteur pourra modifier convenablement ¢ sur T
par la méme méthode. On forme un plongement propre
g : M2x[—3,3] - int(M2xDs), tel que g(m,0) = (m,0) pour m€M, et que
g(M2x 1)Cint T. (Employer le fait que f' est une équivalence d'homotopie
propre et le théoreme de Whitney @f. ch. 0 ) sous sa forme relative).
Fnsuite il existe un plongement propre G : sz [-2,2] xDS-l—*ngDs
tel que G{m,+,0) = g(m,t) (Cf. théoréme de stabilité au chapitre 0).

Soit @0 le transporté par G d'un automorphisme de M, x [-2, 2]fo qui

Lo

fixe un voisinage de son bord et qu1 envoie sz].xo sur sz()xO
xD° de telle sorte ¢O|M xSs_1= iden-

Alors¢oest\nlautomorph1sme de M 9

9x0 € d)o(int T).
I1 existe une fonction Cm,k : M % (0,2) telle que

sz}»DS = {(m,;)EszDs;, IIXl <« A(m)} soit contenu dans b, (int T),
O5-1

2
tité et que M

et il existe un automorphisme ml de Mé:xD ~tel que ¢1,M2x S = identité
et que ¢1(M2X:ADS) = M2X’1/2Ds. Enfin 4 = ¢1¢0 est l'automorphisme
cherché.

L'esquisse de la démonstration de Hirsch est compléte.

§2. ISOMORPHISME STABLE DES VARIETES HILBERTIENNES

P T T T D e P T T

Dans ce paragraphe, qui n'est pas du tout nécessaire a la compré-
hension de la suite, nous adaptons les idées de la démonstration de

Hirsch au cas des variétés hilbertiennes.,

Soit X 1'espace de Hilbert réel séparable,
K= {x = (xl,xg,...)]x.GiR, “;ﬁz = Z‘x?< ®},

Soit D le disque {x €¥ ; ”XH51} et
S la sphere {x€3c Hx”

Nous emploierons sans le démontrer le résultat fondamental (et

élémentaire) suivant :




2.1

Théoreme de Bessaga [ 2 ]

I1 existe un difféomorphisme de ¥ sur ¥ - {6} qﬁi fixe tout point
hors de D.

Soit B(X) la catégorie dont les objets sont les varidtés C (a b
qui sont localement difféomorphes a T'C+ =X x [0,o[, et dont les morph
mes sont les applications Cm.

Sous forme d'une suite d'exercices nous allons indiquer la démonstrat:
du théoreme suivant d& & N. Kuiper. A

Théoreme : Si f : M1 - M2 est une équivalence d'homotopie de variéte¢
sans bord dans la catégorie B(¥X), il existe un difféormorphisme
F : Mlx }C-—»M2x}c homotope a fle

Exercices

1) Soit Mi’ i = 1,2, dans B(¥X) (ou DIFF), et soit Ni une composante d
bord de Mi' Soit Fi : N. X [0,1[—'M. un plongement sur un ouvert de Mi
tel que Fi(n,O) = n, pour tout nEN . Enfin soit f : N —'N un isomor-
phisme. L'on forme M = (M UM )/{f} a partir de la réunion d1s301nte

d'exemplaires de Ml’ M, en 1dent1f1ant N a N2 par £, Alors M admet un

2

structure de variété c” unigque de telle sorte que M,, M_ soient des

1’ 72

sous-variétés lisses, et Fl’ F2 se recollent pour former un voisinage

tubulaire Cm de N1 = N2 dans M,

2)  (Mc Alpin; [1]). Pour tout X€B(X) il existe un plongement f : X~F
sur une sous-variété fermée.(Selon Lang[6;p77]touf tel plongement admet
un voisinage tubulaire). En effet, si bX = §, 5011; 9, + U; =K i-=1,
2,3,..., une suite de cartes C telles que {(p (1ntD} tapisse X.

Soit g : ~ [0,1] une fonction ¢” telle que g (0) {xé”c |x' 21},
Alors l'appllcatlon b, ¢ U, ~XDR = K, 4, (x) (g(o, (x)). @ (x),g(@ (x)
plonge cp (1nt D) et se prolonge a X en une application C par la regll
d)i(x) = 0 si foi. Ensuite

6(x) = 6, (x) ® 5 by(x) ® ... ® '21-1 );(x)® ... € B, D ... TK

constitue un plongement fermé de X dans 2D -0 CK,
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3) Déduire du théoréme de Bessaga :

a/ D=D-{0}; b/S=K; ¢/ D=%Xx[0,1) ;d/DxX=D

4) Si f : X » X est un plongement fermé, l'application g : X-DxX =D,
définie par g(x) = (6, f(x)), est un plongement fermé dont la fibre du
fibré normal est X.

5) Soient g : X~D un plongement fermé et h : X-Y, he®B(X), Alors

(h,g) : X-YxD est un plongement fermé homotope a (hxf)‘). Si d'ailleurs

h est un plongement au voisihage d'un fermé A de X et si a : X~ [0,=)

est une fonction C” telle que a—l(O) = A, alors (h,ag) : X=YxD est un
plongement fermé également homotope & (h,0).

6) L'énoncé (1.1) est valable pour &(¥) dés qu'on remplace R par ¥, et qu'on
parle de fibrés vectoriels a fibre . (Suivre la démonstration de Hirsch) -
L'exercice 1) sert a éviter le théoréme d'unicité des colliers a auto-
morphisme ambiant pres.

L'exercice 5) remplace le théoréme de Whitney. Pour appliquer 5) et

pour que les plongements construits soient a fibrés normaux triviaux,

il convient de passer plusieurs fois au produit avec K - ou mieux,

d'écerire X = Xd X ® .,. et utiliser chaque fois qu'il est nécessaire

un des facteurs de cette décomposition.

7) Soit X€E&(X) et R(X) 1a classe des fibrés vectoriels a fibre iso-

morphe & ¥, muni chacun d'une métrique Riemannienne.

a/ 7(X) admet une métrique Riemannienne (Lang [6; p.104]).
b/ Pour § €R(X) il existe MER(X) tel que E®M = ¢ (= fibré trivial
Xx¥X) - utiliser 2).

¢/ I1 existe une opération de somme infinie dans
R(X) : (§1,§2,§3,...) - §1$ 529 §3€B ... qui est associative
et commutative.

d/ Pour tout §,MER(X), EDe = NB e
(Répeter le truc du produit infini p.I.7 )

~

€
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§3. DEMONSTRATION GENERALE DU PRINCIPE D'ISOMORPHISME STABLE

Nous verrons que le probléme se réduit au cas ou Mz est un ouvert
d'un espace euclidien. On déforme alors fx0 : Ml—'sz IRN, N grand, en
un plongement g dé telle sorte que le voisinage tubulaire ouvert

o~

T = Mi:xBN de g(Ml) puisse absorber tout l'espace Mé:me comme un

vorace Pantagruel. La méthode s'appelle 1'engouffrement. La démons-
%%

tration sera complétement indépendante de ce qui précede.

La méthode marche aussi bien (ou mieux) pour le cas PL. Donc nous
allons donner les raisonnements DIFF et PL parallélement. D'ailleurs
le lecteur pourra déduire le cas DIFF* du cas PL !
En effet, d'aprés le cas PL, il existe stablement une équivalence d'ho-
motopie propre (l'isomorphisme PL !) et ensuite la démonstration par-

tielle de Hirsch exposée ci-dessus donne le difféomorphisme voulu.

Lemme d'engouffrement élémentaire

Soit K un complexe simplicial localement fini qui se réduit sur
le sous-complexe L par yn,effondrement simplicial élémentaire a travers
le gimplexe 0 ¢+ K = LU 0.

Soit £ : K»R" une application propre, linéaire sur chaque simplexe,
qui soit un plongement de g. On suppose que £(K-¢g) N £(g) = g.

Si U est un voisinage ouvert de f(L) dans R" et N un voisinage de
f(os), il existe, dans la catégorie ¥© (¢ = DIFF ou PL), un automorphisme
h : mn-»mP, tel que h(U) contienne f(K) et que h soit 1'identité sur
£(L)U (R™-N). |

Remarque : Il est en outre possible de choisir h isotope a 1t'identité

par une isotopie laissant fixe tout point hors de N.
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Démonstration :

1. & = PL

(i) Supposons d'abord que f(o) sous-tende R". Soient a et T le sommet

et la face de f(o) associés a 1'effondrement de K sur L : f(o) = a=x-T.
Soit ¢ le barycentre de 1. Sur la droite définie par a et ¢ choisissons
les points suivants :

~ a', intérieur au segment [a,c],‘tel que a' * 57 soit

-

inclus dans U.

~ b, sur la demi-droite issue de ¢ ne contenant pas a, U)%c),
tel que U)}T)fmf(L) = 6t., f étant propre l'existence d'un
tel point est évidente. De plus il est possible de choisir

b dans N.

Choisissons pour (axt)U (bxf) la triangulation T linéaire unique qui
a pour sommets a, a', b et les sommets de 87t. Alors h est bien défini

a partir des conditions suivantes :

- Sur (ax7t)U (b=x7T), h est 1'application unique, linéaire
sur les simplexes de T qui envoie a' en ¢ et gqui fixe les

autres sommets.

- h(x) = x pour x€R"- (azxt)U (bx7).
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(ii) Cas général : Nous pouvons supposer que f(o) engendre lRmC[Rn,

m<n. Le procédé de (i) nous donne un PL-automorphisme h de R" de telle
sorte qu'il suffira de le prolonger a R" en préservant la condition que
h soit l'identité sur f(L)U ([Rn-N).

Choisissons dans N un simplexe o', admettant c comme barycentre et en-
gendrant un sous-espace supplémentaire a f(co) dans R™. £ étant propre,
il existe un nombre A>0 tel que le simplexe Ac', homothétique de ¢'
dans 1'homothétie de centre c et de rapport A, satisfasse la dondition

suivante
(6(rc")x(axTUb=T))NE(L) = £(s)N£(L).

Sur &(Ac')x(axtUT®b), h est le joint de 1'application hIaxTUTxb

et de 1'identité de 8(Ac'). Ailleurs h est l1'identité. Cet h est solu-

tion du probleme.

Nous réutiliserons ici les notations o, 7, a, ¢ et ¢' du cas PL. Nous
pouvons supposer que c¢ cofncide avec l'origine de R™. Pour un sous-
ensemble XCan, soit E(X) le sous-espace linéaire engendré par X.

Alors R"™ = E(a)®E(7)®E(s'). Relativement a cette décomposition,

nous écrirons pour x€an, X = (xl,xz,xg). D'ailleurs E(a) sera iden-
tifié 4 R de facon que a corresponde & 1 ; alors x1€IR.

Soit o : E(t)—R une fonction Cm, a support compact A dans l'intérieur
de 7, dont le "graphe" -ie : 1'ensemble {(xl,x2,0)E!Rnlx2€A,x1=oc(x2)} -
egt inclus dans U et ne rencontre pas a=* 67.

Ensuite choisissons A<1 tel que le "graphe" de Aa ait la méme propriété
que celui de o. Or f étant propre, il existe u>0 tel que l'ensemble
{(xl,xz,O)Gan

inclus dans N.

XQEA,— ua(x2) < x, < 0} ne rencontre pas f(L) et soit

(< B R RV
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graphe de «
graphe de AQ

graphe de - uo

- Soit € : R-R une fonction c” telle que la fonction t—-&(t)+t soit
monotone et que £(A) +A = 0
g(t)=0p0ur t21 l§+t
E(t) = 0 pour t< -p

- Soit B : E(t)~R une fonction c” telle que B(xz) =1, s'il existe

X16ﬁ1t£1 que (xl,x2,0)€ f(6)-U, et telle que son support soit inté-

rieur au support A de «.

Il est maintenant possible de définir un difféomorphisme h' de 1l'espace
E(f(ﬁ)) engendré par f(o) sur lui-méme, tel que»h'(UrTE(f(c))) contienne




-

e e - kR
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f(c) et que f(L)NE(£f(c)) soit ponctuellement invariant :

b (xy,%5) = (xy+ Blxg)E(5rhoy) x(xg), ).

I1 s'agit maintenant de prolonger le difféomorphisme a R". Soit S

oc(x

l'adhérence de 1'ensemble des points non fixes de h'. Il existe un disque
D dans E(c'), de centre c, tel que Sx D ne rendontre pas f(L) et soit
inclus dans N. Prenons une fonction CQD e : E(c')~R, a support dans D

et prenant la valeur 1 en c. Alors le difféomorphisme cherché est défi-

7) CX(X ) Xz,xa)

ni par : h(xl,xz,x ) = (X + E(X )8 (x )g(a(x

c g fd

Considérons la situation plus générale ou t(K-0)Nf(c) # 4.
Désignons par T le sous-céne de f(c), de sommet a, s'appuyant sur

f(L)N £(c); alors T = a*¥P ol P est un polyédre dans 7, qui contient 87,

Corollaire : Le lemme d'engouffrement élémentaire est encore valable

si nous remplagons la condition f(K-o)Nf(s) = ] par la condition LU

Preuve : En effet, axI’etant un sous cone de ax7T, il existe trivia-

lement un 8ffondrement simplicial, en general non élémentaire, de

axtT = £f(0) sur axP (Cf. Zeeman [23;pIII-7]). Décomposons-le-en une suite
d‘effpndrements élémentaires : ax 1T = X;xXIxX2...\xXk = axP.

Par application du lgmme d'engouffrement élémentaire, nous trouvons

une suite d'automorphismes

— » s D =
h,  tel que hk(U) X, 4 et thXk Id.
- LT s ) - .
b 4" b, k(U) Xpp et By _g|x Id
k-1
etc...
Finalement h = h1 h2 e hk est 1'automorphisme cherché. c qfd

Pour la démonstration du théoréme d'engouffrement de Stallings,

outre ce lemme d'engouffrement élémentaire nous aurons besoin du lemme

. technique suivant
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Lemme : Soit ¥ un complexe simpl.icial fini ; il existe une triangu-
lation t du complexe cellulaire Kx I, telle que pour tout simplexe ©
de K :

1/ ox I{Gx%O}U 8¢ x I relativement a t.

2/ ox {0} et ox {1} sont des simplexes de t.

(=% indiqiie une suite finie d'effondrements simpliciaux élémentaires).

-

Corollaire : Si L est un sous-complexe de K, alors Kx ISLxIUKx {0}.

Démonstration du lemme : -0n fait une récurrence sur la dimension de K.

Si dim K = 0 c'est évident. Supposons que dim K = n et qu'il existe une

(n-1]

triangulation de K x I vérifiant le lemme ; si 0 est un simplexe de
dimension n de K on prolonge la triangulation en rajoutant comme sommet
le barycentre a de ox I. De toute évidence o x 15, ax (6oxI)Uaxox {01).

56 est un complexe de dimension n-1, D'ou :

(1) 6oxI<60x {0}

Sous-lemme : Si Q est un sous-complexe du complexe fini P, si P\S,Q

et si a est un point abstrait, alors axP\sa(ax QU P.

Démonstration évidente. D'ou :

(2) a=x(60xI)ax (60x {0})U Sax1I.
Donc oxIZ60xIUax (ox{0})
I1 est enfin évident que ax (6x0)0x{0}.

Schématiquement les démarches sont les suivantes :

N \ N
AN |




3.4 Théoreme d'engouffrement de Stallings

Soit M une variété sans bord de dimension n de la catégorie €
(E = Diff ou PL). Soient U un ouvert de M et P un polyédre fermé dans M.
(si B = Diff, P est un polyedre relatif a une triangulation(fnde M).
On suppose que dim P<n-~3 et que (M,U) est q-connexe. Si P-U admet
pour voisinage dans P un polyedre compact Q avec dim Q< q, alors il
existe un automorphisme h de M, se réduisant & 1'identité sur le com-

plémentaire d'un compact et tel que h(U) contienne P.

Remarque : h peut étre choisi isotope a 1'identité par une isotopie

laissant fixe tout point de M hors d'un compact.

Nous ne donnerons la démonstration que dans le cas ol M est un ouvert

de R". (Voir les remarques a la fin de la démonstration).

Démonstration : Soit 3Q la frontiere de Q dans P. Dans le produit Px1I
considérons le sous-polyeédre : X = P-Qx {0}JUdQxIUQx {1}.

La q-connexité de (M,U) nous permet de construire f':Px {0JUQxI-M

prolongeant 1'1nJect10n de PX'{O} dans M tel que f'(X) soit inclus
dans U,

Q. {1}

W//////// // |

.- 7/

£1 ’1(U)

\\\\
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D'apres le corollaire du lemme {ch.I ;3 .3) il existe une triangulation
t' de Px {0JUQx1I telle que Px {0}JUQx I3 X. D'aprss le lemme 12 de Zeeman
[28;p.1III-11),t' peut &tre choisie arbitrairement fine. Soit t une telle
subdivision suffisamment fine pourqu'il existe f : Px {oJuQx I-M,
homotope & f' relativement a Px {0} telle que f soit linéaire sur chaque
simplexe et que f(X)SU. t étant choisie, d'aprés un lemme du-chapitre 0

nous pouvons mettre f en position générale relativement a fIPx {0}

-

Soit Px {0} UQx1I = xk\s.xk._l\s‘ xi\’“... X, = X une suite d'effon-

drements élémentaires simpliciaux.
a,

Le cas q<n-4 : Pour une récurrence sur les entiers q et i nous
supposerons le théoréme démontré pour q-1 et avoir un automorphisme

h de M tel que h, (U) = f(X ). Supposons que l'effondrement de X, P41

sur Xi se fasse a travers le ‘simplexec; (Xi+1 = XiU ¢ ; f£(o) = ax¥T).
Soit £ 1le sous-céne de f(¢), de sommet a, s'appuyant sur 1l'adhérence S

de £(o)N f(Xi -6). Puisque ' f est en position générale, on a :
dimE - 1< dim S<max. ((n-3)+ (g+1) -n ; 2(q+1) - n)

(Remarquer que dimP<n-3; dim QxI<q+1 ; dim c<q+1).

Donc dim¥ < q-1 et 1'hypothése de récurrence nous donne un automorphisme
] de M se réduisant a 1'identité hors d'un compact, tel que

Q h (U)Df(X JUZ. Le lemme amélidré d'engouffrement (ch. I 3.2)

nous permet de construire h1+1 tel que : 1(U) f(X, +1)

Ceci achéve la récurrence.

I.je cas g =n-3 : Soit)‘Ei ke (n-3)-squelette t}e Xi' Rexfarquoné que
Xibmx {0} et que si Xi+1 = XiU o, alors Xi+1U G\Xi est un effon-
drement élémentaire. La démonstration précédente marche encore si

nous construisons ZCf(O'),non plus & partir de f(c)n f(X -0) mais a
partir de f(d)ﬂf(X -d).

L'hypothese de récurrence suppose cette fois que h, (U)Df(X ). Puisque
dim¥ <n -4, le raisonnement du cas précédent permet de construlre un
automorphisme h tel que h(U)>D f()zk)DPx {0}.
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Explication : Le lecteur constatera que, si Xi+1 = XiU‘d, hi+1(U)
contient f(o). Mais si dim ¢ = n-2, il peut se passer que hi+2(U)

ne contienne plus f(o) ; cela ne fait rien car la face T de f(c) = ax"
restera dans hj(U) pour j>1i et c'est bien la seule chose importante

puisque dim T=n-3 et que T risque d'étre dans f(Px {0}) = Px {0}.

cqgf d

Remarque La démonstration classique du théoréme d'engouffrement de

Stallings dans le cas ou M n'est pas un ouvert de R" est assez longue.

On doit démontrer un lemme convenable de position générale avec pour
but une variété PL qﬁélconque. Ensuite on est forcé de subdiviser plu-
sieurs fois, plus que dans le cas ci-dessus. Pour trouver les détails
le lecteur pourra lire Stallings [21], en s'appuyant sur les lemmes

de Zeeman [23]. Enfin pour le cas DIFF, il serait probablement plus

direct de généraliser convenablement (ch.I ;3 .1) et (ch.I;3.2).

Proposition : Soit, dans la catégorie &(& = PL ou DIFF), une variété}

de dimension n, n25. Soit M une sous-variété admettant un voisinage
tubulaire T. On suppose que pour des compacts C arbitrairement grands
dans N, la paire (N-T, N-(TUC)) est 2 - connexe, et que la paire
(N-M, T-M) est (n-3)-connexe.

Soit 0<A<1 et soit K un compact dans N. Alors il existe un automor-
phisme h de N, fixant le tube AT et tout point hors d'un compact, de
telle sorte que h(T)DK.

N.B. Si € = PL, T est un voisinage de M muni d'une structure de PL-
fibré en disque. Si . 0<A<1, AT désigne un autre tube strictement

contenu dans T.
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3#
g?, (*)
Choisissons un nombre p tel que A < p < 1, Soit X un polyeédre fermé tel
que XU puT = N et XNAT = ﬁ. On fixe une triangulation t de N telle que

Démonstration dans le cas ou N est un ouvert de

X soit un sous-complexe. Soit K' un compact contenant K, tel que la
paire (N - AT, N - (ATUK')) soit 2-connexe,
Posons U = N - (ATUK!').

(%

Cette hypothese n'est, en fait, nécessaire que dans la mesure ou
nous n'avons pas donné une démonstration générale du théoréme

d'engouffrement de Stallings.
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Le théoréme de Stallings est applicable a la variété N - AT, & 1'ou-
vert U et au 2-squelette X[2] de X ; X[zj-U = K'rWX[gj est compact
et 2<sn-~-3. Il existe donc un automorphisme de N - AT, laissant fixe
tout point hors d'un compact de N - AT, et par la méme prolongeable en

un automorphisme h, de N, tel que hl(U):JX[zj.

1
Soit alors P un sous-complexe de X, choisi de fagon que X -P soit

inclus dans U et dans le domaine fixe de h1 ; nous avons donc
hl(U)I>§fT§LJP[21 Désignons parﬁﬁh_$ la réunion de tous les simplexes
de la premiere subdivision barycentrique de P ne rencontrant le
2-squelette Pl:z:| relatif a la triangulation t. C'est un complexe de
dimension inférieure & n - 3. Réappliquons le théoréme de Stallings,
cette fois, a la variété N - AT, a l'ouvert %-—kT et au polyedre

compact P( La condition de (n - 3)-connexité est satisfaite parce

n-3)°

que la paire (N -AT, %-—AT) a le méme type d'homotopie que la paire
(N-M, T-M), qui est supposée (n-3)-connexe. Il existe donc un auto-
morphisme h2 de N, laissant fixe AT et tout point hors d'un compact
de N, tel que h2(T)DP.(n_3).
Supposons maintenant que nous sachions construire deux automorphisme
C)I et ()2 de N, laissant encore fixe AT et tout point hors d'un

compact de N, tels que

(%) @1h1(U)U@2h2(T) =N
L'automorphisme h cherché n'est autre que «:th)-l«:bh2)'
En effet UU h(T) = N, donc h(T)DK'DK,
Pour démontrer la proposition il nous reste 3 construire(:a etcza.
Remarquons d'abord que pour la premiére subdivigion barycentrique t'
de t, tout simplexe de P est, de fagon unique, le joint d'un simplexe

de P[2J et d'un simplexe de P( Passons alors a la seconde subdi-

n-3)°
vision barycentrique t" et posons :

2.
Ql = star(P[ J;P) H Q2 = star(P(n_3);P) .
Nous avons : P = QIU Q2'
Posons encore

5,P =X-PNP ; 5,P =N-XNP
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Nous allons démontrer les effondrements suivants relatifs a la subdi-

vision t"

QI\S,P[ZJU(élPﬂQl) et QP 5yU (8,P00Qy) -
I1 s'ensuivra immédiatement que

(1) qux-p&p®yxT

@1 Qzuﬁﬁp(n_a)um

L'effondrement simplicial de Q1 sur P(z) (resp. de Q2 sur P(n—39 est

un exercice simple. )

Supposons qu'une des étapes“de cet effondrement se fasse & travers

6 = ax1, simplexe de la subdivision t", a étant un sommet dans P 2

et T un simplexe de Q1 non inclus dans P 2 .

I1 est clair que, pour démontrer l'effondrement Ql\f;P[Q]LJ(GlPrWQl),

il suffit de démontrer que si 1€ 61P, alors axT€ 61P, car dans c??ias,

pour obtenir l'effondrement cherché a partir de celui de Q1 sur P ,

il suffira d'omettre l'effondrement a travers o.

Or il existe un unique simplexe ¢' de la triangulation t', dont le

barﬁcentre soit un des sommets de o. Si T est dans 61P et n'est pas dans
, le barycentre de o' est nécessairement un des sommets de 7 ; il

est donc dans 61P, ce qui implique que o' est entierement dans 51P, et,

a fortiori, ¢. Le méme raisonnement démontre l'autre effondrement.

La construction de C% et de C& vérifiant (*) se fait par une suite
d'engouffrements élémentaires, en appliquant le lemme (ch.I ; 3 .1)
aux effondrements (I) et (II). Nous savons déja que hl(U)DP[2 UX-P

o - i o —
et que hz(T) P(n_3)UN X. Maintenant @1h1(U) QUX-P et
&,h, (1)> QUN-X. 0r Q UX-PUQ,UN-X=N .L'égalité (*) est donc vé-
rifiée,
cqfd

Corollaire : Dans les conditions de la proposition précédente, il
existe, dans la catégorie E(E = DIFF ou PL), un isomorphisme

o
9 :T~N, laissant fixe M.
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Démonstration : Considérons une suite croissante de compacts Ki

© g .
dans N tels que : N = U Ki'
i=1
Choisissons une suite numérique {ui}i EN’ de nombres strictement posi-

tifs, convergeant vers 1 en croissant ; on suppose de plus que la suite
est non stationnaire.
Considérons la suite de tubes uiT ; si 8 = PL, cela signifie que
- o
T) et U w, T =T,
ieN
Construisons par récurrence une suite d'automorphismes Gi : N—-N.

c
u, T 1n1:(ui+1
90 est l'identité.” Supposons que Gi soit donné de telle fagon que
ei(uiT)D Ki' D'apreés la proposition précédente nous savons construire
un automorphisme hi de N tel que : - hi,Gi(uiT) = Illei(uiT)

- h; (8, (v, T))2K;

- . - ot
Posons alors 6, , = h.6.. Nous avons : 9i+1(ui+1T) K. .1

=Sl T %ifur
1 1

Si nous disons que e,u = ® est bien 1'isomorphisme cherché.

ei,u.T’
1
c g fd

Corollaire : Théoréme de Mazur pour des ouverts de Rr".

Soient M1 et M.2 deux ouverts de R™ et f : Ml--»M2 une équivalence d'homo- -

topie. Il existe un entier s et, dans la catégorie & (& = DIFF ou PL),
un isomorphisme F : M1 st—»M2st, homotope a f x Id ]Rs.
) i

Démonstration : Dans la catégorie B, nous savons construire un plonge

ment propre de M1 dans IRzm+1, (Cf.ch. 0 ) . Nous en déduisons un
plongement propre g : Ml—'szlem.A, homotope a fx {0].

2m+1 k.
Il existe un entier k tel que le plongement gx {0] : Ml—' (MQX(R n )X‘R =

admette un R"-fibré normal v, avec E(v)CN' : Si € = DIFF, on peut choi
sir k = 0 et v est un fibré vectoriel. Si © = PL, l'existence de k et

de v découle du théoreme de Milnor (ct. [12]).
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M1 et M2 étant parallelisables, v est stablement trivial ; quitte a

augmenter k, on peut le supposer trivial . ce qui

permet, méme si & = PL, de supposer que v contient un fibré en disques
2m+1+k

1xD .

Notons M = g(Ml)CN' 4 N =N! xB3; et T un voisinage tubulaire de M,

identifié a Mx {0} dans N, tel que, pour tout xem [x}xB3NT, soit

T!', isomorphe dans la catégorie a M

un convexe de B3. Nous allons montrer que les espaces N, M et T satis-

font aux conditions de connexité de la proposition 3.5 de ce chapitre.

a) Démontrons que, pour des compacts arbitrairement grands dans
N, la paire (N,N- (TUK)) est 2-connexe, (et qu'en particulier, la
paire (N,N-—T) est 2-connexe).
Nous allons simplement démon@rer la partie la plus difficile, a savoir

0,1,

que nz(N,N-(TLJK)) = 0 ; on démontrerait de méme que, pour i
ni(N,N-(TUK)) =0. ,

Soit ¢ (D2,6D2)-+(N,N-(TLJK)). Grace au théoreme d'approximation,
nous pouvons supposer que ¢ est différentiable ; (rappelons que N est
un ouvert d'un espace euclidien). Soit p la projection naturelle de

N sur B?. ;

Nous savons, d'apres le théoréme de Sard (18], que, méme si p@(D2)
contient 1'origine de B3, il existe un point arbitrairement voisin de
'T'origine dans R3 n'appartenant pas & l'image de pp. Il est donc pos-
sible de modifier ¢ par une petite translation dans m?, de telle sorte
que pw(Dg) ne contienne plus l'origine de BB ; nous choisirons une dé-
formation de ¢ suffisamment petite pour que @(6D2) reste inclus dans
N-(TLJK). Autrement dit nous nous somme ramenés par un lemme facile de
position générale, au cas ou @(Dz) ne rencontre pas N'x{0}.

Utilisons & ce point la liberté qui nous est laissée pour choisir K :
on obtient une famille de compacts arbitrairement grands dans N en
prenant les compacts de la forme K'x)»D3 ou K' est un compact de N',
Maintenant il suffit de déformer ¢ en faisant sur la composante pg une
homothétie a partir de l'origine de BS de telle sorte que 1l'on pousse
P@(Dz) a l'extérieur de ADBU p(T). I1 est clair que cette homothétie
déforme @(Slj a travers N- (TUK), vue la condition de convexité dans

la construction de T.
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b) Démontrons que la paire (N-M, T-M) est (n—3)—connexe.
(n=dim N). Sans perte de généralité nous pouvons supposer que. N est
connexe. Nous savons que TN est une équivalence d'homotopie. Soit
N B N le revétement universel de N. Pour ACN, posons A = p-lA. D'apres
le a) 1'injection (N-M)-N induit un isomorphisme sur T, et Ty il en
est de méme de 1'injection (T -M)= T, par un raisonnement de position gé-
nérale analogue a et plus faible que celui développé en a). Donc
PIF_% (I:I‘-ﬁ)-*(N—M_) et P|%_5 ¢ (T -M) = (T -M) sont des revétements
universels.

Or le fait que TN soit une équivalence d'homotopie implique que TN

est une équivalence d'homotopie ; donc on a les égalités
o = H,N,T;2)

= H*(‘I\\IJ—'B\JJ,"\I‘J—’}:{J;Z) (excision)

(théoreme d'Hurewicz)

~ o~

= n*(N —M,?I‘J —’l\l’)

= n,(N-M,T-M) »

3
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Enfin nous pouvons supposer sans perte de généralité que dim N> 5.,

‘Toutes les conditions de la proposition (ch.T; 3 y5) sont satisfaites.

D'apres le corollaire (ch.I;3 .6), il existe, dans la catégorie B, un
isomorphisme 6 : %-*N, laissant fixe la section nulle du tube, a savoir
1'image de Ml dans N. %‘étant isomorphe a Mi:xR?, nous en déduisons 1l'iso-
morphisme cherché. ‘ c £ d

Fin de la démonstration du théoréme de Mazur dans le cas général.

Rappel de la situation : Soit f °'M - M, une équivalence d'homotopie

2
entre deux variétés sans bord de d1men51on n de la catégorie & (& = DIFF,

TOP, PL). On suppose que f*(T(M )) est stablement 1somorphe a T(M )

nous faut trouver un entier N et un 1s0morphlsme

F : MlleN—'M leN, homotope a f x Id

2 rN '

Démonstration : (Astuce de.Hirsch) nous pouvons supposer M1 et M2 plon-

: n+k . . . .
gées dans B , k assez grand pourqu'il existe des microfibrés normaux

p! .
J
\)3 — MJ_ (j = 1,2) (Cf. Milnor [14] pour € = TOP et [12] pour € =PL).
it ' T
J

/
2

avec une ‘structure de m,~f1bres. E(v') est un voisinage rétracte de

Mj (Cf. ch. 0 ). Soit F" : E(v{) E(vé) l'equlvalence d'homotople

D'apres le théoréme de Kister—Mazur (5], v 1 -et v, peuvent etre choisis

ié. f. pi} E(vi) et E(vé) étant des ouverts de Rn+k, nous avons démontré

(ch.I; 3.7) qu'il existe un entier s et un isomorphisme
F' : E(vi)les-'E(vé)les ,

homotope a F'x Id| g

R
Posons N = n+s+k et soient
A D.
v, =v!'xR® 3, M. (j = 1,2).
vJ vJ i. J PR
; .

Nous avons les isomorphismes suivants : ,
- quitte a augmenter N, 1'hypothése sur les fibrés tangents nous

permet d'écrire : -




I. 27

(a) F'* pi(x(M,)) = pf ()

— (b) Puisque E(vj) est parallelisable, nous avons .
pour j=1,2 M, x B :E(T(E(v_))“ Y=E(v®T(M,)) = E(p*&w(MJ.)\
: J iy J J J

C— F' induit un isomorphisme
(Fr3 nt 5 * |
(c) E(F'™ py t(dy) T E(pg (1)),

La composition de ces isomorphismes donne F :

~ a ©
E(pf(v(My)) = B(F'*p3r(M,)) = E(p%v(My))

IR (b) - [ (m)
N F N
My xE » My xR
’ Figure
F
PN . ~ | N
M, xR = E_(pllT(Ml)) + E(p"éT(Mz)) - M2A;‘K.R
. o -
| E(.vl) = E(vl‘)st , E(vé)xRS = E(vz)‘

— E(vé)
® .
4l
f
g M2

3.9 Corollaire Pqﬁr toute variété M contractible sans bord, il existe

un entier s tel que MxR® soit isomorphe a RS,
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§4. LE PROBLEME DE L'EXISTENCE ET DE L'UNICITE D'UNE

Si 1'on se contente de résoudre le probléme "stablement", on est
rameﬂé par le théoréme de Mazur'h dés questions au sujet des microfi-
brés PL et TOP. .

Le probléme de 1'unicité s'appelle le "Hauptvermutung" pour les va-

riétés PL.

Si X.est un complexe simpliéia{ connexe et localement fini, dési-
gnons par kB(X), pourFE = PL ou TOP, l'ensémble des classes d'isomorphisme
stable de microfibrés de type t. Rappelons que ‘deux microfibrés El et §2
sur X sont stablement isomorphes si et seulement si il existe des fibrés
triviaux e, et £y tels. que §1 ® e, soit isomorphe a §2 ® 92(*).
8i, en outre, X est de dimension finie, nous allons définir un ensemble
BPL(X) (résp. STOP(X)) : un élément delBPL(X) se représente par une équi -
‘valence d'homotopie f : X-M avec une variété PL (resp. TOP) sans bord ;
f : X-oMet f' : X>M' représentent le méme élément de BPL(X) (resp.
de 8 (X)) si et seulement si il existe deux entiers n et n' et un iso-

TOP
morphisme PL (resp. TOP) -

: 1
F: MxBR™-M'xR"

qui rende le diagramme suivant commutatif a homotopie pres

M %% . Mxg®

£ |
x/ ‘ ip
i\'M' x0 L urxg?

T S

"Exercice : Montrer que BPL(X) éF BTOP(X) sont Qes ensembles’.

*)

kebest un groupe abélien pour la somme de Whitney. (Cf. ch. 0).




e < ————— ek < 01 ovomans et

e R . - R

ot 2t

S

o o i %

preg

I.29

Considérons le carré suivant d'applications naturelles

e (X) —& 4 s (%)

TOP(

(1-4-a) TpL Trop

kpy (X) ¢ kpop(X)

§ et ¢ oublient la structure PL. Au niveau des représentants, T

as-

PL

socie a une équivalence d'homotopie f : XM le microfibré f*TPL sur X.

“ .
TTOP est déefini parallelement.TPL et TTOP sont évidemment bien définis
et rendent le carré commutatif.
Remarquons que si X' a le type d'homotopie de X, le carré associé a

X' est naturellement isomorphe a celui associé a X.
Théoréme : TPL et TTOP sont des isomorphismes.

Démonstration : L'injectivité est exactement le principe d'isomorphisme

stable (ch.l; 1.1) pour PL et TOP. Vérifions la surjectivité pour PL ;
la vérification pour TOP est paralléle, Soient xEkPL(X) et £ un R™-fibré
sur X qui représente x (théoreme de Kister-Mazur Ch.0 et [5] ). Plongeons
X simplicialement dans un_espace euclidien et choisissons un voisinage
régulier ouvert N tel que XN soit une équivalence d'homotopie. Si

r : N-X est une rétraction (Cf. Ch.0 p ), considérons 1'équivalenc

d'homotopie f : X~ E(r*f) ou f est 1'application composée

L1 section_ *
X N ‘nulle E(r*g).
Or TE(r*g) = p*r*§€Beﬁ%ﬁ.s est un fibré trivial - car le fibré tangent
a N est trivial-(Cf. Ch.0 ) -

$i [f] est 1'é1ément de 8, (X) représenté par f, Ty ([£]) est par défi-

nition représenté par !

i (p*r""g -] s) (p*r*g D e ) l

x

§$>E'X

qui est stablement isomorphe a §.

(*)

p est la projection du fibré r*g sur N. : i
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Du carré (I - 4 - a ) on déduit le

4.2 Corollaire : Soit M une variété topologique sans bord. Pour qu'il
"existe un entier n tel que MxR" admette une structure de variété PL,
il faut et il suffit qu'il existe un micro-fibré PL sur M dont le micro-

fibré TOP sous-jacent soit stablement isomorphe au micro-fibré tangent
TOP de M.

Démonstration : Le corollaire se déduit du carré (I - 4 - a ) a partir

du moment ou l'on sait que chaque variété topologique M" a le type d'ho-
motopie d'un complexe simplicial . ' localement
fini et de dimension finie. X est par exemple une triangulation de 1l'es-

pace total d'un Bk—fibré TOP normal a un plongement de M dans m@*k. Un

tel plongement existe (Cf. ch. O ). B

- cgfd K-

4.3 Corollaire '
(a) Ssi o kPL(X)-‘kTOP(X) est surjectif alors, pour toute variété to-

pologique M sans bord qui a le type d'homotopie de X, il existe un entier

n tel que MxR" admette une structure de variété PL. “

1 (b) si ¢ : kPL(X)-ﬂkTOP(X) est injectif alors, pour tout homeomorphisme f: i

TOP h : Ml--'M2 de variétés PL ayant toutes deux le type d'homotopie de X

il existe un entier n et un isomorphisme PL H : Mlx&flﬂk%zme homotope
N : n
a hx1R".

8 2

Remarque : D. Sullivan a démontré que ¢ : kPL(X)-*kTOP(X) est injectif

pour tout complexe simplicial fini qui satisfait a la condition suivante :

(*) H3(X ;Z2) n'a pas de 2-torsion.

D'ailleurs il a démontré un résultat plus fort qui permet de déduire des

méthodes de chirurgie le théoréme suivant : )

, . 3* ’ , . ., |
1.4 Théoréme (Sullivan% ): Soit h : Ml-*M2 un homéomorphisme de deux varie- !

4 . S . . . .
tés compactes PL simplement connexes, & bord ou bien vide ou bien sim-

pPlement connexe. L'on suppose (*) pour X=M, et 1'on suppose dim %ﬁ:ﬁ,

; 1
ou bien bM, = # et dim M, 25. Alors 1'application h : (M;,bM;)~ (My,bM,)
est homotope a un isomorphisme PL.

(*)

‘Thése, Université de Princeton, 1967.

r
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Au lieu de supposer M1 simplement connexe et le vide ou simplement
conn
on suppose maintenant que M1 et le sont connexes et que lec-'M1 induit
un isomorphisme de Ty e Alors hlintkﬁ_est homotope a un isomorphisme
PL : int Ml-*lnt M2.
La question de 1'injectivité de ¢ : kPL(X)-*kTOP(X) reste dans le

cas général un mystere complet.

Exercice : On démontre les analogues des résultats 4.1, 4.2 et 4,3

LY
pour un carré

@l
Sprrp(X) ——— 85p(X)
(1-4-bv) T Trop

k (%) I AN kpop (X)

et, ce qui est plus difficile, pour un carré
s (X)) — 2 48 (x)
DIFF A PL

I-4- T T
( ) 0 PL

k 4(X) Pk (X)

tel que ¢' = ¢9p et Q' = 3@,

X est encore un complexe simplicial connexe, localement fini et de
dimension finie. kO(X) est 1'ensemble de classes d'isomorphisme stable
de fibrés vectoriels sur X.

Voici quelques indications pour le deuxiéme carré. Au niveau des repré-
sentants ¢ associe a une équivalence d'homotopie f : X-M, ou M est une
variété DIFF sans bord, la composée XiiMuh:+N' ou N est une variété PL
et ou h munit M d'une Cl—triéngulation de Whitehead (CﬂJ}H.C.'Whitehead@
¢ peut étre défini par la condition que (I—4:—c) commute, car TO et TPL

sont des isomorphismes. Pour une définition plus directe de ¢ voir

Milnor [12].
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Remarque : ¢ (et donc ¢') n'est ni injectif ni surjectif. Pour une
explication simple voir Milnor [12], Il existe en fait une suite exacte
longue de groupes abéliens (Cf. Lashof-Rothenberg [261)
n n n n-1 n-1.
- T ~k0(s )-okPL(S )T k(s )~
ot T™ est le groupe de structures différentiables a difféomorphisme pres

sur la sphére S, (Cf. Munkres [16;p522] et Cerf [3]). On a

n_ |0 1 2 3 4-5 6 7 8 9 10 11 ...
o o 0 0 0 0 028 2 8 6 902 ...

(Cf. Kervaire-Milnor [25] et Cerf [24]).

$5. PROBLEME DE RENDRE PROPRE UNE EQUIVALENCE D'HOMOTOPIE

La forme générale du théoréme de Mazur permet de démontrer en em-

ployant les idées du chapitre V le théoréme suivant :

Théoreme : Soit f : M; ~M, une équivalence d'homotopie entre deux
variétés DIFF toutes les deux sans bord et de dimension n. La condition

nécessaire et suffisante pour qu'il existe un entier N et une équivalence

. - oN N R . .
'd'homotople propre. F : Mlx R - M2x IR homotope a Fx 0 est qu'il existe

un entier s et une équivalence d'homotopie fibrée au-dessus de M1 des

fibrés de Hurewicz (& fibre homotope a Sn+s—1

(M) et tr(My) @S,

) associés aux fibrés

Nous indiquons la démonstration sous forme d'exercices.

Exercices

0) Egggg : Si f : Ml-"M2 est une équivalence d'homotopie propre, et

si §i est un fibré vectoriel de dimension k sur Mi tel que les fibrés en
. - 3
spheres sK71 ge §1 et f*§2 aient le méme type d'homotopie fibrée( ) il

]

(*) On trouvera la définition d'une équivalence d'homotopie fibrée au
chapitre V.

r ; : » TR e
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existe une équivalence d'homotopie propre ¢ des espaces totaux E(§i>

qui rende le carré suivant commutatif & 1'homotopie pres.
B(§,) —2  E(E,)

proj. proj.

f
M1 _—— M2

1) Suffisance : Soit E® un fibré vectoriel sur M1 qui représente

[f*"r(Mz)] —[T(Ml)] dans le groupe kO(Ml) des classes stables de fibrés
vectoriels sur Ml' Déduire du principe d'isomorphisme stable un isomor-
phisme ¢ : E(£) x B - MQx!Rs+N

[T(Ml)] —[f""’r(MZ)] a le type d'homotopie fibrée d'un fibré trivial.

3t
. Montrer qu'un représentant 'ﬂs de

( ). Appliquer convenablement 0) pour obtenir 1téquivalence
s+N+8' 8+N+s!

d'homotopie propre MlxIR ~ ngﬁ demandée.

2) Necessité : Soient M1 et M2 deux variétés DIFF; Soit f une appli-

cation propre de M1 dans M2 et g : Ml—»sz(RS un plongement dans M2xD

qui est proprement homotope a fx 0 dans M

S

2xDS. I1 existe un voisinage

x0 C int T (voir page I.8).

tubulaire fermé T de g(Ml) tel que M
s-1

2

Montrer que la projection 3T -R® - {0} = s constitue une trivialisatio.

du fibré BT--}M1 en tant que fibré de Hurewicz a fibre homotope a ¢t
(Cf. ¢h. V ). Or OT~M, est le fibré en spheres associé au fibré
normal de g qui dans le groupe des classes stable est [f*T(Ml)] -[T(Ml)].
En déduire une équivalence d'homotopie fibrée sur M, entre les fibrés

' t
en sphéres associés a f*T(M2)$ e® et T(Ml)‘B e , 8" = s+n,.

3) Généraliser le théoréme aux variétés topologiques. Pour la suffisance
il convient d'observer que si £ est un m"-fibré TOP sur XE+ el contient
un fibré en spheres s" localement trivial EEX tel que § + 31 est iso-

morphe au R fipre M(p) ~X, M(p) = (0,1JxE/{(1,e)= (1,e'),si p(e)=ple

[ ]. La nécessité (suivant 2)) est plus cannulée,
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II.2 {

La théorie des fibrés conduit a 1'étude des foncteurs H, contrava-
riants définis sur une catégorie d'espaces topologiques et de classes i
d'homotopie d'applications continues, qui sont & valeurs dans la catégorie
des ensembles. Un exemple typique est le foncteur qui associe a un complexe
simplicial localement fini 1l'ensemble H(X) des classes d'équivalence de
microfibrés PL sur X d'une dimension fixee (Cf. ch. IV ). Le théoréme
de Brown donne des conditions sous lesquelles un tel foncteur est repré-

sentable dans le sens suivant:

Définition : (Grothendieck). Soit H : B = € un foncteur contravariant
4 valeurs dans la catégorié® des ensembles. Pour tout YEE, et tout u€H(Y)
on peut former une transformation de foncteurs

T(u) : Home(?,Y) ~ H(?)

qui a fEHome(X,Y) associe 1'é1ément H(f)u € H(X). Le foncteur H est repré-
sentable s'il existe un YEE et un u€H(Y) tel que T(u) soit un isomorphisme
de foncteurs. En d'autres mots, pour tout X€€ et x€H(X) il existe un mor-

phisme f : X = Y unique de telle sorte que H(f)u = x.

Dans le théoréme de Brown, les objets de la catégorie utilisée sont

i

des CW-complexes de Whitehead (avec point base). Nous commengons donc par

rappeler certaines propriétés de ces complexes que nous utiliserons sans

cesse dans les chapitres suivants.
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II.3

§1. DEFINITION ET PROPRIETES DES CW-COMPLEXES

E 33 1+ -t 2 T 2t -3t - 1 -

Au sujet de ce qui est traité dans ce paragraphe nous donnons les
références suivantes : J.H.C. Whitehead [8 ], Hilton [ 3 ], G.W. Whitehead
[ 61, Spanier [& ]. - B

1.1 Définition : Un espace topologique X est muni d'une structure de
CW—complefe 8'il est muni d'une filtration croissante par des sous-
Y

espaces X , n@N, recouvrant X et vérifiant en outre les conditions

suivantes :

(i) " désignant le disque unité de R™ et 8D" son bord, pour tout

n€N, il existe un ensemble d'indices An et Pour tout aEAn une application

continue f_: &6D" -~ X[n_lj de telle fagon que XI:n soit homéomorphe a

[n-11) (| T n -
X LL(LLD x{a})/{¥xe€sD ,fa(x) = x®x0}.

(ii) La topologie sur X est la limite inductive des topologies

induites sur chaque X n,

- Par définition X[n] s'appelle le n-squelette et 1'image deian{a} dans

X[n] est une cellule de dimension n, notée eg, dont le bord 6e2 est
1'image par f de sp" 6ez c x(r-1], eﬁ—éég est 1'intérietr de la cellule
o o o

et est noté ez H eg est un exemplaire du disque ouvert Dn ; si a £ B,

4] o . .
eg N eg = . Remarquons que la topologie de X est la limite inductive

des topologies indwites sur chaque cellule,
- La dimension d'un CW-complexe est la dimension maximale de ses cellules.

- Le cardinal d'un CW-complexe est, par définition, le cardinal de

l'ensemble de ses cellules,

o W
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Exemples @
1/ Si (X,xo) est un espace topologique pointé et Y un espace topo-

logique quelconque, on appelle produit réduit ("smash") le quotient de

X x Y par le sous-ensemble {xo} x Y. Notation : X x Y.

Si X est un CW-complexe et x, un point de son O-squelette, I dési-
gnant 1'intervalle [0,1], X x I est un CW-complexe, ayant méme type

d'homotopie en X. (Exercice).

2/ Bougquet :
. . ' . Ly
Soit (Xa’ xa)aGA une collection d'espaces topologiques pointés,

On appelle bouquet, noté VXa, le quotient LLXG/U{XG}. Si, pour tout
€A, Xa est un CW-complexe et x, un point de Xao , alors VXa est

un CW-complexe.

X[n]/x[n—ll'

Par exemple, est un bouquet de cellules de dimension n,

c'est-a-dire un bouquet de n-spheres.

Définition : Un sous-complexe Y d'un CW-complexe X est un CW-complexe

(k] _ ynxl®

tel que Y soit un sous-espace topologique fermé de X et que Y
pour tout k€N,

o .
Conséquence : Si ea est une cellule de X, eanY est vide ou eOC est une
cellule de Y. |

L 2 -

Exemple : Les squelettes de X sont des sous-complexes.

Lemme : "closure finiteness". Toute cellule d'un CW-complexe est conte

dans un sous-CW-complexe fini.

Lemme : Tout compact K d'un CW-complexe X est contenu dans un sous-

CW-complexe fini.

Lemme : Tout CW-complexe est paracompact.

Cf. H. Miyazaki, "The paracompactness of CW-complexes",
Tohoku Math. J., 4 (1952), pp. 309-313.
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1.8

1.9

1.10

I1.5

Définition : Une application continue f : X = Y, ou X et Y sont deux
CW-complexes, est dite cellulaire si, pour tout néN, f(X[nJ)‘est inclus

dans Y[n].

Lemme : Soit f : X = Y ; si la restriction de f a un sous-complexe Xo

de X est cellulaire, il existe une application continue cellulaire

g : X =Y, homotope a f relativement a XO.

Lemme : Soient X et Y deux CW-complexes, Xo un sous-complexe de X et

f : X0 —+ Y une application cellulaire.
Alors XUY est canoniquement muni d'une structure de CW-complexe.
f “
Définition : Un CW-complexe X est dit localement fini, si tout point
posséde un voisinage ne rencontrant qu'un nombre fini de cellules.
I1 revient au méme de dire que tout point n'appartient qu'a un nombre

fini de cellules fermées ou que X est localement compact.

Lemme : Soient X et Y deux CW-complexes. Si Y est localement fini, alors
XxY, muni de la topologie produit, est canoniquement un CW-complexe. Si Y
n'est pas localement fini il existe sur le produit ensembliste une struc-

ture naturelle de CW-complexe, (notation XﬁY), dont la topologie est plus

fine que la topologie produit.

De plus, 1'identité de XXY dans XxY est une équivalence d'homotopie.
.

Pour la troisieéme partie du lemme on peut utiliser le résultat
suivant de Milnor [ﬁ ] : si X et Y sont deux CW-complexes, leur produit
cartésien a le typewd‘homotopie d'un CW-complexe.

Remarquons alors que les topologies de XxY et de XXY ont.mémes compacts.
Par conséquent 1l'application identique de XXY dans XxY induif un isomor-
phisme sur les groupes d'homotopie. D'aprés le lemme 1.14, c'est une

équivalence d'homotopie.

Notations : Si X et Y sont deux espaces topologiques, [X’leibre désigne

l'ensemble des classes d'homotopie libre d'applications continues de X
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1.12

1.13

1.14

1.15

II.6

dans Y. Si X et Y sont pointés, [X,Y] désigne 1'ensemble des classes

d'homotopie pointée d'applications de X dans Y respectant les points bas

Lemme : Soient X un[CW—complexe et K un compact pointé,.
. n .
Alors [K,X] = lim[K,X ]] et, [K,X]libre = lim [K,X[n]]

Ce lemme est une conséquence immédiate du lemme 1.4,

libre”

-

Définition : Soient X et Y sont deux espaces topologiques connexes

pointés et f : X - Y une application continue respectant les points base

f est n-équivalence (ou m-connexe) si 1l'application fg : nq(X) - nq(Y)

est injective pour g<n-1 et surjective pour q<n. 2
Si f est une inclusion, ceci équivaut a dire n (Y,X) = 0, O<q<n. Sinon,
cela revient toujours a dire que n_(M(f),Xx{0}) = 0, pour gq<n, ofi
M(£) = xx[0,1]0Y/{(x,1)=f(x)} est le cylindre de 1'application f.
Lemme : Soit f : X - Y une application n-connexe ; soient P un CW-
complexe connexe et £,:[P ,X] » [P,Y] 1'application induite par f sur les
classes d'homotopie.
Alors si dim P<n, f, est surjective et si dim P<n-1, f, est injective.
Lemme : (Théoreme de J.H.C. Whitehead).
Si X et Y sont deux CW-complexes connexeg. Si f : X = Y est une applica
tion continue telle que f, : m,(X) - 7,(Y) soit un isomorphisme (i.e.
gsi f est une équivalence faible), alors f est une équivalénce d ‘thomotop
2.2

Lemme : Soit X un CW-complexe dénombrable ; il existe un complexe

~simplicial localement fini dénombrable Y, ayant méme type d'homotopie

que X. Si X est fini, Y peut é€tre choisi fini.
Lemme : Tout CW-complexe est localement contractible.

Lemme : Soient X un CW-complexe et A un sous-CW-complexe de X,
Etant données une application f de X dans un espace topologique quelco
Z et une homotopie h de fIA’ il existe une homotopie H de f, prolongeas

On dit que l'injection de A dans X est une cofibration.
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Par exemple, si X est un CW-complexe pointé, 1'inclusion de son
point base est une cofibration. Dans toute la suite les points-base des 'QQ
espaces topelogiques seront supposés avoir cette propriété : nous dironps

qu'il s'agit de points-base non dégénérés.

$2. THEOREME DE REPRESENTABILITE DE BROWN

2.1 Définition d'un h-foncteur .

Soit TOP 1la catégorie des espaces topologiques pointés et des apr
plications continues respectant les points base. Un foncteur H défini
sur une sous-catégorie pleine de TOP" (resp. TOP) est un h-foncteur s'il
posséde la propriété suivante(: pour tout couple (f1’f2) de morphismes
de TOP' (resp. TOP), homotopes dans la catégorie, les morphismes H(fl) { }
et H(fz) sont égaux. ) ‘ %

Notations : - Si H est contravariant, au lieu de H(f) nous utiliserons
la notation f*,

- Soit i 1'injection canonique d'un sous-espace topologique
X dans X. Si x€H(X), nous noterons x| x 1'élément i*xEH(XO) et nous ;;

L. . o
parlerons de la restriction de x a Xo'

2.2 Représentabilité .

Soit H un h-foncteur contravariant défini sur une catégofie €
d'espaces topologiques et d'applications continues & valeurs dans la
catégorie £ des ensembles. Deux points de vue peuvent étre adoptés.

Le premier consiste & remarquer que H : € - € se factorise par la caté-
gorie quotient 6 dont les morphismes sont les classes d'homotopie d'ap—
plications de € : H - Hr ol 7 est le foncteur canonique de © _dans € et
ou H : B ~ € est induit par H. On peut alors se demander si H est repré-
sentable au sens de Grothendieck (Cf. p. II.2 ),

L'autre point de vue consiste & ne pas faire intervenir la factorisation
A

du foncteur H par la catégorie-quotient €, et a donner une définition
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directe de la représentabilité d'un h-foncteur contravariant en modifian
comme suit la définition abstraite. Nous dirons que H est "représentabl:
et que le couple (YH,u) est universel, si a tout élément x de H(X), on

peut associer une application continue f : X - YH’ unique a homotopie

prés, telle que f*u = x.

Attention ! Si H est "représentable" au sens précédent, H : € - € n'a
aucune raison d'étre représentable au sens catégorique. En particulier H
ne transforme pas en -général les limites inductives de € en limite

projective ; nous reviendrons sur ce point au chapitre III.
%

Nous utiliserons avec Dold la définition suivante :

Définition : Soit H un h-foncteur contravariant défini sur une sous-
. ) + s . .
catégorie pleine de TOP" 3 valeurs dans €. H est semi-exact s'il

vérifie les axiomes suivants :

a) axiome du bouquet : si X = VXa est un bouquet dans la sous-catégorie

alors l'application canonique de H(X) dans WH(Xa) est un isomorphisme.

b) axiome du recollement : Soit X = X1UX2 la réunion de deux sous-espace

X, et X, dans la sous-catégorie. Soient x1€H(X1) et x2€H(X2) tels que

X = X .
1lxlﬂx2 2lxlﬂX2

Alors il existe x€H(X), en général non unique, tel que x x. = % et
' 1

X = Xq

X2 2

L'exercice suivant a pour but de justifier le terme '"semi-exact":

Exercice : (i) Soit ACX un sous-complexe. Soit cA le céne
Ax[0,1]/{Ax1=point} ; identifions Ax{0}ScA & ACX pour former XUcA.
(D'apres 1l'appendice AILp. 2,1a projection naturelle de XUcA sur X/A
est une équivalence d'homotopie). Déduire de (b) que H(A)iﬁH(X)irH(XUcX
est une suite exacte d'ensembles pointés. Montrer que ¥-2A-X-X/A-*
est une suite exacte dans €.

(ii) Employer 1'espace X'= Xlx{l}UXOx[1,2]UX2x{2}CZXx[l,ZL
pour montrer que la propriété énoncée dans (i) entraine (b); dans la

formule précédente X = X1r1X2. (Cf. Appendice AII p.7).
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Pour un foncteur semi-exact, nous avons les lemmes suivants

C'est une conséquence évidente de 1'axiome du bouquet.

Si X est un point, H(X) est réduit & un élément.

Lemme ¢ Si X est réunion d'une famille croissante de sous-espaces Xn,

n€N, 1'application naturelle H(X) - limH(Xn) est surjective.

Preuve : Soit X' le sous-espace de XX'[O,w) défini de la maniere sui-

vante : Xt

= U X! ol X! =X & [n,n+1].

nEN

La projection naturelle de X' sur X est une équivalence d'homotopie, ainsi

que celle de Xﬂ sur Xn’ ce qui nous permet de raisonner sur X'. Identifions

dans la suite

Soient
et
On a

Alors

Considérons 1'é1ément-(xo,xl,x21.3)Egﬂm}H(Xn).

H(X) avec H(X') et H(XIQ avec H(Xh).

Lo

L

1 r !
XO v X2 V i

1 ]
1 X1 A X3 V oeeens

= X! n =
LOUL1 X' et L0 L1 VXn

H(LO) = H(XO).H(X1)......
H(L,) = H(Xl).H(XB)......
H(LonLl) WH(Xn)‘
H(LOULI) H(X).

Soient Yo = (xo’x2"")€H(Lo) et Y= (Xl’x3"')EH(L1)' On vérifie que

yolLoﬂL1= Y1JLOOL1'

L'image de y dans LhnH(Xn) est donc (xo,xl...).

cgfd

I1 existe donc y € H(X) tel que y’L =Y, et yIL =¥y
o ’ 1

Pour pouvoir appliquer le théoréme de Whitehead (chJI ;1.14), nous

utiliserons dans ce qui suit la catégorie € et ses sous-catégories CO, Cf

et Cd définies ci-dessous

Les objets de € sont CW-complexes pointés et les morphismes de E sont les

applications continues respectant les points base. Bo

(resp. €

d’

resp. Ef)

est la sous-catégorie pleine dont les objets sont les CW-complexes finis

(resp. &nombrables, resp. de dimension finie).
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2.6 Théoreme de Brown ([1])

1) Soit H un h-foncteur contravariant de la catégorie B des CW-
complexes pointés dans la catégorie £* des ensembles pointés., Si H est
semi-exact et si H(SO) n'a qu'un élément, alors H est représentable et

l'espace classifiant est connexe,

2) Si H n'est défini que sur la sous-catégorie bf des CW-complexes
de dimension finie, alors, sous les mémes hypothéses H admet un prolonge-

ment unique a la catégorie € en un foncteur représentable.

*
3) Si H n'est défini que sur la sous-catégorie t‘o des CW-complexes

finis et si, de plus, pour tout XECO H(X) est dénombrable, alors, sous
les mémes hypothéses H admet un prolongement unique a la catégone € en w

foncteur représentable.

Démonstration

lére PARTIE :

I1 existe un ensemble dénombrable ¥ de CW-complexes finis, tels que,
pour tout Xéeo, il existe X'€X¥et une équivalence d'homotopie h : X-»X"
(Cf. lemme (ch.II;1.15)).
Soit Y un CW-complexe quelconque et y un élément quelconque de H(Y).
Posons Yo = YV{[VXX] ; x€RAR), Xex}, on Xx désigne un exemplaire de X.
Dans H(Xx) nous avons 1'élément privilégié x(Xx) correspondant & x dans
H(X). A 1'é1ément y.'ﬂ'{x(Xx) ; x€H(x), X€X¥} du produit
H(Y).TT{H(XX) ; x€H(X), X€x}, 1'axiome a) de la semi-exacti_tude permet
d'associer un unique élément u € H(Yo). La construction rend évident le
fait que, si ZEBO et z€H(Z), il existe f : Z—-Y0 tel que : f""u0= z.
En revanche, il peut exister deux applications f, g : Z—vYo, non homotopt
telles que f*u0=g*uo.
En résumé, pour tout ZEGO, l'application canonique uO(Z) : [Z,YOJ*H(Z)
est surjective mais non injective,
La suite de la construction consiste a modifier Yo de fagon a "récupérer
l'injectivité", Cette construction se fera par récurrence.

Supposons définis le CW-complexe Y et 1'é1ément u € H(Yn)' Définissons
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comme suit le couple (Yn+1’ un+1) :

pour tout X€X et pour chaque élément « € [X,Yn], choisissons un repré-
sentant cellulaire f : X-Yn. Si f,g : X---Yn sont les représentants ainsi
choisis de deux classes d'homotopie distinctes et si f*un= g*un, on fait
correspondre au triple (X,f,g) le CW-complexe Zf construit en attachant

' &
XxI a Yn par les identifications : (x,0) = £(x), (x,1) = g(x).

x {1}

' . .
£,g° Yn+1 s'obtient alors a

partir de la réunion disjointe des Zf g en identifiant tous les exem-
1

plaires de Yn; Yn est encore un sous-complexe de Y

Remarquons que Yn est un sous-complexe de 2

n+l° :
Nous voulons maintenant 4reuver un élément un+1élﬂﬂh+1), dont la restric-

tion a Yn soit L C'est dans cette étape de la démonstration qu'intervien

de fagon essentielle l'hypothése de "recollement",.

Ecrivons Zf comme la réunion de Zﬁg et de Zig ol Z%g est 1'exemplaire
’ i
de Xx [1/3,2/3] canoniquement plongé dans Zf’g et ou Zgg est 1'adhérence
- 7!
de Zf,g Zf,g'

Zhgr12£g est le bouquet Xx{1/3}VX<{2/3}. On en déduit une décomposition

= ! " - ' ' = [} ] . 1 NnNyn A s 3l r
Y 4= YUY Yn+1r1Y£+1 V(Zﬂgr1zﬂg), Y!,,NYr , peut &tre considéré

n+ n+1 n+l 7
ou A1 et A

comme un bouquet AiVA sont deux exemplaires d'un bouquet VX,

2 2
indicé par tous les triples (X,f,g).

L'inclusion de Yn dans Yg+1 est une équivalence d'homotopie ; il existe

. 4 J S . " . _
donc un unique e1ement‘v2€H(Yn+p tel que vlen- u .
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Soit maintenant F : AfﬂYnl'application dont la restriction a Alr\Z
est définie par la formule : F(x,1/3) f(x).

étant une équivalence d'homotopie, il existe

f,g

L'inclusion de A, dans Y!
1 n+l

. ’ » 1 : s p +*
un unique élément v € H(Yn+1) dont la restriction a A, est F*u .

Montrons que Vv f oAyr =V '\ Nyn -
llYn+1 Yn+1 2lYn+1 Yn+1

étant le bouquet A, VA il suffit pour cela de démontrer que

1 Nyn
Y Yn+ 1 727

n+1 1

cette derniere

vl,A;: V2IA ce qui est_gv1dent, et que Vl,A = V2IA? H
égalité se démontre facilement en remarquan% que 17inclusion de A, dans
Y',q est vne équivalence d'homotopie et que fhu = g*un.

D'aprées l'axiome b) de la semi-exactitude il existe

un+1EH(Yn+1)te1 que un+1’Y' =v, et u = Vg

n+1.Y"
n+l

n+1
A partir du couple (Yn,un)gnous avons pu construire un couple (Yn+1’un+1)
tels que les applications f et g, vérifiant f*un= g*un mais non homotopes

dans Y , le deviennent dans Y .
n n+1

Définissons alors le couple CYH, uH) :

-Y, = U Y
H neN B
- uHéEH(YH) est choisi de fagon que pour tout n€WN, on ait uy Yn= u,

ce qui est possible d'aprés le lemme (ch.II;25),

Le couple (YH,uH) est universel :

10/ (YH,uH) est universel pour Eo :
Si xeeo, pour tout x € H(X), il existe f:X~-Y

L3 - .
H tel que f uy= X ; en

effét, on a vu, au moment de la construction de Yo’ que 1'on peut choisir

. . . . c

f a image dans Y0 YH.
*y

Soient, maintenant, f et g : X—*YH deux applications telles que f“uH= gy

X étant compact, d'apreés le lemme (chIi;1.4), il existe n€N, tel que f et

g se factorisent par Yn' Par construction de Yrl , £ et g sont homotopes

+1
' : 0 3
tant qu'applications dans Yn+1'

Conséquence : [SO,YH] est isomorphe a H(SO) qui, par hypothése, est rédv

a un élément. Donc YH est connexe.
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20/ (YH,uH) est universel pour E :
Si X €&, montrons d'abord que 1'application uH(X) :[X,YH]—»H(X)

est surjective. Soit x €H(X) ; il faut trouver f : X-‘% tel que f‘*"uH=x.
Utilisons le fait que (YH,uH) dépend du choix arbitraire de (Y,y) pour
construire le nouveau couple (Yﬁ,uﬁ) a partir de Y'= X\TYH et y'= (x,uH).

Yﬁ et YH sont deux espaces classifiants pour éo ; on en déduit que 1'in-

jection i : YH-*Yﬁ induit un isomorphisme de leurs groupes d'homotopie et,

puisque ce sont des_.CW-complexes connexes, que i est une équivalence
d'homotopie (Cf. lemme(chlkll4» dont j : YIZI-*YH désignera une homotopie
inverse. Soit k 1'inclusion de X dans Yﬁ ;3 on a trivialement : (jk)*uH=x.

*

Montrons maintenant que uH(X) est injective : soient f et g : X—~YH deux

applications telles que f*uH = g*uH. I1 faut montrer que f est homotope

a g. f et g étant choisies cellulaires, nous construisons le couple uni-
versel (Yﬁ, uﬁ) a partir du couple (Y",y") défini comme suit

M= YHV (Xx[O,lj)/{(x,O) = f(x)’ (xil) = g(x)lx GX} b
y" € H(Y") est choisi de fagon a induire u, sur Y, et f*u, sur Xmx [0,1].

H H H

Ici encore 1l'inclusion de YH dans Yﬁ est une équivalence d'homotopie.

f et g, qui, en tant qu'applications dans Yﬁ, sont trivialement homotopes,
le sont donc en tant qu'applications dans YH.

Ceci acheéve la démonstration de la premiere partie.

2eme PARTIE :

1°/ Construction d'un classifiant de dimension finie pour les

complexes de dimension au plus égale a n.

La construction est celle de la premiére partie en remplagant & par le
sous-ensemble 3%+1 des éléments de X de dimension au plus n+l.

L'espace Yn ainsi construit est classifiant pour les CW-complexes finis de

dimension au plus n+l.

Comme dans la lére” partie,

pour terminer la démonstration, il faut savoir que, si f : Ynﬂ Yé est une
(n+1)—équiva1ence entre deux classifiants pour les CW-complexes finis de
dimension au plus n+l, alors, pour tout CW-complexe X de dimension infé-
rieure ou égale a n, f, :[X,Ynj-'[X,Yéj est un isomorphisme ; mais ceci

résulte du lemme (chII;1,13),
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Finalement Yn est classifiant pour tous les complexes de dimension au
plus n.

Remarquons que si la construction nous donne un espace classifiant Yn

de trop grande dimension, on peut prendre comme nouveau classifiant son

(n+15-squelette (approximation cellulaire).

2°/ Construction de Y.

) a

Par récurrence nous pouvons choisir le couple (Yn+1’un+1
partir du couple (Y ,u_ ) de fagon que
n’.’n

u .

[ =
Yn Yn+1 ’ un+1| n

Posons Y_= [n+1] de Y

H 1£NYH > on remarque que le (n+l)-squelette Y n+k

(k=20) est classifiant gour les complexes de dimension au plus n. L'inclu

sion de Y[n+1j dans Y[n+1] est donc une n-équivalence.
n+k n+k+1

D'aprés le lemme (ch.II ;1.13 ), le (n+l1)-squelette de Yy est classifiant

. +1 ,rn+
pour les complexes de dimension au plus n-1, car l'injection Yﬁik J‘*\ﬁ

n .

. . . . [n+1] [n+1] :
! - <
induit l'isomorphisme ni(YH ) “i(Y n+k ) y 1

On en déduit, alors, un isomorphisme entre les foncteurs définis
sur €, [—,YH] et H ;

si X(Eef et si dim X=n, l'isomorphisme ci-dessus est la composition des

isomorphismes suivants :

[X,y,] = 060 T 1y 1 % R

Ceci termine la démonstration de la deuxieme partie.

3éme PARTIE

La construction est analogue a celle de la premiére partie. Seul
l'ordre des opérations est modifié de facon qu'a chaque étape Yn soit
fini.

Puisque nous voulons construire YH classifiant pour les complexes

finis, il est inutile d'introduire un espace Y arbitraire au début de
la construction.
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Commengons avec Y0 réduit a un point et u 1'unique élément de H(YO).
Pour tout complexe fini X,H(X) étant dénombrable, nous pouvons ordonner

tous les couples (X,x), X€X , x€H(X) : (Xl’xl)’ (X2,x2),...

Pour i £n, supposons construit 1l'espace Yi et 1'élément u, EH(Yi).
Soit ti,t;,... une énumération des triples (X,[f],[g]) od x€ X et ol

f,g : X--oYi sont deux applications non homotopes telles que f“"ui= g*ui-.

On construit Y a partir de Y VX en attachant pour chaque
n+1 n n

. +1
triple t‘i] = (x,[£],[&]), i,j<n, le complexe X& I par les identifications
f(x) = (x,0) et £(x) = (x,1). On choisit Uy de fagon a prolonger

’ p . n+1 n+l .
(un,xnfl)GH(YnVXn_‘_l), et une énumération tl , t2 ... des triples
(x,[£],[g]), X€x%x, f,g = X_'Yn+1 applications non homotopes telles que
f‘”‘un+1= g""un+1. Ceci achéve la construction par récurrence.

Soit YH= UYn' Si f ¢+ X»Y_ est une application d'un complexe fini X
dans YH’

f(X)CYn. L'élément f*unEH(X) est indépendant de n. Ceci définit une

H
d'aprées le lemme (ch.II ;1.4) il existe un entier n tel que

application naturelle de [X,YH] dans H(X), qui est bijective par cons-

truction méme de YH. Nous avons donc un isomorphisme de foncteurs sur

e, - [-,YHJ - H(-). c g fd
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§3. REPRESENTATION DES TRANSFORMATIONS
NATURELLES DE FONCTEURS REPRESENTABLES

3.1 Généralités : Soient € une catégorie a objet nul et X, Y deux objets

de B. Alors Home(?,X) et Home(?,Y) sont deux foncteurs sur € 3 valeurs 3.
dans la catégorie des ensembles pointés. Tout fGEHomb(X,Y) induit une
transformation naturelle (= morphisme de foncteurs)

f, : Home(?,X) - Home(?,Y) ; pour a € Hom(A,X), f*(a) est par définition
foa€Hom(A,Y). v

Proposition : L'application qui a f associe f, est une bijection de

Hom(X,Y) sur l'ensemble des morphishes de foncteurs Home(?,X)—+Home(?,Y).

Démonstration : Remarquons que f, associe & ;XEIkaX,X) le morphisme

fGIkde,Y). Donc si f et f' sont deux morphismes distincts, f, est dis-
tinct de fJ.
Soit 6 : Hom(?,X) - Hom(?,Y) un morphisme de foncteurs. Si a € Hom(A,X)
et g : B-A, alors g*(a) = ao g € Hom(B,X) ; par hypothése
8(g*(a)) = g*(8(a)), c'est-a-dire 8(aog) = 6(a)og.
= Définissons alors f = 9(1X)§IEmJX,Y). Nous avons f, = 6, car, pour tout!
et tout a € Hom(A,X), 6(a) = 9(1,0a) =e(1X).a = fya. La bijectivité est
ainsi démontrée.
c.q.f.d.

Le théoréme de Brown (2¢me et 3eme parties) pose le probleme des
transformations de foncteurs sous une forme plus difficile. On a une sous
catégorie pleine bo de £ et deux objets X et Y dans € ; il s'agit de
’

trouver tous les morphismes de foncteurs, restreints a Eo

Home(?,X),co~ Home(?,Y),eo. Bien sfir si XGECO, la solution est Home(X,YL

Considérons un exemple concret. Soit € la catégorie des CW-complexes

pointés et des classes d'homotopie d'applications continues respectant

les points-base. Soit Bo la sous-catégorie pleine des complexes de
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dimension finie. Supposons que X soit un complexe de dimension infinie ;

nous Voulons déterminer 1l'ensemble des morphismes de foncteurs
= P4 : - = ? :
Hy ["XJIGO H, [-,Y]Ieo ;

ensemble que nous noterons Hom(HX,HY). Considérons 1l'application natu-

relle ¢ : [X,Y]-*Hom(HX,HY) ; nous avons la

[n]

est le n-squelette de X, de telle sorte que 9, suivie de cet isomo-

Pr?;giition : Il existe un isomorphisme Hom(HX,HY)': lim [X-"-,Y], ol
X!'
phlsmé soit l'applicaﬂion naturelle

[X,Y)] ~;_i_m[x[<,n],YJ.

Corollaire : ¢ est surjective.
Ceia résulte du lemme (ch.II ;2.5 ).
Remarque : En général ¢ n'est pas bijective ; nous étudierons son

noyau au chapitre suivant (chap.3).

Exercice : Démontrer la proposition (3,2 ). L'essentiel est de remarquer
que, d'apres le théoreme d'approximation cellulaire (ch.II; 1,7),

pour A de dimension < m, [A,X] = [A,X n]] si n = m+l,

§4. APPLICATIONS AUX THEORIES COHOMOLOGIQUES

Le théoreme de Brown, rédigé par l'auteur dans un article intitulé
"Cohomology Theories" [1 ], a précisément pour conséquence fondamentale
un théoreme de représentation des théories cohomologiques extraordinaires,
c'est-h-dire des théories vérifiant les axiomes d'Eilenberg-Steenrod[2;pl13]
sauf 1'axiome de dimension. Ce théoréme dit dans quelsvcas une théorie
cohomologique peut &tre représentée par un "QQ-spectre". (voir aussi

G.W. Whitehead [7 J.

Regardons le cas de la cohomologie ordinaire a valeurs dans un

groupe abélien G. Si g est un entier strictement positif, le foncteur
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Hq( ;G) est un h-foncteur contravariant semi-exact tel que Hq(So;G) =0
On peut donc lui appliquer le théoréme (ch.II §2.6), En vertu de 1'axio
de dimension, son espace classifiant a tous les groupes d'homotopie nul,
excepté le qii—eme groupe qui est G.

Un tel espace s'appelle un espace d'Eilenberg-Maclane du type (G,q) not
K(G,q). Il est muni d'une classe fondamentale de cohomologie en dimensi
q, possédant la propriété universelle pour le foncteur Hq(—;G). Si, mail
tenant, G est un groupe non abélien, on peut définir le foncteur Hl(-;G
il vérifie les conditions du théoreme de Brown et, par conséquent, il

admet un espace classifiant, qui est un espace d'Eilenberg-Mac Lane de

type (G,1).

%

Pour conclure, disons que, dans le cas ol G est abélien, la collec

tion des espaces K(G,q) forme les objets d'un "(Q-spectre" classifiant

la théorie cohomologique,ordinaire a valeurs dans G.
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CHAPITRE III

LES FANTOMES
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Ce court chapitre expose le phénomene bizarre des applications dites
fantomatiques. Dans les chapitres suivants ce phénomene nous empéchera
parfois de représenter une transformation de foncteurs par une unique
classe d'homotopie d'applications entre les espaces classifiants fournis

par le théoreme de Brown que nous avons démontré au chapitre précédent.

Soit € la catégorie des CW-complexes munis de points base et des
applications continues qui respectent les points base., Sans précisions
contraires nous resterons dans la catégorie 8.

%

Soit X un complexe réunion d'une suite croissante dénombrable de

sous-complexes X1CX2CX3C..., X = UXn. Nous avons déja vu que pour tout
n

complexe Y, l'application ¢anonique

o : [X,Y] =~ m[xn,yj

est surjective (h.II;3.2 ). Nous allons montrer qu'en général ¢ n'est
pas injective. Un élément de noyau de ¢ est une application de X dans Y

"fantomatique" pour la filtration {Xn}.

Dire que ¢ est bijective pour tout Y serait exactement affirmer que
X constitue une limite inductive des X  dans la catégorie E des CW-
complexes avec points base,lhé;s laguelle les morphismes sont les classes

d'homotopie dans €. Donc X n'est pas en général linm Xn dans B, Néanmoins

X est toujours lim Xn dans &,

Exercice : Dans la situation précédente, montrer que si lig X existe
dans €, lim Xn a le méme type d'homotopie que X. Donc si 9 n'est pas une
bijection, lim Xn n'existe pas dans ¥,

Remarque : Nous connaissons déja une situation plus simple ou [?,Y] ne
transforme pas une limite inductive de £ dans une limite projective

d'ensembles. Si X€& est réunion des sous-complexes X‘, X2 et X0=X10X2,
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X est la limite inductive dans &€ du diagramme

X

X
1K\“ X‘//, 2

mais 1'application naturelle ¢ : [X,Y] = lim[Xi,Y] n'est pas injective
en général - voir 1'axiome (b) de la semi-exactitude p.11.8 . Soient,

par exemple, X = Sn, nz1 ; Xl’ X2 les hémisphéres et X0 1'équateur
Sn_l. En ce cas liﬂ Xi existe dans 6 : c'est un point et non s". (Remar
quer la différence avec la situation de 1'exercice ci-dessus). D'ailles
cet exemple montre que, si, pour un complexe connexe fixé Y, ¢ est tou-
jours un isomorphisme, alors nn(Y) = [Sn,Y] = 0, pour tout n, et que,

par conséquent, Y est nécessairement contractible.

Les techniques employées dans ce qui suit ont été introduites dan:
l'annexe AII en ce qui concerne les suites de Puppe et de Mayer-Vieto:
et dans 1l'annexe AI en ce qui concerne le foncteur 'l_im1 qui associe i

R . . R |
un systeme projectif de groupes {Gn} un ensemble pointé lim Gn'

Soit H : & ~ &7 (= ensembles pointés) un foncteur qui a la forme
H(X) = [X,YH], YHGEB. Le lecteur pourra constater que les seules propri
de H que nous emploierons dans ce chapitre sont en fait les axiomes de
semi-exactitude (ch.IL;2.3), et que 1'on peut affaiblir beaucoup 1

pothése que H soit défini sur €,

Théoreme : Soit X un CW-complexe réunion croissante d'une suite de
sous-complexes XICXZCX3C... Il existe une suite exacte d'ensembles
pointés

1 - }_i_ml H(SX_) % m(x) & Lim H(X ) = 1

Démonstration : Remarquons que H(SXn) est un groupe et que, par suitt

1im! H(SXn) est bien défini (Cf.p. A.II.5 ). Pour démontrer le théor

il nous reste a construire une application naturelle injective

o e J_.im1 H(SXn) - H(X) dont 1'image cofncide avec le "noyau" de B.
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H étant un h-foncteur, nous pouvons, comme dans le lemme (cth;2iﬂ remplacer

' o 1 ' =
X par X v Xn avec Xn an [n,n+1],

neN
. = 1 1

Posons L1 X1 v X3 V...

tive L2 = Xé \) Xi vV ...
= ' =

ent, Nous avens L, U L, = X et L1r1L2 VX .

Ecrivons la suite de Mayer Victoris relative a cette situation (Cf.A IT;8):

#*

emar- H(L1V’Lé) -~ H(X') ~ H(s(LlﬂL2)) 2 H(S(Ll\TLz)) ~ H(SX')
1leur . .

ou encore, la suite exacte mixte :
tou-

UH(XA) - H(X') ~ ﬂH(SXé) Q*WH(SXL) « H(SX')
N YR
lim H(Xé)
4

dans -

e,

etori Si nous désignons par O l'action de WH(SXé) sur lui-méme, relativement
ie & a laquelle la suite ci-dessus est exacte, et par WH(SXA)/D l'ensemble de
A ses orbites, nous avons la suite exacte d'ensembles pointés
- i ! E ' - ! 0O «
1« lim H(Xn) H(X') nH(s§n)/ 1.
~me Rappelons alors, que par définition, lim H(SXA) est 1'ensemble des orbites
ypriét relatives a une action & de WH(SXA) sur lui-méme que nous avons définie
s de en annexe (AI;p.1).
, .1 . s ..
1'h Pour démontrer que Lim H(SXA) est isomorphe a WH(SXA)/D, nous ﬁxpllclte—
rons une application bijective 8 : WH(SXA) - WH(SX&) rendant le diagramme
ci-dessous commutatif:
]
de ' 1y o 1
ﬂH(SXn) x nH(sxn) WH(sxn)
sles
1 (1d.x9) l ]
A
m t m ! purd '
H(SXn) x H(SXn) ﬂH(SXn)
suite Notations : -p désigne pour tout n€{N 1'application canonique de H(SXA)
héorer dans H(SX&_I) qui n'est autre que la "restriction" de H(SXn) dans

} . ‘os 'Y s
H(an-l) lorsqu'on identifie H(SXn) a H(SXn).
-i1 est 1l'inclusion de S(L1r1L2) dans SL1 et

_. '.' . n
i, est 1'inclusion de s(L1 L2) dans . SL, .
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Soit 1'élément (xl,x3,x ...)eﬂH(sx' 1) = H(SL )
i?(xl,x3,x5...) (xl,px3,x3,px )G.H(S(L nL ))
Et soit 1'élément (xy,x 4,...)€TTH(SXép) = H(SLZ) ;
ig(xz,x4,...) = (pxz,xz,px4,x4,...)EH(S(LinLg)).
Alors d'apres la formule (p,AII.7) nous avons :
-1 -1 -1 -1

(xl)xz’xg’x4‘"'.)D(y1:y2iy37)’4""') = leipxz,px3y2x2,x3y3px4 3PXSY4X49 0%t
D'autre part, nous avons (Cf.p, A I.1)

. -1 -1
(Xl ,X2,X3,...)A (yl’Y2,Y3' ‘.'.) = (xlyle2 ’X2Y2px3 ".'.'.)
I1 est alors clair que 1'application & définie par :

-1 , . .
S(yl,yz,y3...) = (yl,y2 ,y3,..‘) répond a la question.
cqgfd

-

Définition : Soit 3 = {Xa} un recouvrement filtrant d'un complexe X.

En d'autres mots, tout X €R est un sous-complexe ; U{Xa;XaGYR} =X ;
et pour tout X XBE‘R il ex1ste XVEYR contenant X LJXB.
x € H(X) est d1t un fantdme relativement a R si sa restriction & tout
XOLE?R est triviale,

Un é1ément

Si R = {Xa} est filtré par une famille dénombrable, le théoréme 1
analyse la situation. Les deux cas spéciaux suivants sont naturels et
invariants par une équivalence d'homotopie.

ler Cas. Un fantdme de dimension est fantdme relativement a la filtratis

par les squelettes du complexe,

2éme Cas. Un fantome de finitude est fantdme relativement a la filtratis

par tous les sous-complexes finis.
Lemme : Un élément x € H(X) est un fantdéme de dimension (resp. de
"finitude") si et seulement si pour tout complexe Y de dimension finie

(resp. fini) et pour toute application f : Y - X, f¥*x = 0,

Démonstration : Il est évident que la condition est suffisante. Sup-

posons donc que x est un fantome. L'application f est homotope a une

application cellulaire g. Si dim(Y) = n<e, g(Y) est dans le n-squelette




ation

atior

ie

ette,
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et si Y est fini (donc compact) gY et fY sont contenus dans un sous-
complexe fini. Donc 0 = g¥x = fix,

‘ cgqgfd
Corollaire : Si x€H(X) est fantéme de dimension ou de finitude,
et f ¢+ Z-X est une. application cdntinue, alors f#*x €H(Z) est aussi un
tel fantome. "
Démonstration évidenté.
Corollaire : Si qust un CW-complexe déﬂombrable et si, ébur tout CW-
complexe fini Y, H(Y) est dénombrable, alors, pour qu'il exisfe des
fantdmes de "finitudeY non triviaux sur X, il faut et il suffit que X
soit réunion croissante de sous—complgxes finis Xn,IIEN, tels que la
suite de groupes H(SX1)-H(SX2)-.f. ne soit pas une suite de Mittag-
Leffler. Si cette derniére condition est réalisée pour la suite {Xn},
elle 1'est aussi pour toute autre suite croissante de sous—complexes

finis de réunion X.

Démonstration : D'apres le lemme hIIL3), pour qu'il existe des fan-

tomes il faut et ii suffit qu'il en existe relativement & une suite crois-
sante {Xn} de sous-complexes finis tels que X = UXn. D'aprés le Théoreéme
(chIIL1), i1 faut et il suffit pour cela que iing(SXn) ne soit pas réduit
a un élément, ce qui, d'apres (AI; 5 et 6), est équivalent a dire que la
suite H(SX1)-H(SX2)~ ... n'est pas de Mittag-Leffler.

c g f d
Exemple 1 ¢ Soit g : Sm-*Sm, m=21, une application cellulaire de degré 2
Soit X le cylindre de 1'application. Notons X' sa face origine (source

de g) et X" sa face extrémale.

Posons n
X =]l xXx{p}/{X"x{p} = X'x{p+1} 5 t<psn-1}
n p=1
Xn est un complexe fini qui a le type d'homotopie de S™ : l'injeétion

m+1 ]

de S™ = X"x{n} dans Xn est une équivalence d'homotopie. Donc [SXn,S =17,

pour tout n.
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Soit i 1'injection de SX_dans SX _ . i et Sg : SS"~SS™ ont méme type
m+1 m+1
nep?S J—*[sxg,s

]~ [SXz,Sm+1] ~ ... n'est donc pas
une suite de Mittag-Leffler. D'apres le corollaire (chIII;5), il existe

d'homotopie., Il s'en suit que i%* : [SX ] est 1a mul-

tiplication par 2. La suite [SXl;S‘m+1

d lications fantémes de X = ligy X _dans ™'

es applications fantomes de = 1i n ,
De plus, d'apres (A I. 6 ), nous savons que 1l'ensemble des classes
d'homotopie d'applications fantdmes a la puissance du continu.
Reniaiyuons que cet exemple ne prouve pas l'existence de fantdmes de
dimension ,

%

Exemple 2 : Il existe une application de Pw(m) dans 83 qui est un
fantome de dimension. Cet exemple est donné par B.I. Gray dans
Topology 1966, Vol. 5 pp.241-243.

Exercice : Montrer qu'il existe des fibrés principaux de groupe S0(3),
fantomes de “finitude" sur SX, ou X est défini dans l'exemple 1. Pour
m = 2, remarquer que S3 est le revétement universel de S0(3). Transformer

aussi 1'exemple 2 en un exemple traitant de fibrés de groupe S0(3).
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ETUDE DES SYSTEMES PROJECTIFS DE GROUPES

Par "systeme projectif de groupes" nous entendrons la donnée d'une

suite de groupes An.et, pour tout n€N, d'un morphisme de groupes :

: - . . . . P = .
n A + An Nous noterons souvent un systeéeme projectif {An’fn}nGN

n %

Nous pouvons définir une action A du groupe %WN A sur lui-méme :
€
l'action de {an}EﬁAn sur {xn}GﬂAn est donnée par la formule

{a Ja{x } = {a x ¢ (a_> ).

nnn n+l

C'est une action a gauche du groupe WAn sur lui-méme. Par définition

la limite projective du systéme P, notée £l9(P) ou ltﬁAn ou méme llmAnf
est le sous-groupe de WAn qui est stabilisateur de e sous l'action 4, ou
e est 1'élément neutre de TA_. Autrement dit, {a }€limA CTA si et seule-
n n-ée—mn n
ment si f a
n n+
(ou lim An) sera 1'ensemble des orbites relatives a l'action A.

1= a, » pour tout n., Par définition 1l'ensemble liml(P)

- -

Si # est un systéme de groupes abéliens limlp a une structure naturell
de groupe abélien car il s'identifie naturellement au conoyau de 1l'homo-
morphlsme1 {an} ] eA{an} = {an- fn(an+1)} de WAn dans lui-méme.
Sinon lim P n'est qu'un ensemble pointé par la classe de 1'élément neutre.
En outre lim et lim1 sont deux foncteurs a valeurs respectivement dans

-la catégorie des groupes et dans la catégorie des ensembles pointés.

Bien que ces deux foncteurs ne soient pas a valeurs dans la méme
catégorie, le foncteur ligl peut étre considéré comme le foncteur dérivé
du foncteur lim dans un sens analogue a celui attribué a ce terme en
théorie des catégories abéliennes. Par exemple, nous démontrerons qu'il

. . . . .1
existe une suite exacte reliant le foncteur lim au foncteur lim™.
— —
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Définition : Soit G 4 E d E' une suite exacte d'ensembles pointés ol

G est un groupe pointé par son élément neutre. Soit A une action a droite
(resp. a gauche) de G sur E telle que pour tout g€G, d(g) = edg (resp.
d(g) = gle), ol e est le point base de E. Si la condition i(x) = j(¥)
équivaut a dire qu'il existe g€G tel que xAg = y (resp. ghx = y), nous

dirons que la suite est exacte en E relativement a 1'action A.

f f
Proposition : Soiént A1 e} A2 ¢? A3 ... un systeme projectif de groupes

et Ai - Aé - Aé ~ .v. un systeme projectif de sous-groupes A{C-Ai tel que

la fleche A£+1~ A{ soit la restriction de fi' Considérons le systeme pro-
<
1 i i - LI - t - U t ! b]_
jectif de suites exactes 1 An An Aﬂ\gn 1 ou An\én est 1'ensemble
des classes a droite de An modulo Aé.
1 . ’
Alors il existe un morphisme d : limANA =~ lim A' d'ensembles p01ntes,
. “~—"n%n
de telle sorte que la suite 1 - 1imA£ 3, &igA llm(A>\ﬁ ).* im A'-*l_m
soit exacte (i = lim i _,j = lim j , I = 1im11 )
ety < Jy —— "n’"
En lim(A'\A ) la suite est exacte relativement & 1'action naturelle a
 €—‘"n\n
droite de limA .
«~— 'n

Démonstration : Il est bien connu, et surtout évident, que le foncteur

lim est exact a gauche sur la catégorie des ensembles pointés. D'ou
l'exactitude en 119A£ et LigAn.

Si a €A, jn(an)eAg\gn segasnoté & . Soit O l'action de limA s%is}igAQﬁ
définie par la formule : {a_J€lima ,{B_}eliman\a ,{5 1o{a } = {5 a }.

Si e désigne 1'élément neutre de A, {én} est le point base de limA'NA
et nous avons j({an}) = {én}D{an3.

Définissons maintenant 1'application d : tout élément x de 11mAW\A
peut s'écrire {a } ou {a }EWA avec a £ (an+1)}€A'. Par définition d(x)es
la classe de {a f (a +1)} dans lim A . Il est facile de vérifier que 3(x)

est 1ndependant du choix du representant a de a .

Avec cette définition il est évident que d3j et Ia sont "nulles",

Exactitude en 11mA‘\é : Soient x et y€11mA'\A tels que a(x) = a(y)
Il est poss1bli d'écrire x = {an} et y = {Bn} avec bnfn(bn+1) =a, (ar}1
= - = . 1 D -
Posons c, =a’b, iLfn(cm_l) c 3 done {cx}éllmAn et {an} {cn}
alors
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Exactitude en llm A' : Soit zéllm A' tel que I(z) soit le point base de

Y

es!

. Proposition: Invariance par subdivision : Soit P = {An,fn} un systeme

11m A‘. Soit {a }GWA' un representant de z. {a'} regardé comme élément
de WAn, appartlent a la méme orbite que {en}. I1 existe donc {an}EﬂAn

)

tel
et que a' = a t (a
n n+l

Donc {én}GligAg\An et a({én}) = z. c g f d.

BExercice

-

1) Supposons dans ce qui précede que, pour tout n, Aﬁ soit un sous-~

groupe distingué de An.‘Soit A; le groupe quotient. Démontrer que la suite

. i, 3 ,.. 1 I .. 1. J..1
1 - llmAﬁ = 11mAn 4 llmA; = lim AA = lim A = lim Ag - 1 est exacte, et ;

W e R e r e o e L

que 9 provient d'une action A & gauche relativement a laquelle la suite P

est exacte en %imlAﬁ.

-

2) Méme question qu'en 1) dans le cas oii, pour tout n, An est un
groupe abélien. Tous les objets de la suite sont alors des groupes abéliens

et cette suite n'est pas autre chose que la suite de cohomologie d'un

certain complexe.

T e T e i+ T e s

projectif. Soit P' = {A ,gk} une partie cofinale de P : g=ff .t

Tk PPkl ket
L'injection de WAn dans WAn induit un isomorphisme 8 de
k ' j
lim'A_ sur lim'A_. !
& “n_ &«— "n

Démonstration : Pour simplifier 1'écriture, e désignera 1'élément neutre

de tous les groupes et p la composition d'un nombre fini d'applications fn
consécutives.,
1°/ 9 est surjective : en effet (a ,a2 ..an,...) est équivalent dans

mA_ a (e,e,...,a_ p(a )..:p(a ),e,...e v, p(a )...p(a Yy eud)
n rEe ’ n, n1+1 n2—1 r e n, n2+1 3—1 ’

- v T

ieme ieme
ny place n, place

Pour le voir il suffit de faire agir sur (al’a2"'an"‘
e

) 1'é1ément

(cl,cz...,cn,...) donné par : - pour tout k, cnk =

- <i< = N
pour nk 1 nk+1,ci p(ci+1)ai .




6. Proposition : Soit P un systeme projectif de groupes dénombrables. Si

ATl.4

2°/ O est injective : supposons que (e,e,...,an 1€ 0008 ,€uul) S
équivalent dans WAn a (e,e,...,aﬁ ,e...a' ,e...). 1 11 existg donc de
iy 1 o
éléments cy tels que :

-1
e = cnefn(cn+1) pour n # n,
-1
a' =c_ a_ f_(c ) pour n = n, .
n, . nonng nk+1 k
-1
Alors a' =c_a_ g,lc ). C'est-a-dire que {a'l}est équivalent dans MA_ afa
n, non kK ] o, n, 1
%
cqfd
4, Définition : Un systeme projectif A, « A_ - A_+~ ... est dit de

—_— 1 2 3 g g,
Mittag-Leffler s'il existe une partie cofinale B, ¢ B, = B, ... telle

que le systeme projectif Img1 - Img2 ~... soit formé d'applications

surjectives.

Remarque : Les systeme B1 - B2 - B3... et Img1 - Img2 ~ ... sont deux'

g
parties cofinales du systeme B e Img2'-'2 B, ....

1
= -
g © Imgy < B 3

2

5. Proposition : Si P est un systeme projectif de groupes, de Mittag—Leff

alors 1im1(P) = 0.
D

Démonstration : D'aprés la proposition d'invariance par subdivision eff

griace a la remarque précédente, il suffit de démontrer la proposition
dans le cas ou tous les morphismes du systémes sont surjectifs. Mais al¢

clest une trivialité. cqfd

. . . . No
le systeme n'est pas de Mittgg ~Leffler, le cardinal de llml(P) est 2 .

Démonstration : Si le systéme n'est pas de Mittag-Leffler, il existe

sous-suite filtrante {Ak} telle que, si 1l'on désigne par Aﬂ 1'image de
dans Al’ pour tout k, Ai+1 est strictement inclus dans A&. Remarquons ¢
le cardinal de A1 est No et que le cardinal de Lim(Aﬁ Ai) est 2‘}1‘O puisq?
. N . ' . 42 N X Al
est isomorphe a K(Aﬁ+£\Aﬂ) ; en effet 1'application de Ak+£\A1 dans kﬂ

n'est autre que la projection lorsqu'on écrit Aﬁ+£\A1 = ANA) x Aru
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Considérons alors le systéme projectif des suites 1 - Aﬂ - A1 l(Aﬂ A1 -1
D'aprés la proposition ( ATl ; 2 )nous avons la suite exacte mixte :
limi 1 ‘
AL — ;1E(Aﬁ\§1) IR lim® Al 1.

Autrement dit ligl Aﬁ est en correspondance bijective avec les irbites, .
chacune dénombrable, de 1'action de Al' Donc le cardinal de liﬂ Aﬁ est 2 .
Par ailleurs I'Tppligation canonique de &iﬁlAk dans Lig}Aﬂ est surjective,
le foncteur liﬂ transformant les épimorphismes de systemes de groupes en
épimorphisme d'ensembles (c'est un des points a démontrer dans 1'exercice
page AI.3). Le cardinal<de iigl(P), qui, d'apres la propriété d'invariance

par subdivision, est celui de limlAk, est donc supérieur a 2 °,

D'autre part 1im1A est un quotient de TMA . Finalement
.1 k 1 N'o k
card.lim (P) = card.lim A =20. cqfd
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SUITE DE PUPPE ET h-FONCTEURS REPRESENTABLES

Tous les objets et morphismes utilisés dans ce paragraphe sont
dans la catégorie B des CW-complexes pointés -chacun par un point du
O-squelette- et des applications continues qui respectent les points-
base. Nous nous propr')sons d'étudier comment agit le foncteur [?,Y] sur

certaines suites de mdérphismes de ®.

Précisons les notations suivantes
Si A€€, C(A) est le cbne sur A dans la catégorie €, c'est-a-dire le
céne réduit, et SA est la suspension de A dans la catégorie €, c'est-a-
dire la suspension réduite. SA n'est d'ailleurs pas autre chose que le

"smash"-produit S®mA ol S est le cercle représenté comme quotient de

1'intervalle I par son bord. La n-iéme suspension s”A est S"mA ou encore

SwS...nSwA. Rappelons que 1'on peut définir la suspension d'un mor-

-

n-fois [ phisme, d'ou la définition du foncteur suspension de & dans &,
Enfin X« I désignera le quotient Xx I/{*}xI, oi {*} est le point base
de X.

Définition : Soit A un sous-complexe de X et i l'injection de A dans X.
Le cone de 1'inclusion, noté C(i), est XU C(A).

La suite de cofibration associée a 1'injection i est la suite
Adxeg(i)e ... e (i) e

par récurrence : Cn+1(i) est le cone de 1'injection de Cn_l(i) dans C"(i).

i) & ... dont les objets se définissent

Exercice : Montrer que la suite de cofibration est un invariant du type

G
d'homotopie : si i' : A' & X' est une injection homotopiquement équivalentg‘

@ : A-B est homotopiquement équivalente a f' : A'-B' s'il existe deux
équivalence d'homotopie hlz A-A' et h2: B-B', telles que h2f
soit homotope a f’hl.
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a i, les deux suites de cofibration, respectivement associde & i et i'

sont homotopiquement équivalentes.

. Lemme : Il existe une équivalence d'homotopie naturelle entre XU C(A)

et X/A rendant commutatif & homotopie prés le diagramme X «—— XU C(A)

N /A./

Preuve : Tout d'abord X/A est isomorphe & xuc(a)/c(ad.

Montrons donc que la projection de XU C(A) sur XU C(A)/C(A) est une équi:
valence d'homotopie. Une application de X/A dans un ensemble pointé
s'identifiant naturellement & une application définie sur XU C(A) qui
envoie C(A) au point base, il nous faut montrer qu'il existe

f : XUC(A)-»XUC(A), homotope & 1'identité et tel que f(C(A)) soit rédu
au point base. Or 1'exi;tence de f provient du fait que C(A) est contrac

tible et que l'injection de C(A) dans XU C(A) est une cofibration
(Cf. Ch. ITI;1 ,17). c qfd

. Lemme : Il existe une application d : X/A - SA et des équivalences

d'homotopies h1 et h2 rendant le diagramme

h1 ’ l h2

xuc(a) ——— 5 c(x)uc(a)

commutatif a homotopie preés. 3, h1 et h, sont canoniques a homotopie pré

2

Preuve : h1 est donnée par le lemme (A II ;2 ) ainsi que 1'équivalence
d'homotopie hy : XU c(a)/x - c(x)uc(a).

Soit d'autre part hé l1'isomorphisme canonique de SA sur XLJC(A)/X.
Posons 9 = hé_ln h1, ou m est la projection de XU C(A) sur XU C(A)/X.

Si, enfin, nous posons h2 = hg hé, le diagramme carré, dont il nous faut

montrer la commutativité a homotopie prés, se décompose en carrés élé-

mentaires ayant cette propriété :



ui-

dui

yres

1ce
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X/A _ 9% ., sa

o

xuc(a) —=, xuc(a)/x

Tk

XUc(A) c—, c(x)uc(a)

cqgfd

En remarquant que Sn(X/A)xest isomorphe a SnX/SnA, on construit de la
méme fagon 9J : s™(x/A) - sty

4. Définition : La suite de Puppe associde a i est
Ad x - x/a 2 sacsx - sx/a 2524 ... ou bien 1a suite

A« X -XUcC(A) > SA > SX ...., qui lui est homotopiquement équivalente.

5. Proposition : Lles suites de Puppe et de cofibration assocides a i : A®X

sont homotopiquement équivalentes ; c'est-a-dire qu'il existe un diagramme

commutatif a 1'homotopie pres
Adx - c(i) - 1) - c3i) - cti) ...
| I |t 0 n n
AoX -X/A - SA - SX - S(X/A) ...

ot les fléeches verticales désignent des équivalences d'homotopie.

Démonstration : D'aprés le lemme (AII; 2 ), la suite AS X — X/A

est homotopiquement équivalente au début de la suite de cofibration.
Nous poursuivons la démonstration par récurrence : supposons donnée une
équivalence d'homotopie de s"A « s™X avec C3n—1(i)‘~ C3n(i) ; on peut
alors prolonger cette équivalence en une équivalence d'homotopie des
suites
sPA © 5% - s7(x/a) @ 5™ (a) & 5P (x)

et C3n—1(1) o C3n(1) o C3n+1(1) o 03n+2(1) < C3n+3(1).




AIT .4

Pour s'en persuader le lecteur méditera sur le diagramme ci-dessous dans
lequel tous les morphismes lui sont fournis par les lemmes précédents

et par l'hypothése de récurrence

s - s - s%/A 3(3) gn+1, - sy
| I 1 (2) 1(3) 2 .
s"a - s - c(s"™)usx - c(x"a)uc(st(x)) ~ c(s )y c(sX)
. . c(s™a)u s
(1) 1(1) 1L(4) 12(4) 1 (2)
C3n—1(i) - C3n(i) - C3n+1(i) . C3n+2(i) - C3n+3(i)

L'existence des fleches de ce diagramme est assurée par
(1) hypothése de récurrence
(2) Lemme (A 11 2 )
(3) Lemme (AII ; 3 )

(4) Invariance homotopique des suites de cofibrations.

-e Ao

cgfd

6. Corollaire : La suite de Puppe est un invariant du type d'homotopie

de i : A - X dans le sens de l'exercice de la page AII.1l.

7. Proposition : Soit A un sous-complexe du CW-complexe X.

Pour tout CW-complexe Y, la suite -

[A,Y] iy [x,Y] i [x/A,Y] i [sa,Y] Si¥ [sX,Y] 4% [SX/A,Y] ~ ...

est une suite exacte d'ensembles pointés. A partir du quatrieme terme
c'est une suite exacte de groupes. L'exactitude en [X/A,Y] est relative

a une action a gauche de [SA,Y] sur [X/A,Y].

Notations : 8 désignera la suite de Puppe de la paire (X,A) et‘[ﬁ,Y]

la suite mixte écrite ci-dessus.

Démonstration : Chaque suite partielle de deux fleches dans 8 est hom

topiquement équivalente, d'aprés la proposition précédente, a
A" = X' - X'UCA!

pour un couple (X',A’) convenable. Mais on vérifie immédiatement que
[ar,Y] « [x',Y] « [xruca',Y]
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"est une suite exacte d'ensembles pointés. Donc la suite [B,Y] est une

suite exacte d'ensembles pointés.

Par ailleurs, chaque fleche de
8 : A-i'X-iX/AQSAS-»i sx % S(X/A) 9§24 ~ ...
aprés les trois premiéres, est une suspension ; doﬁc
[SA,Y] ~ [sX,Y] « [s(x/a),Y] ~ [SzA,Y] - e
est suite de morphisqes de groupes. L'exactitude en tant que suite

d'ensembles pointés équivaut & l'exactitude en tant que suite de groupes.

11 nous reste & trouver une action V du groupe [SA,Y] sur 1'ensemble
pointé [X/A,Y] telle que [8,Y] y soit exacte relativement & V. Nous pren-
drons le soin d'employer un raisonnement valable pour les h-foncteurs

semi-exacts (Chap. I1; 2.3 ).

Explicitons d'abord la structuré de groupe sur [SA,Y]. Fixons les
deux conventions :
CA = ArI/Ax {0}, sA=aAxI/Axf{0}UuAax{1}.
Le quotient SA/AX'{I/Z} est un bouquet SAV SA moyennant les deux injec-
tions io’ i1 de SA dans SAﬁAx {1/2} qui s'exprime par les formules
i (a,t) = (a,t/2)
ij(a,t) = (a,(14t)/2)
Si a,B sont deux applications de SA dans Y, il existe une application
unique vy étaV’B : SAVSA - Y tel que a = yoio, B = yoil. Le produit
la][p] €[SA,Y] est représenté par '
sA 9 sa/ax {172} = savsa2VE,

a€A, 0<t<1,

ol ¢ est la projection naturelle de SA sur SA/Ax {1/2}. En d'autres mots

[allp] = ¢{(a] VIB]). La vérification que cette régle munit [SA,Y] de
structure de groupe ne différe guére de la vérification que nl(Y) = [8,Y]

est un groupe.

Parallelement -le quotient XLJCA/AX'{1/2} est un bouquet SAV (XU CA)
gréce aux injections j_ : SA - Xuca/ax {1/2}
et j, : XUCA - XUCA/Ax {1/2} , ou pour a€A et t€[0,1],

13 g e g e e o




AII.6

jo(a,t) = (a,t/2), jl(a,t) = (a,(1+t)/2) et on ji|x est 1'identité.
Soit r la projection naturelle XUCA ~ SAV (XUCA). Si a : SA~Y et
f : XUCA - Y sont deux applications continues nous définissons
[alVv[IfleXUcCA,Y] comme la classe de la composition

Xuca & SAV (XUCA) oviy
~ g
PO Ny

On vérifie facilement que
(i) V est une action & gauche
(ii) [alv[0] = 3*[a], pour tout [a] € [sA,Y]

(iii) j*[£] = j*([al Vv [£]) pour tout [£]€[XUcCA,Y] et tout [a] € [sA,Y].

I1 est moins évident que
(iv) si [£], [£']elxuca,Y) et j*[£] = j*[£'], il existe un [a] € [SA,Y]
de telle sorte que [(x]V[f] = [f£1]. o

Voici la construction de [a] a partir de [£] et [f']. Nous collons
deux exemplaires de XUCA (1'un marqué avec prime ) en identifiant les
deux exemplaires de X, pour former '

= ((xuca)u (X'ucAa'))/{x = x'}

Soit W 1'homéomorphisme de SA sur CAUCA'C7Z qui, pour tout (a,t) € 84,
est défini par la formule W(a,t) = (a,2t) €CA' si 0sts1/2 Z

et W(a,t) = (a,2-2t)€CA si 1/2<t<1, 3
de telle sorte que hl(XUCA) est homotope a f et h,(X'UcA') est homotope
a2 £f'. Nous définissons [a] = W*[h] = [hW]. Pour vérifier [a]V[£f] = [f']5
le lecteur pourra voir qu'il y a deux applications naturellement définies
g,g' : XUCA - Z de telle sorte que g*[h] = [a]V[£] et g'#[h] = [£'].

Ensuite 1'on constate que g et g' sont homotopes.

§

Conséquence : suite de Mayer Vietoris

Soit L un CW-complexe, réunion de deux sous-complexes L1 et L2,

tous avec un point base commun.




LY] e

[SA,Y]

llons

; les

€ SA,

homotope
=[]
définies

[£1].

2’
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Nous avons le diagramme

i

ol il’ X jl, j2 sont les inclusions naturelles.

Proposition : Pour tout YEC, il existe une suite naturelle d'ensembles

pointés :
(JIVJz)* A ¢ 4 B
(L, VI, Y] e~ [L,Y] e— [s(L, NL,),Y] «— [SL, VSLy,Y] e

. )#x(sj,)*
i‘]l) x(83,) [SL,Y] — ...

B provient d'une action naturelle ®de [SLl\fSLz,YJ sur [S(L1r1L2),Y] 3
8i (xl,x2)E[SL1VSL2,Y] et uE[S(LlﬂLz),Y],

(xy,%5) D = [(siy)*x Jul(5i,)*x, T

Démonstration : Posons L' = L x {1}y (LlﬂLz)x [1,2]u L, x {2lcLx [1,2]
Désignons par L! 1'image de L, x {1} dans L' et par Ly celle de sz{z} ,
enfin par ji (resp. jé)vl'inclusion de Lé (resp. Lé) dans L',

iVLé dans L' :

iVSLé—-&SL'.

Ecrivons la suite de Puppe de l'injectidn de L
! 'j' V']&' t f ! 1 a
Ly VL] e L uc(LIVLz)_..SL

D'ou pour tout YEC, la suite exacte

(L] VI, Yl e [L',Y] « [L'UC(Ll'VLé),Y]<-a—* [sLyvsLy,Yle [sp',Y].

Or Li, Lé et L' sont des équivalents d'homotopie de Ll’ L2, et de L et

ji, jé des équivalents d'homotopie de jl et 32 respectivement.

D'autre part, L'UCT(L] VL}) est équivalent & L'/(L] VLL) (CE.AII; 2 )
qui est isomorphe & S(L1F1L2). D'ol la suite exacte annoncée dans 1'énoncé
de la proposition.. Il reste simplement & vair que l'action

v de [SLiVSLé,Y] sur [L'UC(LiVLé),Y],- décrite dans la proposition (AH;7)
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se transporte sur l'action D de [SLIVSLz,Y] sur [S(LlﬂLz),Y].

Pour cela remplagons S(Llan) par son équivalent
M = {L1 x [0,1]U (L1 n L2) x [1,2]U L, x [2,3]}/111 x {03} U L, x {3}

[SLl,Y] agit naturellement a gauche sur [M,Y] et [SL2,Y] agit naturellem
a droite sur [M,Y] et aussi a gauche si 1'on précéde cette derniere actif
de 1'antimorphisme canonique de [SL2,Y], xz-‘xéi. D'ol une action natu-
relle & gauche @ de [SL1VSL2,Y] sur [M,Y] : (xl,xz)muh‘x1 ;1.

O est la transportée de D par 1'isomorphisme canonique de (M,Y] avec
[s(r, NL,),Y]. %

A 1'aide de 1la figure ci-dessous, nous allons maintenant comparer les

u X

actions @ et A,

le{O} = L2>({3} = point base

Le chemin dessiné sur la figure, parcouru dans le sens de la fleche
correspond au sens croissant du parametre t€ [0,3]. M est ainsi "orienttf
comme la suspension S(Llan)’ Si maintenant nous regardons M comme le
cbne de 1l'injection de le {1}VL2x {2} dans L', le paramétre t va en
croissant du sommet vers la base. Ce changement "d'orientation" change
"l'orientation" du sous-cdne C(Lz) et, par la-méme, fait passer de 1'act

@ a l'action V de S(L1VL2) sur M. cgfd
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Dans ce chapitre nous appliquerons la théorie de Brown a la classi-
fication des fibrés et des microfibrés. (Cf. chapitres II et III ou
Brown [14]).

§1. CLASSIFICATION DES FIBRES ET MICROFIBRES DE DIMENSION n

Fibrés vectoriels de dimension n

Définition : Un n-fibré vectoriel réduit € muni d'un point-base X est

un n-fibré vectoriel £ E :%;Xq muni d'un isomorphisme d'espaces vecto-
riels F : p_l(xo) -~ ®™. Un isomorphisme ¢ : § - E' de fibrés vectoriels
réduits est un isomorphisme des fibrés vectoriels (non réduits) sous-jacents,

tel F = F! -1 -
el que 77 (x,)

On définit les n-microfibrés réduits PL ou TOP de fagon analogue. La
réduction consiste alors & se donner un micorisomorphisme PL ou TOP

-1 s qs , . .
F:p (xo) - mn, c'est-a-dire une homéomorphisme PL ou TOP d'un voisinage

de i(xo) dans p_l(xo) sur un voisinage de 0 dans B".

Soit B la catégorie des CW-complexes pointés par un sommet et des applica-

tions continues respectant les points-base. Définissons un foncteur
H:® - ¢&" (= ensembles pointés)

de la maniére suivante : H(X) est 1'ensemble des classes d'isomorphisme

des n-fibrés vectoriels réduits sur la base X. On pointe H(X) pér la classe
du fibré trivial X x R® sur X. Si f : X' = X est une application continue
pointée et si & est un fibré vectoriel réduit sur X, le fibré f*§ sur X'
est d'une fagon évidente un fibré vectoriel réduit. En posant H(£)[E] =
(£*€] € H(X'), on fait de H un foncteur.

Rappelons que si & est un fibré vectoriel non réduit sur Xx I, alors g
est isomorphe au fibré (iﬁg) x I sur X x I, oun i0 : X X x I est 1'inclu-

sion x » (x,0). C'est 1a une propriété fondamentale que partagent toutes
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les notions de fibrés sur un espace paracompact, que nous allons rencon-

trer dans la suite.

Exercice : De cette propriété on peut déduire que H est un h-foncteur

autrement dit, si £, g : X' = X sont des applications de E, homotopes en

tant qu'applications pointées, et si € est un fibré vectoriel réduit sur!
alors f*€ et g*f gont isomorphes. :
|

1.3 Proposition : H vérifie les deux axiomes de semi-exactitude (Ch.II; 2.3

[ ]
. i
Démonstration :

a) Axiome de recollement : Soit X € B, réunion de deux sous-objets X1

' . - - - - » rd : ¢
et X2 d'intersection X0 = X1r1X2. Soient §1 et §2 deux n-fibrés vectorle]t

1 2

réduits respectivement sur X, et X, de sorte que §1|X soit isomorphe a
en tant que fibrés réduits. Si on identifie ° §1{Xo a §2’Xo

Sa|x

0 -
par un tel isomorphisme, on obtient un espace muni d'une projection surl
dont la restriction a Xy (resp. X2) est isomorphe a 51 (resp. 52). Malher
reusement, il n'est pas facile de voir qu'il s'agit bien d'un fibré loca
lement trivial. Pour éviter cette difficulté nous pouvons remplacer le
triple (X ; X X2) de & par un triple (Y ; Y,

d'homotopie, car H est un h-foncteur. Choisissons donc

Y2) ayant le méme type

Y

X, x {1}ux0x[1,2]ux x {2} ,

2
Y, o= X x {1}ux0x[1,2], Y, = X, x {2}Uxox[1,2]-

Prenons comme point-base de Y le point {*}x {12}, ol {*} est le point-ba
de X. Le fait que le triple (Y ; Yl’ Yz) ait le méme type d'homotopie qu
le triple (X ; Xl’ X2) est une cas particulier du résultat démontré dans
1'annexe A.IITI ; le lecteur pourra en trouver une démonstration directe.
Maintenant, pour le triple (Y ; Y1, Y2), la trivialité locale du fibré

obtenu par recollement est évidente.

b) Axiome du bouquet : Sa vérification est un exercice facile. Pour

éviter, comme dans a), la question de la trivialité locale d'un fibré

obtenu par recollement sur un bouquet, on utilise l'astuce suivante : &

appliquant le résultat démontrer dans 1l'annexe A.III, on remplace le ;
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bouquet (1) par le bouquet (2)

S\

(1)

Remarque : C'est uniquement pour montrer que 1'application

H(X Xn) ~‘ﬂ'H(Xn) est injective que 1'on a besoin des fibrés réduits.

L'exemple le plus simple qui montre que les classes d'1s0morphlsme de fi-

brés non réduits ne satisfont pas a (b) arrive avec le bouquet S V'S et

les fibrés de dimension 2.

: , 2 2
Soit T le fibré tangentthesg. Soit §1 (resp. 52) le fibré sur S VS

obtenu par recollement de deux exemplaires de T par une identification qui
conserve (resp. qui‘change) l'orientation de la fibre au point-base. L'exis-
tence d'un isomorphisme § § entrafnerait 1'existence d'un automorphisme
de T(S ) qui changerait 1 onqentatlon de chaque fibre, Alors S admettrait
un champ de vecteurs non nuls, ce qui est impossible ; en regardant les
classes d'Euler, on aurait x(t) = x(-1) = - x(1), tandis que x(7) est le
double de la classe fondamentale (cf. Milnor [6;p.53]).

D'aprés la proposition (Ch.IV; 1.3) et le théoréme de Brown (Ch.II;2.6)
il existe un espace classifiant pour le foncteur H, que nous noterons

B et un n-fibré vectoriel réduit universel u sur B .
0(n) n 0(n)

Propoéition ¢ On peut choisir Bb(n)’ CW-complexe dénombrable.

Démonstration : D'aprés la troisiéme partie de 1'énoncé (Ch.11;2.6),

suffit de montrer que pour tout CW-complexe fini X, 1'ensemble H(X) est
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dénombrable. Pour un raisonnement par récurrence sur les cellules de X, i

considérons un n-fibré vectoriel réduit & sur le k-squelette X[kJ de X,

€ est prolongeable en un fibré sur X[k] k+1, ou ek+1 est une (k+1)- i
cellule de X, si et seulement si §,aek+1 est trivial. Et il existe autant f
de prolongements non isomorphes que de trivialisations non homotopes de |
§’aek+1, c'est-a-dire que d'éléments de nk(O(n)). 0(n) étant une variété

différentiable compacte, n*(O(n)) est trivialement dénombrable. Alors par

récurrence il suit que H(X) est dénombrable. cqfd |

Remarquons qu'on aurait pu démontrer cette proposition en ne considérant

que les ensembles H(S ) et en utilisant la suite de Puppe (Cf. annexe AII,f

proposition 7).

Autre construction de BO( )

On peut montrer directement (cf. Milnor; [6], p.24) que 1l'ensemble
des classes d'isomorphisme de fibrés vectoriels non réduits sur X est en
correspondance biunivoque avec l'ensemble des classes d'homotopie libre
(c'est-a-dire non pointée) d'applicatiohs (non pointées) continues de X
dang la grassmanienne G(n) des sous-espaces vectoriels de dimension n de
R ; cette correspondance est donnée par le fibré "universel" sur G(n)
dont le fibré au-dessus de tout point (= sous-espace vectoriel de Rw) est
lui-m8me en tant qu'espace vectoriel.

Pour montrer que G(n) a 1é type d'homotopie de BO(n) il suffit de

remarquer que pour tout complexe X,
[X’ BO(D)Jllbre = [XU {\*}9 Bo(n):l

ou XU{x}est pointé par le point {x1, et que H(XU {%}) n'est autre que 1'en-

semble des classes d'isomorphisme de fibrés vectoriels non réduits sur X.
» - ' - I d 0

Donc [X, BO(n)Jllbr est isomorphe a [X,G(n)]1ibre d‘ou on déduit que

G(n) BO( )

Remarquons que ce dernier raisonnement sera valable pour tous les
autres types de fibrés, et permettra de passer de la théorie pointée a la

théorie non pointée. i
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IV.6

Remarque sur les notations :

Lorsque nous voudrons distinguer entre les différents foncteurs intro-
duits dans ce chapitre, nous utiliserons les notations suivantes :

Le foncteur classifié par BA sera noté k,.

Par exemple, l'ensemble des classes d'isomorphisme de fibrés vecto-
riels réduits de dimension n sur X sera noté kO(n)(X)'

Parallélement, 1'ensemble des classes d'isomorphisme de fibrés vecto-

. . . . libre
riels de dimension n sur X, non réduits, sera noté k (x).

, . - libre
On a donc en résumé : kA(X) = [X,BA] ;o k, (x) = [X’BAjlibre.

1.6 Fibrés vectoriels orientés :
<

1

T

D'une fagon analogue a ce qui vient d'étre dit dans le début de ce
chapitre, il existe un classifiant BSO(n) pour les classes d'isomorphisme
de fibrés vectoriels orientés réduits de dimension n. Par fibré orienté
réduit, nous entendons une fibré vectoriel réduit muni d'une orientation
qui induit sur la fibre-base l'orientation transportée de l'orientation
positive de R" par 1'isomorphisme donné. A ce propos il faut remarquer
qu'a la différence du cas précédent, 1'application d'oubli envoie les
classes d'isomorphisme de fibrés réduits bijectivement sur les classes
d'isomorphisme de fibrés non réduits ; c'est la une conséquence facile

de la connexité du groupe SO(n).

Comme dans 1a‘proposition (Ch.IV i 1.4), BSO(n) peut €tre choisi CW-

complexe dénombrable.

Enfin nous connaissons trés bien un classifiant, a savoir la "grass-

mannienne orientée" G(n), qui est un revétement a deux feuillets de G(n)
(ct. Milnor, [6; p.61]).

G-fibrés principaux :

Soit G un groupe topologique. Si X est un CW-complexe pointé, H(X)
désigne ici 1l'ensemble des classes d'isomorphisme des G-fibrés principaux
réduits sur X. Nous avons ainsi défini un h-foncteur représentable. Soient

BG l'espace classifiant et U le G-fibré principal universel.
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Si G opere effectivement sur Bn, il y a une correspondance biunivogque
entre les classes d'isomorphisme des G-fibrés principaux sur X et les
classes d'isomorphisme de R®-fibrés admettant G comme groupe structural,
qui sont donec classifiées par un couple Uangoﬁ Ve est un R"-fibré sur BW

admettant u, pour fibré principal associé. Ceci justifie les notations

G

BO(n) et BSO(n)’ utilisées précédemment.
Milnor a donné dans [5] une construction directe d'un classifiant Bé;
' . 2’ . - ' 1 1 . . 3 ’

et d'un fibré universel us sur BG' [X’BGjlibre classifie les G-fibrés

principaux "numérables" sur un espace topologique X (non pointé). L'es-

pace total Eé de ué est gontractiblew*acar il est le joint infini

G*GxG=x... (Cf. Husemoller, [4, Ch.4 et en particulier p.56]).

Exercice

a) Montrer, en vertu“de la contractibilité de E', que, si 1'on choi-

8it un point base dans Bé et si 1'on réduit ué en spécifiant un isomor-

phisme de la fibre base avec G, alors le couple (B!, ué) devient classi-

fiant pour les G-fibrés principaux réduits sur les CW-complexes pointés.

(cf. Husemoller, [4, p.47 et p.41]).

b) Conclure que 1'application classifiante BG-*Bé est une équivalent

d'homotopie faible et donc que n*(EG) = 0.

Exercice :
a) Si G est un groupe de Lie (donc triangulable), vérifier que 1'es
pace total E., de u. sur le complexe BG a le type d'homotopie d'un CW-

G G
complexe. (Utiliser le résultat démontré dans 1'annexe AIII).

b) Conclure qu'en ce cas EG est contractible,

() si X est paracompact, tout G-fibré principal sur X est numérable ,

(Cf. Husemoller, [4 ; p.48])

@) Draprés Dold [1, théoréme 7.5], la contractibilité de l'espace total
d'un G-fibré principal numérable est la condition nécessaire et suf-

fisante pourqu'il soit universel,
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Tirons de la contractibilité faible de l'espace total EG de u. une

conséquence importante, Soit QBG-»ABGRBG la fibration® ou AB; est 1'es-
pace des chemins commen¢ant au point base b0 et ou la projection p fait
correspondre a un chemin son extremité. QB = pgi(bo) s'appelle 1'espace

des lacets de BG' La contractibilité de AB., permet de construire au-dessus

G
de BG une application fibrée
QBG —_— G (propriété de relévements des
- l l homotopies pour un fibré
AFG * EG localement trivial sur une
B - £ base paracompacte
% G - G

Cf. Spanier [12; p. 96]).
Des suites d'homotopie pour ces deux fibrations on déduit moyennant le

lemme des cing,que QBG-*G est une équivalence d'homotopie faible.

-

Microfibrés topologiques (Cf. Ch. 0 et Milnor [9])

Si dans 1.2 nous remplagons le mot "fibré vectoriel" par "microfibré
topologique et le mot "isomorphisme" par le mot "microisomorphisme", nous
définissons sur la catégorie € des CW-complexes pointés un nouveau h-fonc-

7 [} . . rd
teur représentable dont 1'espace classifiant est noté BTOP(n)'

1.9 Microfibrés PL

Soit Es la sous-catégorie pleine de £, dont les objets sont les
complexes simpliciaux localement finis dénombrables pointés. On définit
sur CS un-h-foncteur?*® H en associant a tout objet X de es 1'ensemble des
classes d'isomorphisme de microfibrés PL réduits de dimension n sur X. Cet

ensemble est pointé par la classe du microfibré trivial.

) fibration au sens de Hurewicz (Cf. Ch. V).

(**) Soient X et Y deux complexes simpliciaux et f : X —» Y une application

continue. Si § est un microfibré PL sur Y, f*§ est un microfibré topolo-
gique sur X. Mais f peut &tre approchée par une application simpliciale g.
Donc dans la classe de f#E, il existe un microfibré PL, g*§. Il est unique

a un isomorphisme prés de microfibrés PL, car g est unique a une homotopie

PL preés.
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Sur Cs, ce foncteur H est semi-exact. La vérification en est plus
directe que pour les fibrés vectoriels sur les CW-complexes généraux ; on
se ramene d'abord au cas des R™-fibrés PL localement triviaux,
en observant que le probléme est local ; - on remarque alors

que tout espace avec projection PL, qui, au-dessus de chaque simplexe o de

la base, est PL-isomorphe au fibré o x mn, est lui-méme un R"-fibré PL

localement trivial. Le lecteur pourra déduire ce fait de 1l'exercice suivant
|

Exercice : Soient Ak le simplexe standard de dimension k, k 2 0, et Ak

son bord moins l'intérieur d'une face principale. Tout automorphisme du

fibré PL trivial Aklen se prolonge en un automorphisme du fibré Aklen.

1.9 A - Pour représenter H a 1'aide du théoréme de Brown (Ch.IT1; 2.6), nous
i

démontrerons d'abord la proposition suivante :

Proposition : Tout h-foncteur semi-exact H sur és se prolonge de fagon
unique en un h-foncteur semi-exact sur la catégorie Cd des CW-complexes

dénombrables pointés.

Démonstration : Si XEbd, on choisit un YEBS et une équivalence d'homo-
topie h : X=Y (Ch.II ; lemme 1.15). Soit ensuite H(X) un exemplaire de H(!

et soit H(h) 1'identité de H(Y). Ceci détermine d'une fagon évidente un

prolongement de H en un h-foncteur sur Bd. Bien entendu, ce prolongement
dépend des choix des équivalences d'homotopie h mais il est visiblement

déterminé a équivalence prés. Il nous faut maintenant vérifier que H ainsi
prolongé est semi-exact sur bd :

il est clair que si X est un bouquet X = VXa, la fleche canonique H(X)
H(X)-JWH(Xa) est un isomorphisme.

Vérification de l'axiome de recollement :

Soit X€&,, et des sous-objets X;,X,,A, tels que X = X, UX,, A=x, ML
Pour prolonger H, on a choisi Y, Yl’ Y2, B, objets de Es et des équivahmi
d'homotopie h :+ X~Y, hy t X, ~¥,, by : X,~Y¥,, k : A~B. On en déduit |

1 1 1’ 72 " 72
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un diagramme commutatif a 1'homotopie pres
jl j2
hll J k J h2

ol j; et j, sont les inclusions et ou £, et f2 sont construites a partir

d'un inverse d'homotopie de k. En utilisant une application propre o : B-R
(obtenue par exemple éApartir d'uneKnumération des sommets de B), on rem-
place fi (i = 1,2) par fi : B-*Y&.xﬁ,définies par f{(x) = (fi(x),a(x)).

Les applications f% sont® propres et respectivement homotopes a fix {0}‘
Soit ¢, une approximation simpliciale de f{ correspondant a une subdivi-
sion convenable B1 de B (Cf. Spanier [12; p.126]), et soit ¢, une approxi-
mation simpliciale de fé correspondant a une subdivision convenable B2 de
Bléﬁ. 9, et ¢, sont propres, homotopes respectivement & £, x {0} er f, x {0},
et simpliciales. On peut donc choisir sur les cylindres Map(@i) (i=1,2)
une structure de complexe simplicial dénombrable (Cf. Spanier [12; exerciceE
p.151]), induisant sur la face origine la triangulation Bi de B. Les appli-
cations s étant propres, ces complexes sont localement finis (c'est la
qu'intervient le remplacement de fi‘par f{). Modifions un peu Map(@z) de
fagon que la triangulation qu'il induit sur B soit B1 ;3 i1 suffit pour cela

d'ajouter un collier Bx I, muni d'une triangulation qui induise B1 sur

s 2
Bx {0} et B2 sur Bx {1}, ce qui est possible car B2 est une subdivision de
Bl' On note ce nouveau complexe Yé et on note Map(wl) = Y!

1 Soit Y' la
réunion sur B, de Yi et de Yé ; Y' est muni par construction d'une struc-

ture de complexe simplicial dénombrable et localement fini, admettant Yi

et Yé pour sous-complexes.

.

(*) On suppose avoir fait de Yi:(B un complexe simplicial de Cs par un

procédé naturel de subdivision qui fait de tout complexe Yix {n},

né€Z, un sous-complexe de YixEL
l"r“-.r--mmw . ‘ - : S e : .
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Y xR :;;; Y, xR
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Nous avons le diagramme ci-dessous, commutatif a 1'homotopie preés, dont

les fléeches verticales sont des équivalences d'homotopie et les fléches

horizontales des ir}clusions : 1.9

s ;
Xl*___._l__)A c__E___,Xz

L I

11 1o
Yi -— B1 r__._.___.._.;Yé

L'équivalence d'homotopie h! est donnée par la composition

h.
i

Xi'—"Yi _ﬁ_(.)_}, Y, xR ;__,.Yi' ou toutes les fléches sont des équivalences

“d'homotopie. Remarquons que ls'inclusion de A dans Xi (i =1,2) étant une
cofibration (Cf. (Ch.IT; 1.17) ou Spanier [12; p.402]), on peut remplace
hi par une application homotope rendant le diagramme commutatif, ce que
nous supposerons aveir fait. Il existe donc une application h' : X-Y

définie par h'
Xl

réme de recollement des homotopies de 1'annexe AIII montre que h' est W

- Wt , - W PSP Cove o Le th
h1 et h ,Xg h2 (qui vérifie aussi h ’A k) e L 1o

équivalence d'homotopie. C'est alors un exercice facile de vérifier que-
donnée de X, EH(Xl) et de x2€H(X2), ayant méme restriction sur A, four
4 EH(Yi) et yéGH(Yé) ayant méme restriction sur B, ; il existe donc ¥
é1ément convenable y' €H(Y'), c'est-a-dire un élément x € H(X) dont on™

rifie qu'il induit x; sur X, pour i = 1,2. cafd 1

Reprenons la démonstration que le foncteur H=kPL(n) est représen-

table.
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1.9 B -~ Pour tout CW-complexe fini X, H(X) est dénombrable :
On peut supposer que X est un complexe simplicial fini. Soit
E:X3E4X un microfibré PL sur X ; en se ramenant & un voisinage de

1.9

1.10

i(X), on peut supposer que E est un complexe simplicial fini. Il existe
alors des triangulations X' de X et E' de E rendant les applications i e
j simpliciales. Notons €' le microfibré X! Y g 4 x ; i1 représente le
H(X').

Un objet tel que €' est décrit par la donnée d'un nombre fini délém

méme élément que § dans H(X) =

(les sommets de X' et de E') et d'un nombre fini de relations entre ces
éléments (les applications simpliciales i et j).
Il n'y a donc*qu'un nombre dénombrable de microfibrés ayant une inj

tion et une projection simpliciales, ce qui donne la conclusion.

c - BPL(n)’ classifiant de H :

Le théoreme de Brown permet alors d'affirmer 1l'existence d'un CW-
complexe dénombrable YH et d'un élément uHGEH(YH), universels pour la
catégorie Bd des CW-complexes dénombrables, ce qui permet de prolonger M
a la catégorie © toute entieére.

D'aprés le lemme 1,15 du chapitre II, Y peut é&tre choisi comme com

H

plexe simplicial appartenant a Es (ie : localement fini et dénombrable)

on le note alors B .
PL(n)

L'élément universel u, se représente donc comme un microfibré PL de
dimension n, noté w , sur BPL(n)EEes' En particulier, si & est un micro-
fibré PL de dimension n sur.XE(%N il existe une application PL

1e X = i 3 ; P = it
fr: X BPL(n),unlque a homotopie pres, telle que § f (un).
c.q.f.d.

Transformations naturelles

Le passage au microfibré topologique sous-jacent nous fournit des

transformations dites d'oubli,

K
kpL(n) "E*'kTOP(n)’ Ko(n) — E10P(n) -

o , . tps s - -
11 y a d'ailleurs une transformation, définie sur Es’ i 'kO(n) kPL(n)’
qui correspond a une notion de triangulation des fibrés vectoriels. On a

k =

I jnin. Nous ne parlerons pas de la définition de in car c'est une
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affaire difficile (Hirsch-Mazur [3]).
En revanche, nous allons exposer une forme stable de ce probléme au para-
graphe 4 de ce chapitre. Pour le moment, nous supposerons l'existence de
in pour des raisons d'uniformité de 1'exposé. Nous dirons aussi que in est
un morphisme d'oubli.

1 J
f < R n n , ’
D'apres (Ch.II, §3), kO(n)'_—*kPL(n) “_'kTOP(n) est représentée par

une suite d'applications, définies a homotopie prés, des classifiants
in In
By(n)— BpL(n) — Brop(n)
Par exemple, I, classifie le microfibré universel sur BPL(n) en tant que

microfibré topologique. <+

82. STABILISATION

Dans ce paragraphe A et A' seront toujours un des symboles 0, PL, TOP.
En associant 3 un fibré (ou microfibré) réduit €, le fibré §®a;) ou 51
désigne le fibré trivial de fibre R, on obtient une transformation dite
de stabilisation

s, ¢ kA(n) - kA(n+1)’ pour tout n=21,

L'espace total E(g&)gl) est E(§)xR. La projection, la section nulle et ls

réduction de £& 51 sont évidentes.

’ 3 - 0 : V4 - . '[ . Vd =1i
Définition On définit le foncteur kA par l'égalité kA m kA(n)’

ou la limite est prise suivant le systeme des fléches s, de stabilisation
Donc un élément de k,(X) est représenté par un fibré réduit sur X et dew
fibrés réduits §T1 ) 522 représentent le méme élément de kA(X) si et

seulement si 1l existe deux fibrés triviaux ¢ de dimensions convena-

1’ 2
bles, tels que §1€B g = §2‘B €y

De la méme fagon on définit le foncteur glibre par 1'égalité

A
LTS Lim i, (P3°. Alors k3 PPT(X) = k, (XU point).

ky = B Ky(n)
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2.1 Proposition : La transformation d'oubli kAﬁ kllbre est un isomorphisme
fonctoriel. Par conséquent k, est muni comme kilbre d'une opération

binaire fonctorielle, la somme de Whitney.

Démonstration : Soit & un n-fibré donné sur un CW-complexe X pointé par

{#) et soient deux réductions f1,f2 : E'{*}-*mp, fournissant les fibrés
réduits §1 et 52. Nous allons construire un isomorphisme 8 : §1$gn-*§é$en,
c'est-a-dire un automorphisme 8 de Edpe” qui, au-dessus de {x}, soit

-1
f2 f1@Id“Rn. Rappelons d'abord que 1l'on peut se ramener au cas ou [0,1]

est ;n voisinage de {x} dans X sur lequel § est trivial (voir la démons-
tration du b) de la pfoposition (¢ch.IV; 1.3)). Considérons alors l'isomor-
phisme g@ldlﬁp : R"eR"~ Bqﬂﬂn, ou g = f1f21. Supposons qu'il existe une
1sotop1e H de g@ldl jusqu'a un isomorphisme de 1a forme Idlmniig

(£ ‘PIdlan)H(f @Idlmn) est donc une isotopie de f f GBIdIRn jusqu aIdIGBg';
GrAce a cette isotopie, nous pouvons construire l'automorphlsme © au-dessus
de [0,1], de telle sorte qu'au-dessus de a(i"‘TB‘Tj) il vaille Id,éBg g il
est donc prolongeable en un automorphisme o de E® " tout entier, répondant
a la question. (Dans le cas des microfibrés, il faut sous-entendre micro-

isomorphisme et microisotopie).

I1 reste a trouver 1l'isotopie H de g9 Idlan jusqu'a Ithn‘:'B g'
Soit K 0 t<1, une isotopie de Id]mq9E913usqu a 1'app11cat1on de la
matrlce ( -1 é) qui échange les axes. Alors H = K (g-+Id|mp)K remplit

nos conditions.

Pour les cas A = 0 et A = TOP, on peut mettre

m . T
cos §t I, sin §t I

Kt ) s s
~sin it I, cos Qt I

Pour le cas A = PL, la formule précédente ne fournit pas une
isotopie PL. On pourrait en trouver a partir d'une isotopie PL de 1l'iden-
tité du cercle jusqu'a une rotation de 90°. (Les détails sont laissés

en exercice).

c qfd




2.2 Définitions

IV.15

La stabilisation est représentée par une application

€n BA(n) - BA(n+1)’ définie & homotopie prés. Donc kA(X) - LiQ[X’BA(ny

D'autre part la stabilisation est compatible avec les transformations

d'oubli, c'est-a-dire que le diagramme suivant commute :

K ‘n K ’n k
20(n) — "pL(n) — “T0P(n)

(D ) 8 - ] s

Kk . in+1 k J‘n+1 Kk
0(n+l) =™ ¥pr(n+1) — KroP(n+1)

Les égalités jn+1 s =s8j et k s =s k_ (ouk

8 = j i ) sont
n n“n n+l n nn nn

n

évidentes. En ce qui concerne 1'égalité i s =8 in’ le lecteur se

n+l "n n
rapportera aux références citées pour la définition de in p.Iv.13.

Dn est représenté par

B ' B ___EB___+ B
0(n) — “pPL(n) TOP(n)
1 .
(D ) s, sn s
i J

B % .B R :
0(n+1) PL(n+1) TOP(n+1)

Dé est commutatif a homotopie prés parce que Dn est commutatif. Nous

pouvons supposer que les applications de Dﬂ sont cellulaires.

f f
~ Soit X1 1; X2 g: X3<—-¢... une suite infinie d'espaces pointés e

d'applications continues qui respectent les points-base.
Soit

n-1 Vi =1,...,n-1,
-
2 U X, = [0,1]UX = {0} Vx € X,

i=1 i
£, (x) xfo}= x {1}

C'est une chafne de (n-1) "mapping-cylinders" M(fi)
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x{O

qui se rétracte par déformation sur X =

- La réunion des X', munie de la topologie limite inductive sera appelée
n

le télescope du systéme {X ,f 1 X' est un télescope partiel.

- Par définition BA = télescope {BA( ),s }. On dit que %Lest le classi-

fiant stable. Pulsque s, est supposé cellulaire, c'est un CW-complexe pointc

Exercice : Soient ﬂxn,fn} et {Xé,fﬁ} deux systémes ayant le méme type
d'homotopie. Montrer que leurs tllescopes respectifs ont le méme type d'ho-
motopie. (Ce résultat est une conséquence immédiate d'une proposition
démontrée par Milnor da?s (8 ; p.150]). La suite des espaces BA(n) et des
applications de stabilisation étant bien définies & homotopie preés, il

résulte de ceci que BA est bien défini & homotopie prés. De toutes fagons,

nous retrouverons ce résultat p.IV.19,

Proposition : Si X est un CW-complexe fini, kA(X) = [X,BA]. Ceci signi-
fie que, pour X fini BA classifie les classes d'isomorphisme stable de

fibrés réduits sur X.

Démonstration : k (x) = lim kA( )(x) = 11m[X,BA( )] = lip[X,B" A(n)J
ou B'A( ) est le telescope partiel (voir les définitions précédentes).
Mais puisque X est fini, llg[X B! A( )] [X,B ]. C'est une conséquence
du fait que 1'image de X ou de X x I par une application continue est un

compact, donc est dans B'A(n) pour n assez grand. cqfd

Remarque importante :

Nous allons montrer par un exemple que B, ne classifie pas les classes

A
d'isomorphisme stable de fibrés réduits sur les complexes de dimension

infinie.

Consgidérons d'abord BO' Soit P" l'espace projectif réel de dimension n,

muni de sa structure naturelle de complexe cellulaire pointé ; soit
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fn : Pn-*BO l1'application classifiante du fibré tangent stable de P H

nous allons montrer que l'application

f =V £ : v P"-B

n ° neN 0 )

n
ne peut correspondre a aucune classe stable de fibrés vectoriels sur V P

est classifiée par 1'application f ; § induit sur P" un fibré vectoriel

;
Soit en effet € un fibré de dimension m sur V Pn, dont la classe stable f
|

?
Eipn, stablement isomorphe a T(Pn), dont la classe totale de Stiefel-~ ;
{

Whitney W(ELPn) est donc égale & w(t(P")). Mais on sait que 1'élément nor!

nul aEEHl(P ;Zz) engendre la cohomologie de P" en tant qu'algebre sur ?ﬁ
(1a seule relation est a9+1==0), et que w(s(P")) = (1 + a)n+1' En parti-
culier, si n+1 = 2¥- 1, il vient
k
(1+-a)n+1 s lea+ oS ... 402 "2 , ol K
tous les termes de la somme sont non nuls ; donc w Kk (T(P2 _2)) % 0.
27-2
ok o k.o ok o
Mais w (= (P )) €H 2 ;Z2) est 1'image par 1l'inclusion
27-2
k .
P> 2.V P” de w K (§), qui est donc non nul. On en déduit que la dimen-
n 27 -2

sion m de § est au moins égale de 2k—2 pour tout k, ce qui constitue une
contradiction. (Pour la définition des classes de Stiefel-Whitney et lew
calcul dans le cas du fibré tangent d'un espace projectif, le lecteur

-

pourra lire Milnor(6]). °

Le raisonnement précédent s'applique aussi aux espaces Bop,s BTOP et
a un autre, B;» qui s'attache aux fibrés de Hurewicz en sphéres (Cf.
Ch.V) ; en effet, les classes de Stiefel-Whitney sont en fait des imagt
de classes dans H*(BG ;22), car leur construction est valable pour les

fibrés de Hurewicz en spheres.

: . L i cati = 1i - Test
Probléme : L'application naturelle kA(X) 11m[X,BA(n)] [X,BA] n'e
pas en général surjective, d'aprés 1l'exemple ci-dessus. Est-elle en

général injective ?
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2.4 Représentation des "oublis" stables koikPLik

2.5
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TOP
Soit A, A' un des couples (O, PL)ou (O, TOP)ou(PL, TOP). L'oubli

t o kA-*kA, est obtenu par limite inductive des oublis tn : kA(n)—*kA'(n)

et est représenté par le diagramme

s s s
B —— B 2 .3 3.
A(1) A(2) — By(s) ceeeaee

8 S S
B !, B 2 , B 3,
A(z) —‘—‘——“"* A|(2) —— A'(3) e o s 00

I N < . N . .
La commutativité a homotopie prés de ce diagramme permet de construire

~ . . ol
concretement une application

BA' , qui prolong

t BA = télescope {BA(n)} - télescope {BA‘(n)}

e

1 3 4 . ’7q 2 .
chacun des tn. D'ailleurs les tn déterminent un élément de glm[BA(n),BA,].

D'aprés le lemme (Ch.II ; 2.5), il existe donc une application t: B, - B

A
qui, a homotopie prés, prolonge les tn.

Proposition : Si X est un CW-complexe fini,

K, (X) 2k, (%)

(M

04

S

t*
[(x,8,] —— [x,B,,]

A

1

est un diagramme commutatif, ol les fléches verticales désignent les iso-

morphismes naturels de la proposition (Ch.IV ; 2.3),

Preuve : t kA(X)-*kA,(X) s'identifie (par la classification) a

. n¥* PP .
llg{[X,BA(n)] —_— [X,BA,(H)]}. En vertu de la définition de t : B

A

-+ B

cette limite s'identifie aussi a t, : [X,BA]-*[X,BA,], d'ou l'on déduit

la commutativité de (T). Au lecteur de fournir les détails !

A'?




Iv.19

Remarque importante

A cause du phénoméne des fantbémes (Cf. Ch. III) nous ne pouvons pas

affirmer que t : B est bien définie & homotopie prés ! En effet on

A~ Ba
a la suite exacte(*) donnée par le théoréme 1 du chapitre III

0 -*}lm_if:SBA(n),BA,] - [BA,BA,] ~;_i_rg[BA(n),BA,] -~ 0

qui dit que t est déterminé modulo 1'image dans [BA’BA'] de
1i31[SBA(n),BAv]. Etant donné que t n'a pas un type d'homotopie bien dé-
terminé, on pourrait douter du fait que BA est lui-méme un type d'homotop
bien déterminé (Cf. exgrcice p.IV.15), c'est-a-dire indépendant du choix

i i : - . s de faire
des BA(n) et des applications s, ¢ BA(n) BA(n+1) Nous venon

le calcul ! car rien n'empéche que A' = A et que tn = Idlk ( ).
A(n

La conclusion est la'suivante : Si BA et BA sont deux classifiants
stables pour A, il existe une équivalence d'homotopie (%) t : BA'*BA,n
La classe d'homotopie de tlB est bien déterminée, mais a cause des
fantdmes nous ne pouvons A(n) affirmer que la classe de t est bien

définie.

(*) Puisque B,, est un H-espace (Cf. Ch.IV, 83), c'est une suite

Al
exacte de groupes.

(**) D'aprés la proposition (Ch.IV; 2.3), t, : n*(BA)-*n*(BA) est un
isomorphisme. Donc le théoréme de Whitehead (Ch.II ; 1.14) dit que

t est une équivalence d'homotopie.
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$3. STRUCTURES DE H-ESPACES SUR LES OBJETS

3.1 Définition : Un espace topologique pointé (H’ho) est dit muni d'une

3.2

3.3

structure de H-espace au sens faible (resp. fort) s'il est donné avec une

application continue pointée m : HxH - H, telle que ml{h }x H et mle {h¥
. o o

considérées comme applications de H dans H, soient des équivalences d'homo-

topie (resp. soient homotopes & Id,H) dans la catégorie des espaces topo-

logiques pointés. <

Lemme : Soit (H, ho’ m') un H-espace au sens faible ; alors il existe
m: HxH ~ H, telle que (H, ho’ m) soit un H-espace au sens fort.

. i : H= i 1 i '
Preuve : Soit gl(resp. g2) ¢t H-H un inverse d'homotopie de m l{ho}XI{

(resp. de m'le {h }). L'application composée m définie par
o

m(b,,hy) = m'(g, (b)), g,(h,))

vérifie trivialement les axiomes d'une loi de H-espace fort sur H.
cgfd

Proposition : Les objets stables BO’ BPL’ BTOP admettent chacun au moins

une structure de H-espace au sens fort.

Démonstration : I1 suffit d'aprés le lemme précédent d'exhiber une

structure de H-espace au sens faible. Nous allons étudier le cas le plus

Id . 3 ° . ' 7 - . . 3 (]
délicat qui est celui de BTOP : BTOP(n) n'étant pas a priori muni d'une
structure de CW-complexe localement fini, le produit cartésien

. . . ' _
BTOP(n)}(BTOP(n) muni de la topologie produit n'a pas de structure natu

relle de CW-complexe.

On note BTOP(n)X.BTOP(n) le produit muni de sa topologie naturelle
de CW-complexe, c'est-a-dire celle dans laquelle un ensemble est fermé si
et seulement si son intersection avec tous les produits de deux cellules

fermées est fermée. D'aprés le lemme (Ch.II ; 1.10), 1'identité ensem-
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bliste 1 : Bpop(n) X Bpop(n) ~ Bror(n) * BroP(n) est une équivalence

d'homotopie. Soit le fibré unf(un = i*(unxun\, ou w désigne le fibré
universel sur BTOP(n)' C'est un fibré de dimension 2n que l'on classifie
par une application Py BTOP(n)ﬁBTOP(n) - BTOP(Zn)'.
Soit s, ¢ BTOP(n) - BTOP(n+1) une application de stabilisation, qui classi-
. P . . .
fie un$e « En remplagant BTOP(n) pqr le téléscope partiel BTOP(n) inclus
dans BTOP (C£f. définitions (ch.IV ; 2.2)), on peut supposer que s est une
. 1‘.- . . A : r ‘_‘ Pl
inclusion cellulaire. Alors s, ¥s, BTOP(n) XBTOP(n) BTOP(n+1)XBTOP(n+l
est une inclusion de sous-complexe. Enfin le diagramme ci-dessous est con-
mutatif a homotopie pres «
A q)n
Br0p(n) * Bror(n) — Bror(2n)

n " “n Son+1 S2p

CPn+1
2B —3 B
TOP(n+1) " "TOP(n+1) TOP(2n+2)

B
Pour vérifier cette commutativité notons Py et P, les projections sur le
premier et le second facteur de BTOP(n)ﬁBTOP(n)"Or 3n+1 3n P, classifie

3*

2 1 , N s
(unﬁun)Qe =p un@p"g‘ un@e 6951, tandis que ¢ (snxsn) classifie

n+1
1 1 1 1 ,

= pi * i Sy 1

(un@e ) % (un9€ ) PT o 5] 4e @pz un® e . Il suffit donc de vérifier It

lemme suivant :

Lemme : Si E” est un miaofibré topologique réduit sur un CW-complexe,

il existe un isomorphisme de microfibrés réduits €O 519‘— 5165.

Démonstration du lemme : La permutation des facteurs qui donne 1'isomor

phisme des fibrés non réduits n : €9 sl -~ £1€B§ induit le germe de 1'autr

. e n+!
morphisme 6 : (xl,...,xn,x ) (xn+1,x1,...,xn) du fibré standard B

n+l
Si n est pair, © est isotope a Idl[Rn"‘l' Donc on peut changer 7 au-dessus
d'un petit voisinage du point-base b de fagon que n induise le germe de
1'identité du fibré standard R2*l, n donne alors un isomorphisme de fibr*

réduits. (Cette modification utilise un germe de structure produit

au-dessus d'un voisinage U de b et une fonction X - (0,1], valant 1 et

b et 0 sur un voisinage de X-U, ¢f. Milnor [9; lemme 7.5]).

o




®~

fie

classi-
nclus
st une

TOP (n+)
t com-

ur le
Lssifie

fie

{fier le

lexe,

11 gomor-

1 1 au‘tO‘
n+l

d R

.dessus

yyme de

je fibl‘é’

t 1 en

Iv.,22
Si n est impair, © change l'orientation de m?*l. Donc il faut partir de 7

. 1
composé avec la réflexion dans le facteur e .

Exercice Fournir les détails de la démonstration précédente. Démontrer
le lemme analogue pour les fibrés vectoriels réduits et les microfibrés

PL réduits.

Suite de la démonstration de la proposition 3.3

L'inclusionsﬂlﬁsn étant une cofibration. (Ch.II; 1,17), on peut
changer ®,+1 Par une homotopie pour rendre le diagramme (*) commutatif. On

en déduit alors qu'il existe une application continue i : B 2B B

ToP * PT0P ~
~ : B -~ B
Top X {po} TOP TOP

une équivalence d'homotopie. BTOP étant un CW-complexe, il suffit de mon-

TOP®

%
Soit P, le point-base de BTOP' Montrons que uIB est

trer que pout tout n

(HIBTOP:? {po})* ¢ (Brop) = 7, (Bygp)

. . ' ies. L 1 n ; s
est un isomorphisme, Or nn(BTOP) s'identifie a 1l'ensemble kTOP(S ), d'apres
(Ch.IV ; 2.3), et il est facile de voir que

(b1 g t kpop(S”) = kpgp(s™)

2 )
rop % 1Py}
n'est autre que [E"] b [§mﬁaem], c'est-a-dire 1'identité.

- B

Symétriquement u,{PO}2I%0% $ BTOP TOP

est une équivalence d'homotopie. Pour conclure on utilisera le lemme

suivant

Lemme : Soit (X,xo) un CW-complexe pointé, et soit i 1'identité de
X%¥X sur XxX. Il existe alors g : XxX - X%X, inverse d'homotopie de i,
¢ . - .y

el que gl(Xx {Xo})U ({xo}xX) soit 1'identité de (Xx {xo})U ({xo}xX)

sur (X % {xo} U ({xo} £X).

D'aprés Spanier [12; théoréme 12, p.402],

1'inclusion (X b {xo}) U ({xo} x X) dans X x X est une cofibration.

Démonstration du lemme

Sachant d'autre part que i est une équivalence d'homotopie et que




3.4

“un espace topologique pointé. Alors nl(Y) agit sur [X,Y] de 1a maniere

Iv.23

3 2 . . t
1, (X % {XO})U ({XO}J?X) est un homéomorphisme sur son image, on montre
facilement que, si h désigne un inverse d'homotopie de i,

S 714 . X
h’(Xx {XO})U ({xo}xX) est homotope a 1'inclusion (X x {xo})U ({xo}x )

dans X X X. J1 existe donc un prolongement de cette homotopie, dont 1'aba
tissement est une application g homotope a4 h. Ce g est l'application

cherchée.

Fin de la démonstration de la proposition 3.3
Soit g ¢ B

- e ! i i i le 1emme
TOPXBTOP. BTOPXBTOP’ l1'application fournie par le

précédent . Il est alors immédiat de vérifier que m' = pg : BTOP)‘BTOPq%
est une loi de H-espace faible sur BTOP' cqfd

Remarque 1 : A priori, m"B x{p ) n'est pas forcément homotope a
ToP * P

1'identité, bien qu'elle induise 1'identité sur les groupes d'homotopie

(voir Fantdémes, Ch.III)., Comme nous 1'avons vu dans le lemme (Ch.IV ; 3.

on peut remplacer m' par m tel que mIBTQPX {po} et ml{po}:XBTOP soient

homotopes a 1l'identité de B En s'appuyant encore une fois sur la cofl.

TOP®
i i trictions
bration BTOPX {po}U {po} XBTOP hd BTOPXBTOP on voit que ces restric

peuvent méme €tre égales a 1l'identité.

Remarque 2 : Les autres cas® B0 et BPIJ sont plus simples car les objet
sont munis de structures de CW-complexe dénombrable, ce qui permet de l¢
supposer localement finis ; alors le faux produit % et le produit carte

sien colncident.

Premiere conséquence :

Soit X un espace topologique, X un point-base de X, supposé non

dégénéré (c'est-a-dire que l'inclusion x ©X est une cofibration). Soit

suivante :
Soit £ ¢+ X-Y et soit o : Sl—*Y. On définit une application du bo¥

quet XVI dans Y a l'aide de f et a, que 1l'on prolonge en une applical”

F:XxI-Y. On note a(f) : X-Y 1'application x & F(x,1) et on vérific

3

3

.5,

N
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que la classe d'homotopie de a(f) ne dépend que des classes d'homotopie

de ¢ et de T.

Lemme : Dans les conditions précédentes, si Y est un H-espace, nl(Y)

agit trivialement sur [X,Y]. (Cf. Spanier [12; théoreéme 5 p. 382]).

Corollaire : Si Y est un H-espace, et si X est un espace topologique

’

muni d'un point-base non dégénéré, on a :
[XyY] = [X’leibre

Preuve : En effet, [X’leibre n'est autre que l'ensemble des orbites

de l'action de nl(Y) sur [X,Y].

Application aux objets stablegs : Si A est 1'un des symboles 0, PL, TOP,

et si X est un CW-complexe pointé :
[(x,8,] = (X8B3 ihre

Localisation du classifiant :
La loi de H-espace BAJKBA‘*BA, construite a la proposition

(ch.IV ; 3.3), définit un produit (= une opération binaire) fonctoriel
dans [?, BAJ. Le foncteur kA(?) est aussi muni d'un produit fonctoriel,
la somme de Whitney (Cf. proposition (Ch.IV; 2.1)). Au lecteur de ren-
forcer la proposition (Ch.IV; 2.3) en vérifiant la proposition suivante
#*
(*)

.

Proposition : Pour tout CW-complexe pointé X (dénombrable si A = PL

1'application naturelle kA(X) - [X,BA] respecte ces opération binaires.

Lemme (46 & I.M. James)
Soit m : BxB—-B une loi de H-espace. Pour tout CW-complexe

connexe pointé X, l'opération (xl,xg)h‘m*(xl,xg), définie sur [X,B] est
une loi de monoide, possédant une unité et des inverses a droite et a

gauche,

Démonstration : L'unité est représenté par 1l'application constante.

(%)

Voir la proposition (Ch. IV; 1.9 A).

B SN
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Pour obtenir les inverses a droite nous allons montrer que
1xm : BxB - BxB est une équivalence d'homotopie faible. Il s'en suivra
que l'application (1 xnﬂ* : (x,y)e (x,x.y) de EX,B]z = [X,Bx B] dans lui-
méme est bijective (Cf. Ch.II ;1.13) et qu'en particulier il existe y tel
que x.y = e,

Pour établir 1'équivalence faible, considérons
(1xm), : nk(BxB)—»nk(B_x B) = [Sk, Bx B], pour tout k>0, Puisque s¥ est
une suspension, X.y = x+y, pour x,y€ nk(B) (cf. Spanier [t12; théoréme 8
p. #sJ}. Donc (1x1nhb : (x,y) » (x,x.y) = (x,x+y) est un isomorphisme de
groupes abéliens. <

On obtient les inverses a gauche de la méme fagon a partir de

mx 1. ' cgqgfd

Appliquons maintenant ce lemme pour déduire l'existence de

- - « - 3 ’ . 1
microfibrés inverses que Milnor a construits plus géométxiquement dans (9.
Soi1t X un complexe simplicial fini connexe. Nous avons établi dans

(Ch.1V ; 3.4)

~ . libre
Ajlibre - kA (x)
libre(X

et ces bijections respectent les produits (Ch.IV; 3.5.1). Or sur kA

k,(X) = [x,8,] = [X,B

‘le produit est évidemment commutatif et associatif. D'aprés le lemme de

James (Ch.IV; 3.5.2), [X,BA] est un monoYde unitaire avec éléments invers

Donc tous sont des groupes abéliens.

D. Sullivan a récemment utilisé la notion de produit tensoriel

de BA (A = 0, PL ou TOP) avec un groupe abélien sans torsion. Elle s'ex

prime alsément dans la théorie de Brown. Soit G un groupe abélien. On
considere le h-foncteur composé
[?,BA]®(}: {CW-complexes finis } — {groupes abéliens} - ¢ (=en§em§N5

connexes et pointés pointés)/-
L'axiome du bouquet (Cf. Ch.II; 2.3) est automatiquement vérifié. L'axi”
du recollement est satisfait si et seulement si pour toute réunion XIU\
la suite exacte

i@ ik SRS

1772 17 J2 n
[X1UX2,.BA] _3 [Xi,BAJea[Xz,BA]-—-—»[Xl Xz,BA]
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(ot il’ i2, jl, j2 sont des inclusions évidentes) reste exacte aprés
tensorisation avec G. Donc pour G sans torsion, [?,BA]GQG satisfait aux
deux conditions de la semi-exactitude. Si en plus G est dénombrable et BA
d'un type dénombrable (comme c'est le cas pour A = 0 ou PL), le théoreme

de Brown (Ch.II ; 2.6) nous fournit un classifiant noté B, ®G. ~

Si p est un nombre premier et si on note
z(p) = {a/peqlapez, p/ b}, 1'espace BA®Z(p) s'appelle le localisé

de BA par rapport a l'entier premier p.

84. UNE APPLICATION i : B. - B

Le but de ce paragraphe est de définir une application By — By }%

qui corresponde a 1'idée de triangulation des fibrés vectoriels. On

. ’ . o t . - -
voudrait définir d'abord des applications BO(n) BPL(n) comme nous

l1'avons fait pour le couple BO’ BTOP' Malheureusement c'est une construc- fﬁﬁ;’

tion difficile (Cf. Hirsch-Mazur [3]) ; 1la construction analogue pour les f;*‘
pseudo-fibrés PL(=block—bund1es) de Morlet[lO] et de Rourke-Sanderson [11] ;
serait moins difficile, mais nous ne les traitons pas. Nous nous contente- §;§T

rons donc de la situation stable.

Rappelons de 1'exercice (Chap. I, p.31) qu'il y a une transfor-

mation (notée 132 ¢ )
i+ k., -k

0 PL
de foncteurs définis sur la catégorie des complexes simpliciaux localement !
- . . .o libre libre
finis, de dimension finie. Rappelons que kO— kO et kPL = kPL

(ctf. prop. Ch.IV; 2.1), Notre construction de i au Chap. I, p. 31 emploie

le principe d'isomorphisme stable (Chap.I), et les théoremes d'existence

et d'unicité des triangulations C1 des variétés lisses. Signalons qu'a

force d'un peu de travail on peut éviter le principe d'isomorphisme

stable (voir Milnor [7]).

Nous avons remarqué (proposition Ch.IV, 1.4) que BO(n) peut

8tre un CW-complexe dénombrable pointé. D'apres le lemme (Ch.IT, 1.15)
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nous pouvons changer BO(n) en un complexe simplicial localement fini et
dénombrable. Soit ensuite’Bn le n-squelette de BO(n)' Par définition

B0 = télescope {BO(n)’sn} ou s BO(n) - BO(n+1) est une application
simpliciale qui représente la stabilisation. L'inclusion dans B0 de

B = télescope {Bn,s induit un isomorphisme des groupes d'homotopie;

n’Bn}

elle est donc une équivalence d'homotopie. Si §n est le n-fibré universel

sur BO(n)’ le foncteur i associe a gn,Bn un élément de

kPL(Bn) = lig [Bn’BPL(k)] et donc un élément x  de [Bn,BPL]. On voit faci-
_ v #* . ' RYPT
lement que xn+1,Bn( (sann) xn+1) cofncide avec X» € est-a-dire que

(xl,xz,...,xn,...) est un élément de 1im [Bn,BPL]. D'apreés le lemme
(Ch.II, 2.5) il existe un élément x de [B,BPL] = [BO’BPLJ tel que

x,Bn = x_ pour tout n. Soit i = BO —~ BPL un représentant-de x. Le lecteur

constatera sans difficulté que cette application représente i : kO - kPL

sur les complexes finis et méme sur tous les complexes de dimension finie
de %s ; dans ce dernier cas, on utilise le théoréeme de stabilité, cité

p. IV.29, qui signifie que, pout tout x de dimension finie dans ES,

ko(r) -~ [x,BOJ et kPL(x) - [x,BPL] sont des isomorphismes.
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_§5. BONNE DEFINITION DE CERTAINES APPLICATIONS EN COHOMOLOGIE

Nous avons un diagramme commutatif de transformations d'oubli

kO kPL

\

kTOP

(3)

<

Nous avons défini ce diagramme sur la catégorie des complexes simpliciaux
pointés, localement finis et de dimension finie. Pour les complexes finis

nous avons représenté ce diagramme par un diagramme d'applications

Bo i——“’""'/BPL

Donc pour tout complexe fini X le diagramme [X,J'] s'identifie naturel-

(a+)

lement au diagramme commutatif J(X). A cause des fantdmes (Cf. Ch.III),
nous ne pouvons pas affirmer que i,»j, k sont déterminés a homotopie pres
par (J). Cette difficulté est amoindrie par la proposition suivante :

5.1 Propogition : pour tout groupe abélien G de coefficients, les diagrammes

i* ik
Hy(ByiG) — s Hy(Bp ;G) H*(By;6) 4—— H*(Bp 36)

;>\\ ¢/<Le ki\\ //4;*
Hy (Bpgp3 ) H*(Byppi G)

sont commutatifs et dépendent seulement
d'oubli (J) et non du choix de i, j, k.

du diagramme de transformations

I!Fﬁ* e —
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Démonstration

a) Diagramme d'homologie : vérifions d'abord que iy, Jy et k, dépendent

seulement des transformations d'oubli de (J). Chacune des applications i,
J, k est bien définie sur chaque compact de sa source. Mais chaque chaine
singuliére a un support compact ; la conclusion s'en suit. La commutativit
du diagramme d'homologie se déduit du fait que, pour chaque compact K de %.

3 ilK est homotope a le.

b) Diagramme de cohomologie : si G est un corps Hn(-;G) = HomG(HnG;®§m

pour tout n. En ce cas 1'affirmation pour l'homologie entraine celle pour
<
la cohomologie. Pour le cas général notre démonstration sera fondée sur

le théoreme suivant :

Théoréme de stabilité :

(1) i (BO,BO(H)) =0, m<n

(11) m (BPL,BPL(n)) =0, m<n.

Démonstration du théoréme : (I) est une traduction en termes de classi-

fiants du théoréme de stabilité pour les fibrés vectoriels (Ch.0 ; ).
(I1) est un résultat assez difficile dt & A. Haefliger et C.T.C. wall[2].
Morlet démontre (II) pour m < n dans la thése (Paris, 1967).

- -

Fin de la démonstration de 5.1 : Démontrons alors que le diagramme en

cohomologie dépend seulement de (J). Pour tout entier n =2 0, on a un

diagramme commutatif
*

k
n
H(By36) «—— H (Byypi)

l

n Mk *
H (Bo(n+1)’G) ( lBO(n+1))
ou la fleche verticale est la restriction. L'application k'B est
0(n+1)
. 2 a . -~ 0 ~ 1 . - R
bien définie 2 homotopie pres par 1l'oubli kO(n+1) kTOP(n+1)
Done (kIB )#* egt bien définie. Pour achever la démonstration relati¥

0(n+1)
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a k¥, il suffit de démontrer que la fléche verticale est un isomorphisme.
Le théoreme de stabilité (Ch.O, ) donne nm(BO’BO(n+1)) =0, m < n+l ;

donc Hm(BO’BO(n+1)) = 0, m < n+l, par le théoréme de Hurewicz. Ensuite

B (By By (541))

versels. Enfin la suite exacte relative a la paire (BO’BO(n+1)) donne

= 0, m < n+l, d'apres le théoréme des coefficients uni-

l'igsomorphisme exigé. La bonne définition de k* est démontrée.

La bonne définition de i* et de j* se démontre de la méme fagon.
Pour j¥*, on a besoin de nm(BPL’BPL(n)) = 0, m < n. Pour la bonne défini-

tion de i¥, il faut employer la filtration By = U Bm’ ou BmG Es est de
-~
m

dimension finie (Cf. Ch.IV,84), car 1'oubli ky ~ kpp

défini que sur les complexes de dimension finie de Bs' La stabilité

n'est (pour nous)

np(BO,Bm) =0, p<m, se déduit de np(BO,BO(m)) =0, p<nm.

La commutativité du diagramme de cohomologie se déduit de cette

derniere stabilité et du fait que

est commutatif & homotopie preés. - cqfd
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Remarques finales : faut-il craindre les fantdmes ?

Les fantdmes (Cf. Ch., III) nous ont empéché de préciser une

classe d'homotopie préférentielle pour les applications d'oubli

B0 ’ BPL

(3) | \ /

Brop

De plus, ilscompliquent la t&iche de doter la loi de h-espace BAfXBA - BA’
qui représente la somme de Whitney, des propriétés de commutativité et

d'associativité & homotopie prés dont la somme elle-méme jouit.

Ces difficultés témoignent une myopie de la théorie de Brown.
I1 parait que la méthode dé Milnor [5] donnerait une application préfé-
rentielle BO - BTOP' Ceci arrive pour la raison que tou? morphisme de
groupes topologiques G - H engendre canoniquement une application bien
définie BG - BH des classifiants de Milnor. Malheureusement ia méthode
de Milnor ne comprend pas aisément les microfibrés PL. Pour une raison
analogue il parait que la méthode semi-simpliciale (on trouvera des
références dans Rourke et Sanderson {11]) permettrait de bien définir
Bo = Brop’
précision qu'offre dans cette situation la théorie semi-simpliciale, lui

et méme toutes les applications de (J). La généralité et la
donne un avantage qui compense sa complexité considérable.

Comme avantage de la théorie de Brown, il faut souligner sa
maniabilité. Citons comme exemple la construction de BPL ® G, ou G est

un groupe abélien sans torsion (Cf. Ch. IV, 3.5).

Quant aux difficultés qu'engendrent les fantdmes, on peut les
éviter souvent dans le cadre de la théorie de Brown. (Voir par exemple
ce Ch. IV, 5). Il faut enfin remarquer que A. Dold[13] avance 1'idée qut

les axiomes de semi-exactitude sont aussi utiles qu'un classifiant. Il
b8

remplace le classifiant (qu'il ne suppose pas exister) par le foncteurl4
méme et traite ce foncteur comme un "espace généralisé". Une transformst

de foncteurs joue alors le rdle d'une "application généralisée'.
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LE RECOLLEMENT D'EQUIVALENCES D'HOMOTOPIE

Soit donné un diagramme, commutatif 3 homotopie pres, d'espaces
topologiques
Xl(__) A C_;X2

o al |

%
ou les applications verticales sont des équivalences d'homotopie et les
. 3
applications horizontales des inclusions qui sont des cofibrations( ).

Soit X = X, UX, et Y =Y UY,. On suppose xlﬂx2 = A et Y10Y2 = B et que

Xl,X2,Y1,Y2 sont fermés.

Théoreéme : Il existe une application de triples F : (X ;Xl,X2)-ﬂ(Y ;Yl,YQ

de sorte que fi soit homotope & F x. ¢ Xi - Yi’ i =1,2., Toute telle F est
i
une équivalence d'homotopie de triples.

Remarque : Méme a homotopie prés, F n'est pas nécessairement unique.
1

Pour former un exemple on prend (X ;Xl,Xz) = (Y ;Yl,Yz) = (S1 ;Di,Di)X’S

p
D1
+

Dl

Démonstration du théoreme : L'existence de F est facile & démontrer.

*

( )On rappelle que M < N est une cofibration si toute application continue
de M = [0,1] U N x {0} se prolonge en une application continue de
Nx[0,1]. Toute inclusion d'un sous-complexe dans un CW-complexe en est

une (Spanier [12; théoréme 12, p. 402]).

T o - - " S - SR -
& e oy e s A wv,_M-z,m,,ﬁv.mﬂ,,.-m,ﬂ«.,wvvvm
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Puisque A.¢~X1 et A “'Xz sont des cofibrations, on peut rendre le dia-
gramme commutatif en prolongeant a X1 et X2 des homotopies de fl,A et f2lA
jusqu'a f, La continuité de F résulte du fait que X, et X2 sont fermés.

Que F soit une équivalence d'homotopie, cela va découler du lemme suivant:

Lemme : Soient A X et B Y deux cofibrations et (F,f) : (X,A) - (Y,B)
une application de paires telle que F : X - Y et f(=F|A) : A~ B soient
des équivalences d'homotopie de paires. De plus, étant donnés g : B - A
un inverse d'homotopie de f et h une homotopie de 1|B jusqu'a fg, 11 exist
G' : (Y,B) - (X,A) équivalence d'homotopie de paires, inverse de F, dont l
restriction a B soit g e€ telle qu'une homotopie de 1'Y jusqu'a FG' pro-

longe h.

Démonstration du lemme : “L'inclusion de B dans Y étant une cofibration,

on peut choisir pour inverse de F une application G : Y = X dont la res-
triction a2 B soit 1'application donnée g : B = A, inverse de f = FlA'
Soit H : YxI - Y une homotopie de 1,Y jusqu'a FG. En composant pour
chaque b € B le chemin h(b,t) et le chemin H(b,t) décrit a 1l'envers, on
obtient une homotopie non triviale A : BxI - Y, de 1|B jusqu'a 1 B En
prolongeant A & Yx I on obtient une homotopie L de l'identité de Y jusqu's
p : Y=Y, ou g = 1'B'
Posons alors G' = Gg. quarquons que G' B = & Nous allons montrer
qu'il existe une homotopie de paire de (1|Y’1|B) jusqu'a (FG',fg).
Tout d'abord nous avons une homotopie ¢ de llY jusqu'a FG' en composant
1'homotopie L et 1'homotopie Hp. Dans cette homotopie, un point b€ B décrit
successivement les chemins h(b,t), H(b,1-t), H(@(b),t) = H(b,t).

Ce chemin est déformable continuement jusqu'au chemin h(b,t) :

h h
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(*)

déformation de 1'homotopie ¢ jusqu'ad une homotopie $' entre llY et FG',

La déformation de 1'homotopie QIBX'I jusqu'a h se prolonge en une

dont la restriction a Bx I est h.

' est une homotopie de paire de (lY,lB) jusqu'a (FG',fg).

La méme construction faite sur G' donne une application F' : XxI = X et
une homotopie de paires de (1X’ 1A) jusqu'a (G'F',gf). Mais (F',f) et
(F,f) sont homotopes a (FG'F ,fgf). Donc (G'F,gf) est homotope a (1,X,1,A)

cqfd
Démonstration du théoréme : Nous pouvons supposer (D) commutatif et

F Xi = fi’ i = 1,2, Choisissons g ¢+ B—~ A un inverse de f et h une homo-
topie de 1 B jusqu'a fg. D'apf%s le lemme (appliqué deux fois) il est pos-
sible de prolonger g en une application de triples G : (Y ;Yl,Yz)-¢(X;.XPX)
et de prolonger h en une homotopie H de 1|Y jusqu'a FG qui respecte les
sous-espaces Y1, YzParaﬂlleurs le lemme dit que g, = G,Yi : Yi~ Xi’ i=12,

sont des équivalences d'homotopie.

Or l'homotopie 1|Y = FG dit que F est une domination de triples. Par
symétrie G en est une également. Donc F et G sont des équivalences

d'homotopie de triples inverses l'une de 1l'autre,

cqfd

*)

On rappelle que si M N est une cofibrations :
Mx [0,1JUNx {0,1} < NxI est aussi une cofibration (Spanier f2; exer-

cice E, p. 57]).
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§1. DEFINITIONS

Soient E et B deux espaces topologiques et soit p : E - B une ap-

plication continue. Le triple (E,p,B) est appelé espace avec projection

ou ezpace au-dessus de B. On dit que p a la propriété de reléevement des

homisiupies (ou encore la propriété RH) pour 1l'espace topologique X, si,

pour touite application continue f : XxI - B, et tout relevement

G : Xx {0} -~ E de f , i1 existe un relévement F : XxI - E de 1'ap-
X s o) 113

plication f, vérifiant FIXXI{O} = G,

Une application continue p : E - B est appelée une fibration de

Hurewicz si p a la propriété de relévement des homotopies pour tout

espace topologique X. Le triple (E,p,B) est un fibré de Hurewicz.
Remarque : Si B est connexe par arcs, p est nécessairement surjective.

Etant donnés deux espaces avec projection (E,p,B) et (E',p',B) sur
la méme base B, on appelle morphisme de (E,p,B) dans (E',p',B') une ap-

plication continue f : E - E' au-dessus de B, c'est-a-dire telle que p'f =p

Soient f,g : (E,p,B) - (E',p',B ) deux morphismes d'espaces avec pro-
jection sur la méme base. Une homotopie H : ExI - E' entre f et g est

dite verticale si chaque étape H, = H’Ex‘{t} est un morphisme d'espaces

t
avec projection., On dit alors que f et'g sont verticalement homotopes,

et on note f‘*‘Bg.

Un morphisme f : (E,p,B) » (E',p',B ) d'espaces avec projection sur
la méme base est une équivalence d'homotopie fibrée s'il existe un mor-
phisme g : (E',p',B) = (E,p,B) tel que fg =5 Tdg, et gf =5 Id,. On dit
alors que (E,p,B) et (E',p‘,B ) ont le méme type d'homotopie fibrée ou

encore qu'ils sont HF-équivalents.
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1.6 Image réciproque d'un espace avec projection

Rappelons d'abord la notion de produit fibré dans une catégorie

abstraite C : Etant donné dans C le diagramme

un objet E, muni” de morphismes Py ¢ E - A1 et Py E - A2 tels que
fi0, = f2¢2, est un produit fibré du diagramme précédent, s'il possede

la propriété universelle suivante : pour tout diagramme commutatif

il existe un unique morphisme 6 : X - E, tel que gy = 6@1 et gy = 6@2.
Si un tel objet existe, 11 est unique a isomorphisme pres. Dans la caté-
gorie des espaces topologiques et des applications continues, tout dia-

gramme
E

f lp

B'" —— 3 B ~

posseéde un produit fibré ; soit le sous-espace topologique E'!', du pro-
duit B' xE, défini par E' = {(b',e) € B"xEﬂf(b‘) = p(e)} : soient
p' : E' = B' et f : E' - E les restrictions a E' des deux projections

du produit sur chacun de ses facteurs ; E', avec p' et f, est solution

du probleme universel. On dit que (E’,p',B') est 1'image réciprogque par {
de 1'espace avec projection (E,p,B). En vertu de la propriété universellt
d'un produit fibré, si p est une fibration de Hurewicz, p' est elle-
méme une fibration de Hurewicz.

On notera souvent (E',p',B') = £*(E,p,B).
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Propriété faible de reléevement des homotopies

Dold étudie dans [1] un affaiblissement de la propriété RH dont nous
aurons besoin lors du théoreme (Ch. V; 3 ) de classification des fi-

brés de Hurewicz sur une base CW-complexe.

Définitions : Soient E et B deux espaces topologiques et soit une ap-

plication continue p : E » B. On dit que p a la propriété faible de rele-

vement des homotopies (ou enéore la propriété RH faible) pour 1l'espace

topoiogique X, si pour toute application continue f : XxI - B, et tout
reléevement G : Xx {O} - E de f,'Xx {0}, il existe un relevement ¥ : XxI—~E
de £, tel que F,XX'{O} soit verticalement homotope & G (Cf. 1.4).

Une application continue p : E~B est une fibration faible si p a
la propriété faible de relévement des homotopies pour tout espace topo-

logique X.

Remarques : i) L'image réciproque d'une fibration faible par une appli-
cation continue est une fibration faible.

‘ ii) On sait que, si p : E~B est une fibration de Hurewicz,
et si F © E désigne la fibre au-dessus d'un point b0 €B,
Py ¢ n*(EgF) - n*(B,bo) est un isomorphisme, donc qu'il existe une suite
exacte de fibration (Cf. Hu[2 ;p.118]). Le lecteur pourra démantrer en
exercice que cette propriété reste vraie pour les fibrations faibles. La

propriété suivante est la raison d'@tre de la notion defibration faible.

Lemme important : La propriété RH-faible est un invariant du type

d'homotope fibrée.
La démonstration se fait par un simple examen des définitions.

En revanche, la propriété RH n'est pas un invariant du type d'homo-

topie fibrée.

Exemple : E =B = [0,1], p : E > B est 1'identité. (E,p,B) possede la

propriété RH. La lettre L, munie de la projection sur sa base, possede
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la propriété RH faible et non la propriété RH, alors qu'elle est

HF-équivalente au fibré précédent.

§2. PREMIERES PROPRIETES

2.1 Pro.vsition : Soit (E,p,B) une fibration faible ; soit £f,f, + X=B

deux applications homotopes. Alors les fibrations faibles fﬁ(E,p,B) et
f?(E,p,B) sont HF-¢quivalentes.

Démonstration : Soit F : XxTI - B une homotopie entre fo et f1 ; on
note (&,n,Xx1I) le fibré F*(E,p,B) et (Ei,pi,Xi) le fibré f?(E,p,B) pour
i = 0,1 ; dans la suite on regardera Ei comme sous-espace de €. Introdui-
sons une homotopie a (resp. al) de IdXx:I jusqu'a la projection

(x,u) » (x,O) (resp.(x,u)|~ (x,1)) ; on peut poser par exemple
Oﬁo(X,u,’t) = (Xy (1't)u)
0 (ou,t) = (xu v b1 - W),

En relevant les homotopies aio(nx IdI) : €x1 - Xx1I, pour i = 0,1, on

obtient & et ¥ : € x I » € rendant commutatif le diagramme

L

Ex I &(resp.Y) , €

T X IdIi l
ao(resp.al)

(XxI)x1 » (xXx1)

tels que Qo(resp.Yo) soit verticalement homotope & Idg et que Ql(resp.Yﬂ
applique € dans E0 (resp. El)' De 1'homotopie él—t'E , 0t <1, on
et YllE . Mais Yl’E es

est Ver%icalementlnmotope

déduit une homotopie verticale entre V¥ t

1§1|E1
verticalement homotope a Id,E , donc Ylél’E
a Id . De la méme maniére on obtiendrait une homotopie verticale entre

| &, |
@1Y1|E0 et Id E * |

o cgfd




.2 Conséquences

- Si B est contractible, alors, pour tout point b € B, (E,p,B) est
HF-équivalent a (Bx‘p—l(b), pl,B) ol p, désigne la projection sur le
premier facteur du produit.

- Si B est connexe pararcs, deux fibres quelconques ont le méme

type d'homotopie.

Proposition : (Cf. Dold [13 théoreme 6.1, p. 243])
Soient (E,p,B) et (E',p',B) deux fibrations faibles sur la méme base B3

soit f : E - E' un morphisme d'espaces avec projection qui soit une équi-

valence d'homotopie j alors f es't une équivalence d'homotopie fibrée.

Remarque préliminaire : Soit g : E' ~FE un morphisme qui soit un inverse

d'homotopie de f 5 il ne faut pas croire qu'il existe alors une homotopie
verticale entre fg et IdIE" I1 faudra en général faire choix d'un inverse

particulier g', ce qui apparait clairement dans 1l'exemple suivant :

Exemple : Soit E = E' = Rl et p = p' la projection sur le quotient
Rl/l = S1 de ml par le sous-groupe additif des entiers. Soit F : E = E!'
1'application f(x) = x + 1. Il est évident que f est une équivalence
d'homotopie fibré (c'est un isomorphisme). Cependant si on prend g = Id
commes,inverse, on n'a pas d'homotopie verticale entre fg et IdlE"

-» -

Démonstration de la proposition : Nous démontrerons que si f : E = E!

est un morphisme de fibrés faibles sur B tel qu'il existe une application
g : E' - E de sorte que fg soit homotope a IdlE" alors il existe un mor-
phisme g' : E' ~ E tel que fg' soit verticalement homotope a IdlE"

' Y ¢ oo
c'est-a-dire fg B IdIE"

Si f est une équivalence d'homotopie g' le sera de méme, et nous
pourrons de ce fait affirmer l'existence d'un morphisme f' : E — E' tel
IFXEES 1
que g'f B IdIE. Mais alors
g'f Q‘B (g'f)(g'f’) = gl(fg!)fl -B g'f! a.B Id'E

et g' sera l'inverse dont la proposition affirme 1l'existence.
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A) Choix de 1l'inverse a droite g' :

Soit g ¢+ E' » E une application telle que fg = IdIE" Par une appli-
cation de la propriété RH (faible) on peut déformer g en un morphisme de

fibrés, ce que nous supposerons fait.

Soit d ¢+ E'x1I — E' une homotopie entre do = fg et d1 = IdIE" On
remarque que pg = p'fg = p'do, ce qui permet de trouver une homotopie

D=E'xI—=E relevant p'd, telle que Dl

E'x (0] soit verticalement homo-

tope a g. Définissons

|- . L
g ‘ DIE'X {1} : E E
'S

B) Une homotopie verticale entre fg' et IdlE'
On prolonge D : E'x[0,1] - E par G : E' x [-1,1] - E en choisissant
une homotopie verticale G|E' x [—1,0] entre g et DIE' x {03.

D'aprés la loi exponentielle (Chap. O ) on peut considérer
toute homotopie comme un chemin dans un espace de fonctions continues.
Cette astuce va beaucoup clarifier la démonstration pour les esprits
géométriques. App(X,Y) désignera 1'espace des applications continues X~

muni de la topologie "compacte-ouverte".

Remarquons que l'application induite pL : App(E',E') — App(E',B)
hérite de p' : E' - B la propriété RH faible du moins pour les complexes

simpliciaux finis (voir la loi exponentielle chap. 0).

Considérons sous forme de diagramme schématique les chemins

déja construits

App(E' ,E) App(E' ,E')
/ g' IdIE'
G 4 D d
D|E'x {0} fg
& \f* !ﬂ;/

p'd(:::;>p'

App(E',B)
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2.4

I1 nous faut montrer gqu'il existe un chemin dans App(E',E') du point

Id‘E' au point fg', qui est vertical, c'est-a-dire qui se projette sur le
chemin constant en p' € App(E',B). Or nous avons déja un chemin, soit

n ¢ [a,b] - App(E',E') de I4|E' a f£g', & savoir le chemin d parcouru en

sens inverse de Id|E' & fg, suivi par le chemin £G de fg & fg'

App(E' ,E')

Le chemin projeté p'n : [a,b] — App(E',B) est un lacet par p' € App(E',B)

contractible sur p'. Si H : [a,b]Jx I — App(E',B) réalise cette contrac-
tion, H[[a,b]x {0} = p'n et H({a,b}x I U [a,b] x {1}) = p'. Donc en rele-
vant 1'homotopie H dans App(E',E') et en se restreignant au relévement de
H|{a,b}x I U [a,b] x {1}, on obtient un chemin vertical dont les extremités
. . s , s ,
sont respectivement verticalement homotopes a Id|E' et a fg'. cafd

Exercice : Dans la démonstration ci-dessus, nous avons déduit d'un in-
verse a droite d'homotopie de f, un inverse a droite d'homotopie dans la

catégorie des applications sur B. Faire la méme chose pour un inverse a

gauche.,

Proposition : Soit f : (E,p,B) - (E',p',B) un morphisme de fibrations

faibles sur la méme base. On suppose que E et E' ont chacun le type d'ho-

motopie d'un CW-complexe connexe, et qu'il existe un point b de la base B
tel que la restriction flﬁl(b) $ ﬁl(b) - ﬁlt(b) soit une équivalence d'ho-
motopie. Alors f est une équivalence d'homotopie fibrée.

Démonstration : La suite exacte d'homotopie d'une fibration et le lemme

des cing montrent immédiatement que f est une équivalence d'homotopie
faible. Mais E et E' ayant le type d'homotopie de CW-complexes connexes,
d'aprés le théoréme de Whitehead (Ch.IT; 1.14), f est une équivalence
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d'homotopie. Il suffit alors d'appliquer la proposition (2.3) pour obte-

nir la conclusion.

Remarque : On trouvera dans (Dold [1; théoréeme 6.3 p.243]) une propo-
sition beaucoup plus forte, supprimant en particulier les hypothéses de

CW-complexe faites sur les espaces totaux E et E!'.

§3. CLASSIFICATION DES FIBRATIONS DE HUREWICZ

Un nouveau foncteur semi-exact

Lorsque (E,p,B) est un espace avec projection possédant la propriété
RH-faible sur une base pointée, on utilise la notation F - E B B, ou F

désigne la fibre au-dessus du point-base.

Soit FO un CW-complexe. Nous dirons que le fibré F ~ E = B est de
"fibre-type" Fo si chaque fibre a le type d'homotopie de Fo. Nous dirons
qu'il est réduit si 1'on s'est donné une équivalence d'homotopie
f:F~ Fo' Si F E B et F' =E' - B sont deux fibrés réduits, ¢ : E~E

est un morphisme de fibrés réduits si ¢ est un morphisme de fibrés au-

dessus de B et si en outre le diagramme

QIF

F —M3
fl
F
o

AN

commutatif & 1'homotopie pres.
Un fibré F - E - B de fibre type Fo muni d'une réduction f : F - Fo,

g?appelle un Fu-fibré réduit.

Pour un Fo donné, on définit de la maniere suivante un foncteur con-
travariant sur la catégorie © des CW-complexes pointés et des applications
. N . +
continues respectant les points-base, & valeurs dans la catégorie  des

ensembles pointés : si X est un CW-complexe pointé, un élément de H(X)est




V.10

représenté par un Fo—fibré (faible)* réduit ; deux tels fibrés E, g
représentent le méme élément dans H(X), si il existe un morphisme de
fibrés réduits ¢ : € - €', qui soit une équivalence d'homotopie fibrée.
H(X) - H(Y)

est définie naturellement a partir de 1'opération image réciproque.

oo

Si g + Y »X est un morphisme dans la catégorie &, H(g)

Exercice : a) Montrer que 1'image réciproque d'un Fo—fibré réduit est
lui-méme un Fo-fibré réduit.

b) Soient E,E' deux Fo-fibrés réduits sur X qui sont équiva-
lents. Pour toute application g : Y - X de complexes pointés, montrer que
les images réciproques g*§, g*€' sont deux Fo—fibrés réduits sur Y équiva-
lents.

Si g est homotope a g' dans la catégorie ©, on voit grdce a la proposition
(Ch.V3 2.1) que H(g) = H(g'), ce qui montre que H est un h-foncteur. Pour
montrer que H vérifie les axiomes de la semi-exactitude (Ch.II; 2.3),

nous allons nous fonder sur un théoréme de Dold dont nous ne reproduirons

pas la démonstration assez longue (Cf. Dold [1, théoreme 5.12, p.242]) :

Théoreme de Dold : Soit B un espace paracompact, et p :E = B une appli-

cation possédant la propriété RH-faible (resp.RH) au-dessus de chaque ou-
vert V d'un recouvrement {Va} de la base, alors p possede -la propriété
RH-faible (resp.RH) au-dessus de B tout entier. '

Le cas de RH, dii & Hurewicz [4] et Huebsch, est plus facile : deux
pages suffisent pour la démonstration. L'exercice suivant acheve une

partie de la démonstration de 3.2 pour le cas RH faible.

Exercice : 1) Soit p : E - B une application possédant la propriété RH
faible. Soient Hl’ H2 ¢t XxI » E deux relevements d'une méme homotopie
pH; = pH,, tels que HllXx:{O} et H2LXx {0} soient verticalement homotopes.

Alors H1 et H2 sont reliédes par une homotopie verticale.

2) Soit p : E -~ B une application qui jouit de la propriété

RH faible au-dessus de deux ouverts U et V. Soient a <b < ¢ < 4 des

*
Nous montrerons en (3.3) ci-dessous que l'on obtient le méme foncteur

en admettant seulement les fibrés forts (= de Hurewicz).
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nombres réels, et H : Xx:[a,d] - B une application telle que

H(Xx [a,c]) €U, H(Xx [b,d]) & V.

Déduire de 1) que pour tout relévement H1 : X x [a,c] ~E de H|Xx [a,c]
il existe un relevement H2 de H tel que H2,X x [a,b] = H1|X x [a,b].

Nous passons maintenant a la vérification des deux axiomes de la

semi-exactitude pour notre foncteur H :

A - VERIFICATION DE L'AXIOME DU RECOLLEMENT :

LS
Btude préliminaire : Supposons tout d'abord que X est un CW-complexe

pointé, réunion de deux ouzfrts 01 et 02 d'intersection A econtenant le
L 1 P ,
P point-base. Soient F1 - E1 ~ O1 et F2 - E2 2 02 deux fibrations faibles

réduites, et soit f : le(A) - pél(A) une HF-équivalence entre leurs res-

trictions a A, respectant leurs réductions. En suivant une idée de Puppe,

nous allons construire au-dessus de X une fibration faible réduite, indui-
sant respectivement sur 0, et 02 des fibrations faibles HF équivaleates au
deuxz Tibrations donnéés. On note Z=M(f) le cylindre de l'application f ;
z = (p;1(a) x [0,11) 1L p;(A)/ (¥ e, € p]7(a), e, x 1 = £(e)) ]

On considére l'espace avec projection (E,p,X) ou E = E UZ J E2 et oup

p11 plEg = P2 et, pour

*

|

|

} - est défini par p =
l IEl ‘

h (elau) € pil(A) X [0’1]’ p(el,u) = P1(91)°
|




V.12

La fibre-base F de cet espace avec projection est le cylindre de la res-
triction F1 8 F2. Les réductions des deux fibrés donnés définissent une
application des deux faces extrémales de ce cylindre a valeurs dans la
fibre type F0 $ elle se prolonge naturellement en une équivalence d'homo-
topie de F dans Fo’ pour fournir une réduction de (E,p,X). Nous allons
maintenant montrer que (E,p,X) est une fibration faible répondant a la
question. Pour cela nous aurons besoin d'un lemme sur le cylindre d'une
équivalence d'homotopie. )

Rappelons que si A € B et s'il existe une homotopie ht’ 0 =t =1, de
Id‘B = h, jusqu'a une rétraction r = h, telle que ht]A = IdlA pour tout t

et r(B) = A, alors A est appelé un rétracte fort de déformation de B.

Soit £ : X = Y une application continue. Le but Y considéré comme
sous-espace du cylindre Z = M(f) de f est visiblement un rétracte fort de

déformation de Y.

.2.1 Lemme : Si f : X » Y est une équivalence d'homotopie, X = X x {0} €2

est un rétracte fort de déformation de Z.

.2.2 Complément : Soient donnés un inverse d'homotopie g : Y - X de f et deux
homotopies F de IdIX a gf, G de Id]Y a fg. Les données f,g,F et G déter-
minent d'une fagon standard une homotopie explicite H : Z x I — Z telle
que H|(Z x {0} U X x I) soit la projection, et H(Z x {1}) = X.

Démonstration de 3.2.1 et 3.2.2.
L'homotopie F : Id|X == gf prolonge g : Y » X en une rétraction

r Z - X.

! On définit une homotopie G' : Y x I —» Z de 1l'inclusion j : Y & Z

3 la composition Y & X & Z par les formules

6'(y,t) = [jG(y,2t), 0 st <1/2, y €Y
q(eg(y), 2 - 2t), 1/2 st <1, y €Y.

ouq: Xx I -2 est 1'application canonique.
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La rétraction du carré 12 < R2, I =1{0,1], sur trois de ses faces
par projection centrale a partir du point (-1/2,1/2) détermine une rétrac-
tion standard p : ZxI - Z x {0} U YxIU Zx{1}. A 1'aide de p on pro-
longe G' : YxI - Z en une homotopie H' : ZxI -~ 2 de IdIZ = H'|z2 x {0}
air = H'|2 x {1].

Malheureusement H'(x,t) = x pour x € X € Z n'est pas vérifié pour

tout t € I, Mais nous construisons une déformation standard

K : (ZxI)x1I~12
de H' & 1l'homotopie H dayandée.

(1,12,2)

lerl

k4
I

On fixe K(z,t,0) = H'(z,t) pour z € Z
K(z,0,t') = =z |
K(x,t,t') = H'(x,(1-t')t) pour x € X

K(z,1,t')

H'(ir(z),1 - t')

K est donc défini sur A = Zx {0} x I UX x I x I UZx {1} xIUZx]I x{0,
On définit a partir de la rétraction du cube I3 CIRS sur 4 de ses faces,
obtenue par projection & partir du point de coordonnées (1,1/2,2), une
rétraction explicite de 2 x I x I sur A, ce qui permet de définir K sur

Z x I x I tout entier.
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On laisse au lecteur le soin de vérifier que H(z,t) = K(z,t,1) vérifie

les conditions de 3.2.2,
: cgfd

Application : Soient § = (X,p,B) et N = (Y,q,B) deux espaces avec pro-
jection au-dessus de la méme base B. Soit f : X - Y une équivalence

M(f) le cylindre de f et, pour b € B,

posons X, = p_l(b), Y, = qnl(b), Zb = M(f‘Xb) 3 2. est canoniquement inclus

d'homotopie fibrée. Notons Z

b
dans Z. L'homotopie naturelle de Id'Z jusqu'a la rétraction de Z sur Y in-
duisant dans chaque fibre l'homotopie naturelle de Id]Z
b

jusqu'a la rétractien de Z, sur Y., Y est un rétracte fort de déformation

s
de Z au-dessus de B, L'inj:ction ? t X = Z est une équivalence d'homotopie
fibrée. Il suit du lemme précédent, que pour tout b € B, Xb est un rétracte
fort de déformation de Zb. Mais a condition d'utiliser les constructions
canoniques décrites plus haut, les homotopies dans les fibres varient
"continiment" en fonction du point b € B, ce qui montre qu'il existe une
rétraction fibrée r : Z —» X et une homotopie fibrée H de IdIZ jusqu'a ir
< est donc un rétracte fort de déformation de Z au-dessus de B, ainsi que

1tétait déja Y.

Revenons maintenant au probléme du recollement de deux fibrations
faibles. En utilisant des notations déja introduites, nous avons, comme

conséquence de ce qui vient d'étre dit, le résultat suivant :

Corollaire : p—1(01) et p—1(02) sont HF-équivalents respectivement a

E, et E2, et possédent par conséquent la propriété RH faible.

Démonstration : D'aprés ce qui precede p1 (A) et p2 (A) sont des ré-

tractes forts de déformation de Z = p (A) au-dessus de A. la pgﬁglire

partie du corollaire en découle immédiatement. La seconde partle/du lemme

d'invariance de la propriété RH faille par une HF-équivalence (ch.Vv3 1.8).

Conclusion @ 01 et 02 étant des ouverts, le théoréeme de Dold (Ch.V; 3.2)

nous dit que (E,p,X) est une fibration faible. Ceci achéve 1'étude préli-

minaire.

B i < S A AN 2
A ST P
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Plagons-nous maintenant dans la situation qui nous intéresse, c'est-
a-dire lorsque X est réunion de deux sous-complexes X1 et X2 d'intersec-

tion A. Pour remplacer Xl et X_ par des ouverts 01 et 02 nous allons nous

2
servir du lemme suivant dont la démonstration est laissée en exercice :

Lemme : Soit A un sous-espace fermé de X tel que 1l'inclusion de A dans X
soit une cofibration ; il existe alors un voisinage U de A dans X, défor-
mable sur A dans X relativement a A, c'est-a-dire une homotopie

H: Ux I -»X vérifiant pour tout x €U: H(x,0) = x, H(x,1) € A, et
H(a,t) = a pour tout a EﬂA et tout t € I. On appellera U une "pseudo-
auréole".’

Une indication de démonstration se trouve dans (Spanier [8 ; exercice E

p. 577"

Application au probléeme du recollement : Soit 32 une "pseudo-auréole" de
X, Nx

" 4 "
9 dans Xl’ et ul une "pseudo-auréole" de X1 N X2 dans X2

Par définition, on a une rétraction s u _'Xl N X2 (resp. 5, ¢ uéexlfx

1P ™

qui, suivie de l'inclusion X1 N X2 —'Xz, est homotope & 1l'inclusion UIL‘X
(resp. u2 G'Xl), relativement a X, n Xy. Pour i = 1,2, soit r, - X; v u{x
l'application définie par 1l'identité sur Xi et par s, sur ui. Notons

p]_ [
= ! ibré ri - icti . a X, n#f
Ei (Ei - Xi U ui) le fibré ri(Ei Xi)' La restriction de §1 a &y

autre que (Ei*} Xi)' Pour vérifier 1'axiome du recollement, il suffit

_/

(

3 R i1
) On ne peut pas espérer une homotopie Ux I -U relativement & A, car I’

n'existe pas en général de voisinage régulier d'un sous-CW-complexe

dans un CW-complexe.




donc de construire un recollement de §1 et de §2 ; d'apres 1'étude du

cas préliminaire, un tel recollement est possible si les restrictions

§1lu et §2lu sont HF-équivalentes, ou U = (leJul) N (X2LJH2) =u uu,.
A cet effet on remarque que U est une pseudo-auréole de Ui dans Xi U ui 3
sl on note r : U —»X n X2 la rétraction obtenue par recollement de s, et

1
S5, on en déduit que Iu et r¥*(§. IX f7X ) sont HF- équivalents. Mais on a,

par hypothése, § 1IX N X, HF 2lx f]x ;2 par conséquent 51,u iF 2!“’

ce qui permet d'effectuer le~ recollement. Ceci acheve la vérification de

l'axiome du recollement.

B - VERIFICATiON DE L'AXIOME DU BOUQUET

Soit X = V X. un bouquet dans la catégorie € des CW-complexes
pointé et degeJ applications continues respectant les points-base. Il

s'agit de montrer que l'application canonique A : H(X) - T H(X ) est
j&d
bijective. Puisque H est un h-foncteur, pour démontrer cette propriété,

nous pouvons remplacer Xj par un Yj‘convenable, ayant le méme type d'ho-
motopie que X’j dans la catégorie €, Nous prendrons comme d'habitude pour

Yj le CW-complexe obtenu en attachant [0,1] a Xj par l'identification de
{1} avec le point-base xj de Xj’ et nous le pointerons par {0}. Soit

pj : Yj - Xj la projection naturelle : en appliquant le lemme sur le recol-
lement des homotopies (Cf. AIII) a l'application Py (YJ.,{O}) - (XJ.,{‘xJ.},
on voit que pj est une équivalenzi)d'homotopie de paires, c'est-a-dire une

équivalence d'homotopie pointée. Par conséquent, pour tout j € J,

P
n
<
n

(€)

*
( )La démonstration directe de ce fait est un exercice facile.
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1) A est surjective : Supposons donnée, pour tout j € J, une fibration

P.
faible réduite €. = (F, - E, 9 X, f. : F, = F ). Eerivons Y comme réu-
J dJ J J J J o
nion de deux sous-complexes (non pointés), B1 = V{[O,l]j s 3 €T} et
B, = 1l {XJ 3 j €J). L'intersection B, N B, est la réunion disjointe

des points {xj}, j € J. Au-dessus de B considérons le fibré trivial

1’
Ep = B1 x F0 s au-dessus de B2, nous avons la collection des fibrés Ej
qui définit un fibré faible 7. Gréce aux équivalences d'homotopie de ré-

duciion fj’ nous avons une HF-équivalence de ﬂIBlnBz dans EFO’BlﬂBz.
D'aprés la propriété de recollement il existe sur Y un fibré faible £ tel

<
que § = € et § = T 3 sa fibre base étant F , il est canoniquement
B, © °F B, 0

réduit. Enfin il est facile de voir que 2= o € _ en tant que fibré

réduit. J cqfd

2) A est injective : On considére deux fibrés faibles réduits sur X,
t .
€= (F~ERX, f: F~F)et§ =(F ~E B x, # :F ~F). On

suppose avoir pour tout j € J des HF-équivalences de fibrés réduits

Qj : §IX - g'IX 3 en particulier f'@j,F est homotope & f et par consé-
j ,

J
uent pour j, j' €d . =9, .
q P Js 3 leF‘ QJ"F ‘
avions 1'égalité leF = ¢j'|F pour tous les couples (j,j'), on pourrait

Si, au lieu d'une homotopie, nous

- recoller les wj et obtenir un morphisme de fibrés réduits ¢ : & - €', qui,
d'apreés (AIII) serait ure équivalence d'homotopie & : (E,F) - (E',F').
Comme ¢ respecterait les projections p,p', d'aprés la proposition (Ch.V;

2.3), ¢ serait une HF-équivalence. Pour se ramener a cette situation, on

utilise l'astuce déja employée pour démontrer la surjectivité de A ; on

considére les fibrés p*E et p*E' au-dessus de Y, ou p = V{pj ;s €I} Y X

Alors on construit, pour j€dJ, ¢j : p*éiY - p*§'|Y de la fagon suivante :
i .

au-dessus de Xj’ ¢j = ¢j 3 au-dessus de [0,1], ¢j : Fx [0,1] - F'x[0,1]
a pour premiere composante une homotopie de Qj |F jusqu'a Wj[F’ ou jo est
0

un indice choisi dans J. On a donc, pour j,j' € J, ¢j|Fx (0} = ¢j“Fx{0?

cgfd
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Conclusion : Le foncteur H que nous avons défini plus haut est un
h-foncteur représentable. L'espace classifiant, dont l'existence nous est
assurée par application du théoréme de Brown (Ch.II; 2.4), peut aussi étre
construit directement par une méthode analogue a celle que Milnor a utilisé
pour la classification des G-fibrés principaux (Cf. Stasheff[9]) 3 malheu-
reusement Stasheff ne démontre le résultat que si F est un CW-complexe

fini.

I1 v a assez de fibrés de Hurewicz

Si dans la définition du foncteur H(X) = {classes d'équivalence de
Fo-fibrés faibles réduits sur Xj étudié ci-dessus, on remplace les fibrés
faibles par la sous-clagse des fibrés de Hurewicz, alors on obtient un

nouveau foncteun H'(X).

Affirmation : 1la transformation d'oubli H' — H est un isomorphisme de

foncteurs.

Puisque la relation d'équivalence qui définit H et H' est la méme,
1'oubli @ : H'(X) - H(X) est injectif. Pour montrer que w est surjectif

il suffit de rappeler :

Propesition : (Serre) voir Spanigr‘[s, Theorem 9, p.99].
Soit p : E - B une application continue d'espaces topologiques.

Dans le diagramme commutatif

s
[ S
ﬁ

E' = {(e,A) €E x XT|p(e) = 2(0)}
P

o e— =

ot p'(e,A) = A(1) et ou, pour e € E, s(e) = (e, chemin constant en e)

p' est une fibration de Hurewicz et s est une équivalence d'homotopie.

Si p est une fibration faible, 2.3 montre que s est de plus une

équivalence d'homotopie fibréesur B .

.
&

-
o
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3.4 Cas ou la fibre-type est la sphere gn-1 s stabilisation :

Lorsque F = Sn—l, le foncteur H est noté kG( ) et son classifiant

est noté BG( ) Pour les fibrés faibles, l'opération de stabilisation se
fait par suspension. Si F - E By est une fibration faible réduite, c'est-
a-dire munie d'une équivalence d'homotopie f : F - Sn—l, on lui associe
par suspension une fibration faible réduite SF - $E 2 B,

Sf : SF - ss?71 - S™. On pose

=(Ex [0,1J]UBx {0,1})/je x {0} = p(e) x {0})

. e x {1} = p(e) x {1}
et . 8p(e,t) = p(e) si (e,t) € E x [0,1]
$p(b,i) = b si (v,i) € B x {0,1}

Si bo est le point-base de B, il est clair que (ép)—l(bo) = SF, et que
Sf est une équivalence d'homotopie.

Remarquons que si @ ¢ E ~ E' est un morphisme d'espaces avec projection
sur B, alors il existe un morphisme naturel 8¢ : SE — SE' d'espaces avec

projection sur B.

Lemme : Si F - E E B est une fibration faible sur une base B

CW-complexe, SF — ¢E P B est une fibration faible.

Démonstration : D'aprés le lemme (p. V.15), tout point b de B posséde

une pseudo-auréole U, c'est-a-dire un voisinage U de b dans B, déformable
gsur b dans B relativement & b : 1l'inclusion de U dans B et l'application
de U dans B dont 1l'image est b sont donc homotopes relativement a b j il
existe donc une équivalence d'homotopie fibrée 9y = 51(u) - UXzﬁl(by,et
par suite il existe une équivalence d'homotopie fibrée

(Qp) (u) -~ ux S(ﬁl(b)), ce gqui montre que (351)(u) posséde la
proprlete RH faible. Ceci étant valable pour tout b € B, on peut appligu
le théoreme de Dold (3.2), et donc (SE, $p, B) a globalement la propriét
RH-faible. ggﬁg‘

Remarque : Cette démonstration élégante n'est pas la meilleure. En
utilisant 1'équivalence entre la propriété RH forte et la propridté de

relevement continu des chemins (voir Hu[2, proposition 12.1, page 82])
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on peut démontrer le lemme analogu; pour la propriété RH forte sans hypo-
thése sur B. Le lectaur pourra ensuite reformuler la propriété RH faible
comme une propriété de reldvement continu des chemins qui restent cons-
tants dans 1'intervalle [0,1/2] du paramétre, et démontrer le lemme lui-

méme sans hypothése sur B.

Conséquence : soit u le fibré universel sur BG(n)' En classifiant le

fibré Qun, on obtient une application fn H BG(n) - BG(n+1)' On appelle

BG le télescope du systéme (BG(n)?fn) (cf. Ch. IV, Définition 2.2).

n€E N

Relations avec B

0’ BpopBpr ¢

Soit ﬂn'l'objet universel sur BTOP(n)’ clest-d-dire le microfibré
topologique universel de dimension n. En choisissant un voisinage conve-
nable de la séction nul}e, on représente M, par un R%-fibré topologique
avec section nulle sur BTOP(n)’ unique a isomorphisme topologique prés
(Kister [5]). On lui associe le (R"-0)-fibré obtenu en enlevant la
section nulle : e'est un fibré de Hurewicz sur BTOP(n , muni d'une équi-
valence d'homotopie canonique de sa fibre-base avec S . En effet, en
tant que (If{-O) fibré réduit, il est muni d'un isomorphisme de sa fibre-
base avec (Iﬁn-O) ; 11 suffit de composer cet isomorphisme avec la rétrac-
tion canonique de R" -0 sur Sn_1 pour obtenir 1'équivalence d'homotopie
cherchée. En classifiant ce fibré de Hurewicz réduit, on obtient une
apdication o, BTOP(n)-‘BG(n) rendant évidemment commutatif & homoto-

pie prés le diagramme ci-dessous :

B ____22_.* B
TOP(n) G(n)
Stabilisation suspension
Pn+1

BTOP(n+1) - BG(n+1)

I1 existe donc une application ¢ : BTOP_.BG rendant pour tout n le dia-

gramme ci-dessous commutatif & homotopie prés :

CPII
BTOP(n) EE— BG(n)

Ly

Bpop ——— Bg
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Rappelons qu'a priori, il peut trés bien exister des applications fantomes
de BTOP dans BG' Par conséquent, nous ne savons pas a priori si ¢ est

unique & homotopie prés.

Somme de Whitney

Nous voulons donner une définition telle que le foncteur d'oubli
kTOP(*)-‘kG(*) respecte la somme de Whitney. En particulier, la stabili-

. - rd [] > . i . /4 . . .
s?flon kTOP(n) kTOP(n+1) étant 1'addition du fibré trivial de fibre
R, il faut que la stabilisation kG(n)-’ kG(n+1) soit la somme de Whitney

avec le fibré trivial de fibre S°. La définition générale est donc la

suivante : soient, pour i = 1,2, la fibration faible §. : F.“*E.-Bi»X

<
avec la réduction fi : Fi"'Snl_1 ; on consﬁfu%f %}espace avec pro;ectlon
§1$§2 : FL.ERX avec la réduction f : F_S 1’ comme suit

E = {(xl’XZ)GI%ﬁ*E2,lpi(xi) = p2(x2)} ol * désigne I'opération de

"joint" ; p(xl,xz) = pl(xz) = pz(x?) ; F = F1 * F2 et
£ =f #%f_ :F #F_ - Sn1—1*8n2-1
I | 2 "1 2 *

Exercice : a) Montrer que 516552 aingi défini est un fibré réduit en
n, +n, -1
sphéres S jouissant de la propriété RH-faible,

b) La somme de Whitney induit des transformations de foncteurs

& kG(m)ka(n)-‘kG(m+n) et ® : k,xk,-k,, ou k 11m kG(n)

G G G’ G

c) Construire une loi de H-espace m : B, x B

G -*BG qui repre-

G
sente @ : kG*'kG-‘kG sur les complexes finis.
. i J 9 <. et aseso s .
| La suite BO_‘BPL-‘BTOP-‘BG’ ou i, j ont été définis au chapitre IV,
représente la suite de foncteurs dits d'oubli
i J ®
0 = Epr ™ kpop ™ kg

sur les complexes finis (Cf. Ch. IV proposition 2.5).

k

- On sait que T (B ) —11n1 =1im ™ oL (S ) = -1 (voir Husemoller

[5 3p.210-213]). Puisque chaque . est fini (Serre [71), [X,BG] est fini

o
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pour tout complexe fini (Cf. Ch. IV, 1.4). On en déduit :

nous avons bien défini a homotopie prés les applications

B, -8B

0 G et B - B

PL G’

Démonstration : BA’

comme réunion de sous-complexes finis X1C:X2C:...C:BA. Pour chaque X fini

est bien définie sur X a homotopie

) . . . .
dans B l1'application 6 : BA BG

A)
pré: puisque 6 représente 1'oubli kA - kG sur les complexes finis. Il
suffit donc de montrer que la surjection naturelle

[8,,B,]
- BG construite dans l'exercice précédent induit une loi de

IV, lemme 3.5.2),

_‘éiﬂ-txm’BG] est une bijection. Or la loi de H-espace

BG % BG

monoide . , sur

possédant des inverses (Ch.

[Y,BG] pour tout Cw-complexe Y. De plus 8, est un homomorphisme des lois

de monoide I1 suffit donc de vérifier que 6* (O) = 0,

Mais 9* (O) = 11m [SX s GJ’ ensemble qui est réduit & un élément parce
I11).
c.g.f.d.

Montrer par la méme méthode que la loi de H-espace sur

que toute suite de groupes finis et de Mittag-Leffler (ct. cn.

Exercice :
BG’ construite dans 1'exercice 3.5.1 est définie de fagon unique par la
condition qu'elle représente © : kG x kG - kG sur les complexes finis
et doac qu'ella est & homotopie prés, bien définie, associative et

commutative.

A =0 ou PL est un complexe dénombrable et s'exprime
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