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Let X(t) =
(
~r1(t), ~r2(t), . . . , ~rn(t)

)
be a solution of the n-body problem with newtonian

potential and masses m1,m2, . . . ,mn. We ask the following questions:

Question 1. Does there exist another system of masses, (m′1,m
′
2, . . . ,m

′
n), for which X(t)

is still a solution ?

Question 2. Same as question 1 but insisting that the sum M =
∑n
i=1mi of the masses

and the center of mass ~rG = (1/M)
∑n
i=1mi~ri do not change.

Definition. If the answer to the first (resp. second) question is yes, we shall say X(t) is
a perverse (resp. really perverse) solution and the allowed systems of masses will be called
admissible.

Remark. If the inverse problem raised by Question 1 may seem very natural, Question 2
needs some motivation. The possible existence of choreographies whose masses are not all
equal is at the origin of the notion of perverse solution. Recall that a planar choreography
is a periodic solution C(t) =

(
q(t + T/n), . . . , q(t + (n − 1)T/n), q(t + T ) = q(t)

)
of the

n-body problem such that all n bodies follow the same closed plane curve q(t) with equal
time spacing ([S1],[S2],[CGMS]). It is noticed in [C] that if a choreography exists whose
masses are not all equal, it is a really perverse choreography: by replacing each mass by
the mean mass M/n we obtain new admissible masses, while keeping the center of mass
and total mass unchanged.

In the sequel, we shall consider only the planar problem. We shall identify the plane of
motion with the complex plane CI , hence the positions ~rG, ~ri, i = 1, . . . , n, with complex
numbers zG, zi, i = 1, . . . , n, and X(t) with an element of CI n. We shall use the following
notations (we always assume that zi 6= zj):




zij = zi − zj , aij =

zij
|zij |3

if i 6= j, aii = 0, m = (m1,m2, . . . ,mn),

A0 =
(
zij
)

1≤i,j≤n, A =
(
aij
)

1≤i,j≤n·

We shall identify A0 and A with linear maps from CI n to CI n. This allows them to act on
the vector m. The definition of the center of mass may be rewritten

n∑

j=1

mjzij = M(zi − zG), M =

n∑

j=1

mj , that is A0(t)m = M
(
X(t)− zG(t)(1, . . . , 1)

)
,
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and the equations of motion in a galilean frame are

∀t, ∀i, z̈i(t) = −
∑

j 6=i
mj

zi − zj
|zi − zj |3

, that is A(t)m = −Ẍ(t).

Hence, if another set m′1,m
′
2, . . . ,m

′
n of masses admits the same solution X(t), the differ-

ence
µ = m−m′ = (µ1, µ2, . . . , µn) ∈ IRn

is a real non-zero vector in the kernel of any of the complex matrices A(t). If, moreover,
M and zG(t) are the same for the two sets of masses, µ is also in the kernel of any of
the matrices A0(t). It will be important to remember that A0 and A are antisymmetric
(tA0 = −A0,

tA = −A). This will cause the parity of n to play a role. We start with the
obvious

Proposition 1. If n = 2, no solution is perverse. In other words, any planar solution of
the 2-body problem determines the masses.

Proof. If n = 2, the matrix A(t) is of maximal rank whenever it is defined, that is provided
z12(t) 6= 0.

As soon as n ≥ 3, perverse solutions do exist, as shown by the following “trivial” exam-
ples (thanks to Reinhart Schäfke for proposing immediately the example of an equilateral
triangle rotating around a fourth body):

Example 1. X(t) =
(
reiωt, reiωt+

2iπ
n−1 , . . . , reiωt+(n−2) 2iπ

n−1 , 0
)

is a relative equilibrium
solution with n masses (m1,m1, . . . ,m1,m0) if and only if the following “Kepler-like”
condition is satisfied:

r3ω2 =
Un
In

= m0 +
m1

n− 1

∑

1≤j<k≤n−1

1

|zjk|
.

In the above formula,

Un = m1m0(n− 1) +m2
1

∑

1≤j<k≤n−1

1

|zjk|
and In = m1(n− 1)

stand respectively for the potential and the moment of inertia with respect to the center
of mass, of the configuration normalized by |zin| = 1 if 1 ≤ i ≤ n − 1. This leaves a
one parameter family of admissible sets of masses. Moreover, for the regular (n − 1)-gon
inscribed in the unit circle, we have

∑

1≤j<k≤n−1

1

|zjk|
=
n− 1

2

( 1

2 sin π
n−1

+
1

2 sin 2π
n−1

+ · · ·+ 1

2 sin (n−2)π
n−1

)
= (n− 1)2(δn−1 + 1),

where we have set

δn = −1 +
1

4n

n−1∑

l=1

1

sin πl
n

·
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Hence,
r3ω2 = m0 + (n− 1)m1(δn−1 + 1) = M + (n− 1)m1δn−1.

Provided δn−1 is different from 0, the right hand side of the above formula is a linear form
in the masses which is linearly independent of the total mass M = m0 +m1(n− 1).
But δn−1 is strictly negative if n− 1 ≤ 472 and strictly positive if n− 1 ≥ 473 (see [MS];
the first occurence of the magic number 472 seems to be in [M]). It follows that M may
be chosen as a natural parameter of the set of admissible masses. In particular, these
examples are perverse but not really perverse.

Remark. For non-newtonian potentials of the form 1/r2β , β 6= 1/2, the analogue of δn
becomes

δn = −1 +
1

22β+1n

n−1∑

l=1

1

(sin πl
n )2β

,

and may become zero for some value of β (see [CS]).

Example 2. Similar to Example 1 are the relative equilibrium solutions whose configu-
ration is made of one central mass m0 and k regular homothetic n-gons, the masses in the
j-th polygon being all equal to mj , for j = 1, . . . , k. In this case, the equations insuring
relative equilibrium motion may be put in the form (see [BE] or [CS]):

ρ3
jω

2 = m0 +
k∑

s=1

msHn(ρs/ρj), j = 1, . . . , k,

where ρj is the radius of the j−th polygon and

Hn(x) =

n∗(x)∑

l=1

1− x cos 2πl
n

(1 + x2 − 2x cos 2πl
n )

3
2

, n∗(x) = n if x 6= 1, n∗(x) = n− 1 if x = 1.

In the “generic” case, such solutions will be perverse and not really perverse. But, as soon
as k ≥ 3, one gets really perverse solutions for special choices of the radii ρj and the integer
n (see the last section).

When n = 3, the situation is still easy to deal with, thanks to Albouy and Moeckel [AM].

Proposition 2. The perverse solutions of the planar 3-body problem are exactly the
collinear homographic solutions. The center of mass is the same for all admissible sets of
masses, but not the total mass, which is a natural parameter for such sets. In particular,
really perverse solutions do not exist.

Proof. If n = 3, the matrix A(t) is of rank 2 as soon as the configuration is not a
triple collision. The existence of a fixed non-zero real vector µ in the kernel of A(t) implies
immediately that the three bodies stay collinear, with a fixed configuration up to similarity.
This implies that the motion is homographic. Moreover, the center of mass is dynamically
defined as the unique common focus of the similar conics described by the bodies in a
galilean frame where the center of mass corresponding to one admissible choice of masses
is fixed.
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Conversely, each collinear homographic solution of the 3-body problem is perverse: this is
a direct consequence of Theorem 2 and Proposition 4 of [AM] which, together, say that
the set of masses for which a given configuration of three bodies is central is of dimension
2 and may be parametrized by the “multiplier” λ (which is determined by the equation
Ẍ = −λX as soon as the homographic solution X is given) and the total mass M . To finish
the proof, it remains to recall that the center of mass of such a 3-body configuration does
not depend on the choice of masses for which it is central (see [AM] where this observation
is attributed to C. Marchal).

The case n = 4. The determinant of the antisymmetric 4 × 4 matrix A is equal to
the square of the Pfaffian (if we extend the notation K4 of [AM] to the complex domain,
P = K4/2)

P (z1, z2, z3, z4) = a12a34 − a13a24 + a14a23.

Hence, if a solution of the 4-body problem admits two different sets of masses, its configu-
ration must satisfy P

(
z1(t), z2(t), z3(t), z4(t)

)
= 0 at each instant t.

As in [AM], but in the complex setting, let us use the following notations :

A = z12z34, B = z13z24, C = z14z23.

The above condition becomes

P =
A

|A|3 −
B

|B|3 +
C

|C|3 ≡ 0.

On the other hand, as A0 represents the bivector (1, 1, 1, 1) ∧ (z1, z2, z3, z4), it is of rank
2, that is

A−B + C ≡ 0.

Together, the two identities above imply that A,B,C cannot be IR-dependent, i.e. that the
three vectors in IR2 represented by the complex numbers A,B,C can never be collinear;
indeed, if m1,m2,m3,m4 lie in this order on a line, A,B,C are real and positive; then B =
A+C and B−2 = A−2 +C−2, which is impossible. But then A−B and A/|A|3−B/|B|3,
being respectively equal to −C and −C/|C|3, must be collinear and this can happen only
if |A| = |B|, which implies immediately that |A| = |B| = |C| (this remark has already been
used in [V] and [AM]). We have proved the

Lemma 1. For any perverse solution of the planar 4-body problem, the configuration is
such that at any time

|z12||z34| = |z13||z24| = |z14||z23|. (∗)

Configurations which satisfy (∗) do exist – for example, an equilateral triangle with the
fourth mass at the center, a rhombus with small angle π/6, an isosceles triangle with two
angles equal to π/6 and fourth mass at the middle point of the base – but, as we have just
seen, they cannot be collinear.
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Definition. A 4-body configuration is called stricly convex (resp. strictly non-convex) if
none of the bodies (resp. if one of the bodies) belongs to the interior of the convex hull of
the three others.

A planar 4-body configuration is either strictly convex, or stricly non-convex, or partially
collinear (i.e. such that at least three bodies are collinear).

If, for a given t, the configuration
(
z1(t), z2(t), z3(t), z4(t)

)
is strictly convex (resp. strictly

non-convex) and the real vector (µ1, µ2, µ3, µ4) belongs to the kernel of A(t), each µi is
different from zero. This is because if, for example, µ1 = 0, µ3 6= 0, µ4 6= 0, the bodies
2,3,4 are such that µ3a23(t) + µ4a24(t) = 0 and hence collinear. And if only one of the
µj is different from zero, say µ4, then all ai4 must be zero, which means total collision.
Moreover, strict convexity is equivalent to three µi being of the same sign and strict non-
convexity to only two µi being of the same sign. For example, 1 lies in the interior of the
triangle defined by 2,3,4 if and only if µ2, µ3 and µ4 are of the same sign.

As the µi are independent of t, the nature (strictly convex, strictly non-convex, or partially
collinear) of the configuration of a perverse solution does not change along the motion. The
possibility of collinearities is exluded by the following lemma.

Lemma 2. In a perverse solution of the planar 4-body problem, three of the bodies can
never become collinear. In other words, either the configuration stays strictly convex for
all t, or it stays strictly non-convex for all t.

Proof. Let us suppose now that, for example, 2,3,4 are collinear at some instant t. Then
µ1 = 0, otherwise one would deduce from the equation a21µ1 + a23µ3+a24µ4 = 0 that
all four bodies are collinear at this instant and we have already excluded this possibility.
This implies that (µ2, µ3, µ4) belong, for any t to the kernel of the antisymmetric matrix
(aij(t))2≤i,j≤4, which means that it is proportional to (a34(t), a42(t), a23(t)). As in the
proof for the case n = 3, one concludes that the configuration of the three last bodies
remains similar to a given collinear configuration. This in turn implies that the whole
configuration remains self-similar: indeed, the relations

|z13|
|z12|

=
|z43|
|z42|

,
|z13|
|z14|

=
|z23|
|z24|

,

say that the the fourth body lies at the intersection of two circles centered on the line
which contains the three first.
Finally, the solution should be homographic, but this is impossible because it follows
immediately from Dziobek’s equations in terms of triangle areas [D] that a configuration
of four bodies with three bodies collinear is never a central configuration (thanks to Alain
Albouy for reminding me of this fact). This proves the lemma.

There exists at least one perverse – but not really perverse – solution with non-convex
configuration: it is our “trivial” example of three equal masses in an equilateral triangle
uniformly rotating around the fourth, located at their center of mass. This is the sole
homographic perverse solution because in [MB], McMillan and Bartky prove that this is
the only configuration which is central for more than one set of (non-homothetic) masses.
No other example, in particular no convex example, is known.
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Question. Is the MacMillan and Bartky example the only perverse solution of the planar
4-body problem? In other words, do non-homographic perverse solutions of the planar
4-body problem exist?

As a consolation for this disappointing situation, we now prove the

Proposition 3. If n ≤ 4, the planar n-body problem does not possess any really perverse
solution.

Proof. If (m1, . . . ,mn) and (m′1, . . . ,m
′
n) are admissible masses for a really perverse

solution X(t), their differences µ = (µ1, . . . , µn) ∈ IRn belong, at any time, to the kernel
of both matrices A0(t) and A(t), that is

µ2z12 + µ3z13 + µ4z14 = 0, µ2
z12

|z12|3
+ µ3

z13

|z13|3
+ µ4

z14

|z14|3
= 0, etc...

As none of the real numbers µ1, µ2, µ3, µ4 is equal to zero (because three bodies are never
collinear) this implies, in the same way as above, that





|z12| = |z13| = |z14|,
|z21| = |z23| = |z24|,
|z31| = |z32| = |z34|,
|z41| = |z42| = |z43|.

Hence, the configuration should be a regular tetrahedron. As it is planar, this is impossible.

What about 5 bodies ? The homographic perverse solutions include on the one hand all
the collinear ones (same reasoning as in the case of three bodies, using [AM]), on the other
hand the “trivial” example of four equal masses on a square uniformly rotating around the
fifth one located at the center of mass. None of these is really perverse.

Only in the case of choreographies – whose definition was recalled at the beginning of the
paper – are we able to say more.

Proposition 4 (see [C]). For n ≤ 5, the planar n body problem does not possess any
perverse choreography.

This is done by interverting the roles of the zij (resp. the aij) and the masses, that is
replacing the equations A0m = 0 (resp. Am = 0) by equations which involve the circulant
n×n matrix defined by the n masses. One then uses the spectral structure of such matrices.

More bodies: really perverse solutions of the planar n-body problem do exist.
It is shown in [CS] that relative equilibria of a central mass and at least three homothetic
regular n-gons, with equal masses on each of them, may be really perverse if n is well
chosen. The simplest such example seems to be 3 regular 456-gons, that is 1369 bodies.

Finally, we ask the
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Question. Do non-homographic perverse solutions of the planar n-body problem exist?

This is probably a difficult question, as are all the questions where one is asked to under-
stand the structure of the solutions of the n-body problem whose configuration remains all
the time in a given subset of the configuration space. A famous example of such a question
is the Saari conjecture which states that a solution with constant moment of inertia with
respect to the center of mass should be rigid (and hence a relative equilibrium by [AC]).
The only available method seems to be taking enough time derivatives of the constraints
and hoping for some new exploitable constraints to emerge.
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[S1] Simó C., New families of Solutions in N–Body Problems, Proceedings of the ECM
2000, Barcelona (July, 10–14), Ed. C. Casacuberta, R. M. Miró, J. Verdera and S. Xambó,
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