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Abstract. Laskar and Robutel (1993) have globally analyzed
the stability of the planetary obliquities in a conservative frame-
work. Here the same model is extended by adding dissipative
effects in the Earth–Moon system: the body tides and the fric-
tion between the core and the mantle. Some constraints on the
poorly known coefficients of dissipation are determined with
the help of paleogeological observations. One consequence is
that the scenario proposed by Williams (1993) for the past his-
tory of the Earth’s obliquity seems unlikely. A synthesis of 500
numerical integrations of the Earth–Moon system with orbital
perturbations for the next 5 Gyr is presented. It is shown that the
time scale of the dissipative effects is long enough to induce an
adiabatic–like evolution of the obliquity which is driven in the
chaotic zone within 1.5 to 4.5 Gyr. A statistical study of pos-
sible evolutions conducted with a tidal dissipation coefficient
∆t of 600 seconds demonstrated that 68.4% of the trajectories
attained an obliquity larger than 81 degrees, with a maximum
of 89.5 degrees.
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1. Introduction

The recent works (Laskar et al., 1993a-b) and (Laskar and Robu-
tel, 1993) emphasized the sensitivity of the obliquity εof a planet
to the planetary perturbations. Indeed, secular resonances be-
tween the precession motion of the rotation axis of a planet and
the slow secular motion of its orbit due to planetary perturba-
tions can result in large chaotic variations of its obliquity. In the
case of the Earth, the presence of the Moon changes the Earth’s
precessing frequency by a large amount, and thus keeps it in
a stable region, far from the large chaotic zone which results
from secular resonances overlap (Laskar et al., 1993b). But due
to tidal dissipation, the Moon is slowly receding from the Earth
and the Earth’s rotation is slowing down. Ultimately, the Earth
will reach the large chaotic zone due to planetary perturbations,
and its obliquity will no longer be stable. The object of the
present work is to provide a quantitative description of the long
term evolution of the Earth’s obliquity, in the future, but also in
the past.

The evolution of the Earth–Moon system is far from being
a new subject. Evidence of the loss of the Earth’s angular mo-
mentum has long been observed through paleogeological clocks
(for a review, see Williams, 1989), while the present deceler-
ation of the lunar mean motion can be directly measured by
Lunar Laser Ranging (Dickey et al., 1994) with great precision.
Nevertheless, accurate quantitative estimates of the length of
the day over the age of the Earth are still lacking, and it is still
a difficult question to know the precise origins of these evolu-
tions. Apart from the early work of (Darwin, 1880), the major
works on the past history of the Earth-Moon system are due
to MacDonald (1964), Goldreich (1966) and Mignard (1979,
1980, 1981). They found the same trends in the variations of
the Earth’s spin and the lunar orbit due to the effects of the
tides raised on the Earth by the Sun and the Moon. Adding the
planetary perturbations to the Earth’s orbit, Touma and Wis-
dom (1994) recently confirmed those past variations, the rates
of which nevertheless remain uncertain because the coefficient
of tidal dissipation is not well known. On the other hand, none
of these studies have taken into account the action of the friction
between the core and the mantle of the Earth as has been done
in studies of Venus’ obliquity (see for example Goldreich and
Peale, 1970, Lago and Cazenave, 1979, Dobrovolskis, 1980,
Yoder, 1995). However, as is pointed out by Williams (1993),
this effect could be of great importance, providing the spin with
an obliquity decreasing with the time. The controversy about
the efficiency of the core–mantle friction arises from the fact
that the possible effective viscosities of the outer core cover a
very large range of values (Lumb and Aldridge, 1991), and in
the scenario presented by Williams (1993) for the past evolution
of the Earth’s obliquity, a very high value of this viscosity is as-
sumed in order to obtain a past obliquity of the Earth reaching
70 degrees one billion years ago.

On the other hand, the future of the evolution of the Earth’s
obliquity has already been explored by Ward (1982) which
showed, using a simple model with isolated resonances, that
the precession frequency is expected to cross planetary secu-
lar resonances in the future, which could allow the obliquity
to increase up to 60 degrees. The reality is much more severe,
as, from the extended work (Laskar et al.1993b) and (Laskar
and Robutel, 1993), we know that as the Moon recedes from
the Earth, as soon as the obliquity reaches the first important
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Fig. 1. The zone of large scale chaotic behavior for the obliquity of
the Earth for a wide range of precession constant α (in arcseconds per
year). The non-hatched region corresponds to the stable orbits, where
the variations of the obliquity are moderate, while the hatched zone is
the chaotic zone. The chaotic behavior is estimated by the diffusion
rate of the precession frequency measured for each initial condition
(ε, α) via numerical frequency map analysis over 36 Myr. In the large
chaotic zones, the chaotic diffusion will occur on horizontal lines (α is
fixed), and the obliquity of the planet can explore horizontally all the
hatched zone. With the Moon, one can consider the present situation of
the Earth to be represented approximately by the point with coordinates
ε = 23.44◦, α = 54.93 ′′/yr, which is in the middle of a large zone
of regular motion. Without the Moon, for spin periods ranging from
about 12h to 48h, the obliquity of the Earth would undergo very large
chaotic variations ranging from nearly 0◦ to about 85◦. This figure
summarizes the results of about 250 000 numerical integrations of the
Earth’s obliquity variations under perturbations due to the whole solar
system for various initial conditions over 36 Myr. (Laskar and Robutel,
1993, Laskar et al.1993b).

planetary secular resonance, it will enter a very large chaotic
zone, with the possibility of attaining very high obliquities up
to nearly 90 degrees.

Indeed, using Laskar’s method of frequency map analysis
over more than 250 000 numerical integrations of the Earth’s
obliquity for various values of the precession constant, it was
possible to obtain a clear picture of the global dynamics of
the Earth’s obliquity (Laskar and Robutel, 1993) (Fig.1). Each
point of the graph represents one value of the couple (obliquity,
precession constant), the precession constant being a quantity
proportional to the speed of rotation (see formula (1) in Sect.
2). One dot in the non-hatched zone corresponds to a stable po-
sition, where the obliquity suffers only small (nearly quasiperi-
odic) variations around its mean value, whereas one point in
the hatched zone corresponds to a chaotic behavior so that the
hatched area delimits a region of resonances overlap where the
Earth can wander horizontally. The present Earth is located in a
stable region (ε = 23.44 degrees, α = 54.93 arcsec/year), and the

present variations of the obliquity are limited to ±1.3 degrees
around its mean value (Laskar et al., 1993a).

Fig. 1 can be considered as a snapshot of the dynamics of
the Earth’s obliquity, constructed in a conservative framework,
over a relatively short time scale on which the dissipation due
to tidal interaction or core-mantle coupling is not yet visible.
However, this picture already allows to forecast the future and
past evolutions of the Earth’s obliquity on much longer time
scales, of several billions of years, when the various dissipative
effects can no longer be neglected. Indeed, the consequence of
this dissipation is to slow down the rotation of the Earth, so that
an initial point of the graph is slowly brought down to lower
values of the precession constant. This suggests that the Earth’s
spin has smoothly evolved since the formation or capture of the
Moon. Our aim in the present work is to give a precise view of the
future evolution of the Earth’s obliquity, and more specifically,
to describe quantitatively its path in the chaotic zone.

The main limitation on a precise evolution of the Earth’s
rotational state is as much the crudeness and uncertainty of dis-
sipative models as it is the values of their parameters, such as
the amplitude of the tidal dissipation, and even more, the vis-
cosity of the outer core. The choice of the dissipative model
does not seem to be fundamental here, essentially because the
Earth’s speed of rotation is not subject to large changes: different
models would not lead to very different variations, especially
when compared to the ones produced by planetary perturba-
tions. Besides, in order to overcome difficulties arising from the
uncertainty of the parameters, we will rely on the geological ob-
servations of the length of the day (Williams, 1989). This will
allow us to obtain a set of plausible values which correspond
to these observations, and to fix the time scale of the evolution
along the way.

Section 2 is devoted to determine the averaged equations
of secular rotational dynamics with planetary perturbations. In
Sect. 3 we present the chosen models for estimating the addi-
tional dissipative contributions to these equations, while some
limits for the coefficients of dissipation will be obtained in Sect.
4. Then we discuss in Sect. 5 the history of the Earth’s obliq-
uity proposed by Williams (1993). Finally, we present in Sect.
6 the results of a set of 500 numerical simulations of the future
evolution of the Earth for the next 5 Gyr, using Laskar’s method
of integration of the solar system (Laskar, 1988, 1994a), and
starting with very close initial conditions. Indeed, the chaotic
nature of the motion prevents us from computing a single or-
bit, and only a statistical approach becomes meaningful for this
problem. Before concluding, we discuss some alternatives to
the results in relation to the coefficients of dissipation.

2. Averaged equations for the precession of the Earth with
planetary perturbations

The equations of precession of the Earth are derived from a
Hamiltonian function H which is the sum of the kinetic energy
and of the potential energy Up of the torque exerted by the Sun
and the Moon on the equatorial bulge of the Earth.
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Fig. 2. Reference frames for the definition of precession. Eqt and Ect

are the mean equator and ecliptic of the date with equinox γ. Ec0 is
the fixed J2000 ecliptic, with equinox γ0. i is the inclination of the
ecliptic Ect on Ec0. The general precession in longitude, ψ is defined
by ψ = γN + Nγ0, where N is the ascending node of the ecliptic of
date on the fixed ecliptic. ε is the obliquity, and ` = γA the hour angle
of the equinox of date γ.

We suppose here that the Earth is an homogeneous rigid
body with moments of inertia A < B < C and we assume
that its spin axis is also the principal axis of inertia. It is con-
venient here to use canonical Andoyer’s action variables (L,X)
and their conjugate angles (`,−ψ) (Andoyer, 1923, Kinoshita,
1977) (Fig. 2). L = Cω is the modulus of rotational angu-
lar momentum of the Earth with rotation angular velocity ω;
X = L cos ε, is the projection of the angular momentum on the
normal to the ecliptic, at obliquity ε; ` is the hour angle between
the equinox of the date γ and a fixed point of the equator; −ψ
the opposite of the general precession angle (see Fig. 2).

Let (i, j, k) be a reference frame fixed with respect to the
Earth, (I, J,K) a reference frame linked to the orbital plane of
the perturbing body (Sun or Moon) around the Earth (see Fig.
2), and R the rotation such that (i, j, k) = R(I, J,K).

According to Tisserand (1891) or Smart (1953) the potential
energy of the torque exerted by a perturbing body P of mass M
at distance r from the Earth (E ), limited to its largest component
is

Up = −GM
r

[
A + B + C − 3I

2r2
+ O

((
R
r

)3
)]

where R is the Earth’s radius. I denotes the Earth’s moment of

inertia around the radius vector r =
−→
E P, and is given by

I = A +
1
r2

(B − A)(r ·R(J))2 +
1
r2

(C − A)(r ·R(K))2 .

The motion of P around the Earth is determined by its el-
liptical orbital elements defined with respect to the fixed eclip-
tic Ec0 , with reference direction toward the fixed equinox γ0.
Let us denote ω̄ its argument of perigee, v its true anomaly,
wd = Ω + ω̄ + ψ + v the true longitude of date, where Ω is
the longitude of ascending node of the apparent orbit of P on
Ec0 if P is the Sun, and on Ect if it is the Moon.

We first build the precession equations due to the pertur-
bation of the Sun only. When P is the Sun (subscript �), we
have:

r = r� = r�
(

cos(ω̄� + v�)I + sin(ω̄� + v�)J
)

and the transformation from the equatorial frame to the ecliptic
one (I, J,K) is:

R = R3(−ψ − Ω�) R1(ε) R3(`) ,

where the rotations R1 and R3 are defined as

R1(θ) =

( 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)
;

R3(θ) =

( cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
.

Hence

1
r2�

(
r� ·R(J)

)2 = 1
4

[
(1− cos 2` cos 2wd�)(1 + cos2 ε )

+(cos 2wd� − cos 2`) sin2 ε − 2 cos ε sin 2` sin 2wd�
]

1
r2�

(
r� ·R(K)

)2 = 1
2 sin2 ε (1− cos 2wd�)

.

We retain only the contribution of terms with no spherical
symmetry, which gives with Andoyer’s variables

Up� =
3Gm�

4r3�

{
(C − A)

(
1− X2

L2

) (
1− cos 2wd�

)
+

B − A
2

[ (
1− cos 2` cos 2wd�

) (
1 +

X2

L2

)
+
(

cos 2wd� − cos 2`
) (

1− X2

L2

)
−2

X
L

sin 2` sin 2wd�

] }
.

Let M� be the mean anomaly of the Sun. The fast angles `
and wd� are removed by taking the average

Up� =
1

2π

∫ 2π

0

(
1

2π

∫ 2π

0
Up�d`

)
dM�,

unless a spin–orbit resonance occurs, i.e. when the angle
` − k

2 M� (k ∈ Z) is librating (Peale, 1969). This leads to the
following expression for the averaged potential due to the Sun:

Up� = −3Gm�
4a3�

C(1− e2
�)−3/2Ed

X2

L2

where Ed = (2C−A−B)/(2C) is called the dynamical elliptic-
ity. The contribution of the Moon (subscript M) to the Hamil-
tonian follows the same procedure with

r = rMRM(I)



978 O. Néron de Surgy & J. Laskar: On the long term evolution of the spin of the Earth

where RM = R3(ΩM) R1(iM) R3(ω̄M + vM). Assuming a
constant rate for the precession of the orbit of the Moon (node
and perihelion), one can also average the subsequent UpM on `,
ΩM and MM , which gives:

UpM = −3GmM

4aM
3

C(1− eM
2)−3/2

(
1− 3

2 sin2 iM
)
Ed

X2

L2

where iM is the inclination of the lunar orbit on the ecliptic.
The full averaged Hamiltonian function of the described motion
is then obtained by adding the rotational kinetic energy T =
1
2 Cω2 = L2/2C, which gives

H =
L2

2C
− α

2
X2

L

where α is the “precession constant”:

α =
3G
2ω

[
m�

(a�
√

1− e�2)3
+

mM

(aM
√

1− eM
2)3

(1− 3
2 sin2 iM)

]
Ed

(1)

For a fast rotating planet like the Earth, Ed can be considered as
proportional to ω2 ; this correspond to the hydrostatic equilib-
rium (see for example Lambeck, 1980). In this approximation,
α is proportional to ω.

Now, when considering the perturbations of the other plan-
ets, the ecliptic Ect is not an inertial plane any more and the
kinetic energy E of its driving has to be added. We refer here to
Kinoshita (1977).

Let (L?,X?, `?, ψ?) be Andoyer’s variables relative to the
fixed ecliptic Ec0 , and (L,X, `, ψ) the variables relative to the
ecliptic Ect . Then (see for example Kovalevsky, 1963), if K is the
Hamiltonian of the system, function of the variables (L,X, `, ψ)
relative to the moving Ect , and F the Hamiltonian written with
the variables (L?,X?, `?, ψ?) relative to Ec0 , the transformation

T : (L?,X?; `?,−ψ?) 7−→ (L,X; `,−ψ)

is canonical if, and only if, there exists a total differential form
dW such that

Ld`+ Xd(−ψ)− L?d`? − X?d(−ψ?)− (K − F)dt = dW . (2)

The expression K − F is the searched energy E.
In the previous section, H was the Hamiltonian F written

with the new variables (L,X, `, ψ). Then, the new Hamiltonian
K = E + H can be obtain by identifying E and dW in the Eq.
(2). Thanks to Danjon (1959), one can establish the following
relation:

cos(`? − `) = cos(−ψ − Ω) cos(−ψ? − Ω)

+ sin(−ψ − Ω) sin(−ψ? − Ω) cos i

where i is the inclination of Ect on the fixed plane Ec0 . Then, if
the obliquity ε is oriented from the rotation axis k to the orbit
normal K, we have

d(`? − `) = cos ε d(−ψ − Ω)− cos ε? d(−ψ? − Ω)

− sin(−ψ − Ω) sin ε di

where ε? is the obliquity relative to Ec0 . As cos ε? = cos ε cos i+
sin ε sin i cos(−ψ − Ω) (Danjon, 1959) and L = L?, we finally
obtain

Ld`− Xdψ − L?d`? + X?dψ?

−[(X(1− cos i)− L sin ε sin i cos(−ψ − Ω)
]

dΩ

−L sin ε sin(−ψ − Ω) di = 0

which leads to

dW = 0

and

E =
[
(X(1− cos i) −L sin ε sin i cos(Ω + ψ)

] dΩ
dt

−L sin ε sin(Ω + ψ)
di

dt

or

E = 2C (t)X − L
√

1− X2

L2

(
A(t) sinψ + B (t) cosψ

)
with

A(t) =
2√

1− p2 − q2

[
q̇ + p(qṗ− pq̇)

]
B (t) =

2√
1− p2 − q2

[
ṗ− q(qṗ− pq̇)

]
C (t) = qṗ− pq̇

and where q = sin(i/2) cos Ω and p = sin(i/2) sin Ω.
The canonical equations dX/dt = ∂K/∂ψ and dψ/dt =
−∂K/∂X then give the precession equations on the form
(Laskar, 1986, Laskar et al., 1993a-b):

dX

dt
= L

√
1− X2

L2

(
B (t) sinψ −A(t) cosψ

)
dψ

dt
=
αX
L
− X

L
√

1− X2

L2

(
A(t) sinψ + B (t) cosψ

)− 2C (t)

As was already done by Laskar et al.(1993b) and Laskar and
Robutel (1993), since the contribution of the planetary pertur-
bations to ψ̇ is singular for ε = 0, we use for numerical integra-
tions, instead of (X, ψ), the complex variable

χ = (1− cos ε)eiψ

which moves the singularity to ε = 180◦.
A, B and C depend on fundamental frequencies of the

solar system and they are implicitly given by the integration
of the planetary motions. In this context, α is obviously not a
constant: e� is also given by the integration of the solar system;
ω, aM , eM and iM have to be determined as functions of time
because of the dissipation.
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3. Contributions of dissipative effects

Now we give estimations for the averaged contributions of the
dissipation to dL/dt and dX/dt due to tides and core-mantle
interaction. For a review of the major features concerning the
evolution of the Earth–Moon system, one can refer to the book
edited by Marsden and Cameron (1966). It helped us to delimit
what was important for this study.

3.1. The body tides

One specific problem of modeling the dissipative tides on Earth
is that they have two different origins: friction in the mantle
and friction within shallow seas. The simplest way to overcome
difficulties and large formulae is to link the global dissipation to
one physical quantity. In particular, this leads to consider here
the Earth, once again, as homogeneous.

The specific dissipation function Q (Munk and MacDon-
ald, 1960) is often used. It is defined as the inverse of the ratio
∆E/(2πE0) where ∆E is the energy dissipated during one pe-
riod of tidal stress and E0 the maximum of energy stored during
the same period. MacDonald (1964) showed that

Q−1 ' tan δ (3)

where δ is the phase lag of the deformation due to the stress.
Q is rather considered as a constant (see for example Kaula,

1964, Goldreich and Peale, 1967, Goldreich and Soter, 1969,
Gold and Soter, 1969), what implies in particular that δ is inde-
pendent of the speed of rotation. This point remains subject to
controversy, especially for long time scales. Some others stud-
ies have also considered δ dependent of the tidal frequency:
(Goldreich and Peale, 1966, 1970), (Lambeck, 1979), (Lago
and Cazenave, 1979), (Dobrovolskis, 1980). Most of them use
Fourier expansions of the tidal potential (Kaula, 1964) in which
an arbitrary tidal phase lag has to be defined for each argument,
and the way these phase lags are related to the frequency is not
always clear. Moreover, relation (3) itself is subject to uncer-
tainty as was pointed out by Zschau (1978).

As Touma and Wisdom (1994), we prefer here the simpler
and more intuitive approach of Mignard (1979) where the torque
resulting of tidal friction is proportional to the time lag ∆t that
the deformation takes to reach the equilibrium. This time lag is
supposed to be constant, and the angle between the direction of
the tide–raising body and the direction of the axis of minimal
inertia (i.e. the direction of the high tide), which is carried out
of the former by the rotation of the Earth, is proportional to
the speed of rotation. Such a model is called “viscous”, and
corresponds to the case for which 1/Q is proportional to the
tidal frequency.

Theories on tidal effects are generally based on the follow-
ing assertion mainly due to Love at the beginning of the century
(see Lambeck, 1988): the tidal potential due to the deformation
induced by the differential gravitational attraction of a perturb-

ing body (the Sun or the Moon) at r∗ from the Earth’s center O
holds, at any point P on its surface:

V (r∗,R) =
∑
i≥2

kiVi(r
∗,R),

where R =
−→
OP of which the modulus is the planetary radius R,

where ki the ith Love number and Vi the ith spherical harmonic.
As was done for the computation of the potential of precession,
we restrict ourselves to the first term of the expansion, what
seems to be sufficient for estimating secular variations. Hence

V (r∗,R) = k2V2(r∗,R) = −Gm∗k2

2r∗5

(
3(R · r∗)2 − R2r∗2) (4)

The potential V at any point outside the Earth of distance r′ is the
solution of the “Dirichlet’s first boundary–value problem” (see
Lambeck, 1988), so to say that it satisfies Laplace’s equation

∇2V = 0

and its value V (r∗,R) on the boundary of the domain {r′ > R} is
known and given by Eq. (4). The unique solution to this problem
is the function

V (r∗, r′) = k2

(R
r′
)5

V2(r∗, r′).

Here r∗ stands for the perturbing body and r′ for the in-
teracting body at time t. r∗ would also be defined at time t if
the Earth were perfectly elastic. But this is not the case since,
due to internal friction, the deformation permanently takes a
time ∆t to reach the equilibrium; the attribute (∗) referring to
the perturbing body also means that the value is taken at time
t −∆t.

Assuming∆t small compared to the diurnal period, Mignard
gives the following approximation for the perturbing body:

r∗ = r(t −∆t) +−→ω ∆t × r = r + (−→ω × r − v)∆t

where v is the orbital velocity, −→ω the rotational velocity, and
where all vectors in the right member are defined at time t. Then
Mignard expands V at first order in ∆t and derives the force F
and torque Γ undergone by the interacting body:

F = −m′gradr′V = 3
Gm∗m′R5k2∆t

r′5r5
×{

5

r′2

[
(r′ · r)

[
r · (−→ω × r′) + r′ · v

]
− 1

2r2
(r · v)

[
5(r′ · r)2 − r′2r2

]]
r′

−[r · (−→ω × r′) + r′ · v
]
r

−(r′ · r)
[
r ×−→ω + v

]
+

r · v

r2

[
5(r′ · r)r − r2r′

]}
,
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Γ = r′ × F = −3
Gm∗m′R5k2∆t

r′5r5
×{[[

r · (−→ω × r′) + r′ · v
] − 5

r · v

r2
(r′ · r)

]
(r′ × r)

+(r′ · r)
[
(r′ · −→ω )r − (r′ · r)−→ω + r′ × v

]}
.

The determination of Γ gives the contribution of the body
tides to the variation of the spin:

dL

dt
= − 1

ω
Γ · −→ω

dX

dt
= −Γ · K

where K is the normal to the ecliptic.
We have computed Γ with the help of the algebraic manip-

ulator TRIP (Laskar, 1994b), writing all vectors in ecliptic co-
ordinates and averaging both formula over the periods of mean
anomaly, longitude of node and perigee of the perturbing body
(and of the interacting body if it is not the same one). Taking
second order truncations in eccentricities, we obtain:

• the contributions of the solar tides (r′ = r = r�):

dL

dt
= −3Gm2

�R5k2∆t

2a�6
×

[(
1 + 15

2 e�2
)(

1 +
X2

L2

) L
C
− 2(1 + 27

2 e�2)
X
L

n�

]
dX

dt
= −3Gm2

�R5k2∆t

2a�6
×[

2
(
1 + 15

2 e�2
)X

C
− 2(1 + 27

2 e�2)n�

]
where n� is the mean motion of the Sun around the Earth.

• the contributions of the lunar tides (r′ = r = rM):

dL

dt
= −3Gm2

MR5k2∆t

2a6
M

×
[

1
2

(
1 + 15

2 eM
2
)[

3− cos2 iM + (3 cos2 iM − 1)
X2

L2

] L
C

−2(1 + 27
2 eM

2)
X
L

nM cos iM

]
dX

dt
= −3Gm2

MR5k2∆t

2a6
M

×[(
1 + 15

2 eM
2
)
(1 + cos2 iM)

X
C

−2(1 + 27
2 eM

2) nM cos iM

]
• the contributions of the “cross tides” (r′ = rM and r =

r� ; r′ = r� and r = rM), the cases where the Moon and the

Sun are respectively the perturbing bodies accounting for the
same quantity:

dL

dt
= −3Gm�mMR5k2∆t

4a�3aM
3

×

(
1 + 3

2 e�2
)(

1 + 3
2 eM

2
)
(3 cos2 iM − 1)

(
1− X2

L2

) L
C

dX

dt
= 0

Let us have a look on the consequences of all these contribu-
tions. Neglecting the eccentricities, the variation of the obliquity
due to the direct solar tides or the lunar ones with a low incli-
nation of the Moon has the form:

dx

dt
= k(x2 − 1)( 1

2ωx − n)

where x = cos ε and k is a positive quantity. This implies that
ε = 0◦ and ε = 180◦ are two instable positions of equilibrium
and that ε = arccos( 2n

ω ) = ε0 is a stable position, but it is
a relative stability because the braking of L makes it slowly
moves down to 0◦. Furthermore, the obliquity increases when
ε < ε0 and decreases otherwise.

It is easy to see that the cross tides drive the equator to-
wards the orbital plane. They are missing in Mignard’s articles
but Touma and Wisdom (1994) have pointed out their relative
importance. Actually, the ratio of their magnitude with the one
of the direct solar tides (21.6% of the lunar one) is

mMa�3

2m�aM
3
' 1.1 .

As dL/dt is proportional to sin2 ε , this contribution must be
taken into account whenever the obliquity reaches high values.

We can derive now from F the variations of the orbit of the
interacting body induced by the tides. They can be obtained by
determining the components R′, S′ and W ′ of F in an osculating
reference frame. These components write:

R′ =
1
µr′

F · r′ ,

S′ =
1

H ′µr′
F · (H′ × r′) ,

W ′ =
1

H ′µ
F · H′,

where µ is the so–called reduced mass of the system Earth-
interacting body and H′ the orbital angular momentum of the
interacting body:

µ =
m⊕m′

m⊕ + m′ ; H ′ = m′n′a′2
√

1− e′2.
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The orbital variations are given by the Lagrange equations
(see Brouwer and Clemence, 1961):

da′

dt
=

2

n′
√

1− e′2

[
R′e′ sin v′ + S′

a′

r′
(1− e′2)

]
de′

dt
=

√
1− e′2

n′a′e′
[
R′e′ sin v′ + S′

(a′

r′
(1− e′2)− r′

a′
)]

di′

dt
=

r′ cos w′

n′a′2
√

1− e′2
W ′

where v′,w′, i′ are respectively the true anomaly, the longitude
of perigee and the inclination of the interacting body on the
ecliptic Ect . After expanding and averaging these equations and
taking second order truncations in eccentricity, we find for the
Moon:



daM

dt
=

6GmM
2R5k2∆t

µaM
7

×
[(

1 + 27
2 eM

2
) X

CnM
cos iM − (1 + 23eM

2)
]

deM

dt
=

3GmM
2R5k2∆t eM

µaM
8

[
11
2

X
CnM

cos iM − 9
]

dcos iM
dt

=
3GmM

2R5k2∆t
2µaM

8
(1 + 8eM

2)
X

CnM
sin2 iM

(5)

and for the Sun:
da�
dt

=
6Gm�2R5k2∆t

m oa�7

[(
1 + 27

2 e�2
) X

Cn�
− (1 + 23e�2)

]
de�
dt

=
3Gm�2R5k2∆t e�

m�a�8

[
11
2

X
Cn�

− 9
]

but both last variations are negligible: about 3 meters per Myr
for da�/dt and 10−12 per Myr for de�/dt.

Two contributions are missing so far: the tides raised on the
Moon by the Earth and by the Sun. With the following assump-
tions:
a) The inclination of the Moon’s equator on its orbital plane is

small (6.41◦ at this time), so we can use the approximations
εM ' 0 and i′ ' 0,

b) The Moon is locked in synchronous spin–orbit resonance
1:1 with the Earth (i.e. ωM = nM),
the tide raised by the Moon on the Earth is obtained by

exchanging Moon and Earth in Eqs. (5) with the above simpli-
fications. We obtain the additional contributions:

daM

dt
= −57Gm⊕2RM

5k2M∆tMeM
2

µaM
7

deM

dt
= −21Gm⊕2RM

5k2M∆tMeM

2µaM
8

If one takes k2M∆tM ' 213 suggested by the DE245 data,
k2 = 0.305 (Lambeck, 1980), and ∆t = 638 seconds, these

contributions represent 1.2% of the total daM/dt and 30% of
the total deM/dt for present conditions. As Mignard pointed it
out, the terrestrial tides on the Moon have no substantial effect
on the lunar orbit unless it is close to the Earth (at a few Earth’s
radii) and when the ratio k2M∆tM/(k2∆t) is much greater than
1 (using DE245 data, we have ρ ' 1.1).

Finally, the tides raised on the Moon by the Sun can also
be neglected because the ratio of the magnitudes of solar and
terrestrial tides on the Moon is(m�

m⊕

)2(a�
aM

)6
' 3.2× 10−5.

3.2. The core–mantle friction

Here we basically rely on Rochester’s model (1976).
The inner Earth is composed of a mantle and a core separated

into a central rigid part and a fluid one. We neglect interactions
between both last parts because they are supposed to be strongly
coupled by pressure forces (Hinderer, 1987). The core and the
mantle have different dynamical ellipticities, so they tend to
have different precession rates. This trend produces a viscous
friction at the core–mantle boundary (CMB). Thus, there are
motions in the outer liquid core inducing electric currents which
generate a torque of electromagnetic friction because of mag-
netization of the deepest layer of the mantle.

Rochester showed that the magnetic friction has only a faint
effect on the Earth’s long term rotational dynamics. If the co-
efficient of viscous friction due to the viscosity of the liquid
metal of the outer core is thought weaker that the magnetic one,
some turbulences and inhomogeneı̈ties in the outer core could
make the viscous friction far more efficient (Lumb and Aldridge,
1991), (Williams, 1993), so that we will suppose that the fric-
tion is solely viscous. We will consider here that an effective
viscosity ν can account for a weak laminar friction, as well as
a strong turbulent one which thickens the boundary layer.

Two additional torques account for the coupling: the inertial
torque N due to pressure forces at the CMB (which is not spher-
ical due to the Earth’s rotation) , and the topographic torque
(Hide, 1969) due to likely “bumps” of this boundary. N tends to
attach strongly the core and the mantle but its effect is reduced
if the boundary layer beneath the CMB is thick. Although irreg-
ularities of the CMB increase the surface of friction, this topo-
graphic torque (which is not taken into account in Rochester’s
model) would rather have a conservative effect, the bumps act-
ing as notches; in this way it can be considered as the irregular
part of N. Besides, it is still too poorly known to estimate its long
term contributions (Jault, private communication). We will also
ignore it.

The angular momentum theorem applied to the core (sub-
script c) and to the mantle (subscript m) then gives:

d(Cc
−→ωc )

dt
= Pc + N + F

d(Cm
−→ωm)

dt
= Pm − N − F

(S)
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where Pc, Pm are the precession torques, and F the frictional
torque. Cc and Cm denote the moment of inertia with C = Cc +
Cm. In first approximation, one can write:

F = κ (−→ωm −−→ωc ) = κ
−→
δ

where κ is the effective coefficient of friction. Rochester gives
the following approximation to the solution of system (S):

dε

dt
= −κψ̇

2 sin ε cos ε

γelEd c
2Cω2

where γel is the elasticity correcting factor of the mantle and
ψ̇ the Earth’s rate of precession. Ed c is the dynamical elliptic-
ity of the core which, as the whole body one, is assumed to be
proportional to the square of the speed of rotation. It should
not differ from the value corresponding to the hydrostatic equi-
librium by more than a few percents (Hinderer, 1987). Hence
Ed = Ed inω

2/ωin
2 and Ed c = Ed cin

ω2/ωin
2. where the subscript

in denotes the initial value. As pointed out by Yoder (1995),
such approximations would not be valid any more for a slow
rotation, for which the non-hydrostatic parts of the ellipticities
can dominate.

This solution is valid only when the inertial torque N is non–
zero. This happens when the ellipticity of the CMB exceeds the
ratio of the rotation period to the precession period (Poincaré,
1910, see also Peale, 1976). Assuming that this ellipticity is
roughly in hydrostatic equilibrium, this condition is equivalent
to:

ω >
(
πGρc | ψ̇ |

)1/3
, (C)

where ρc is the density of the outer core. The rate ψ̇ being
proportional toω (see Sect. 2), such a condition is satisfied since
ω exceeds a given constant; this is the case for a fast–rotating
planet like the Earth.

We determine κ as a function of the effective viscosity with
the help of Goldreich and Peale (1967, 1970). First, we compute
the “spin-up” time which corresponds to the time that the core
needs to adjust its rotation to the one of the mantle in absence
of any external force. This is the characteristic time τ of the
following system:

d(Cm
−→ωm)

dt
= −F = −κ−→δ

d(Cc
−→ωc )

dt
= F = κ

−→
δ

The solution is

−→
δ =

−→
δ0 e−t/τ , τ =

CcCm

κC
.

Thus, according to Greenspan and Howard (1963),

τ =
Rc√
νω

.

Hence

κ =
CcCm

√
νω

CRc

what yields

dε

dt
= −CcCmψ̇

2√ν cos ε sin ε

γelC2RcEd c
2ω3/2

i.e.

dcos ε

dt
=

CcCmψ̇
2√ν

γel

√
CRcEd c

2

(
1− X2

L2

) X

L5/2
.

The contributions of the core–mantle friction to dL/dt and
dX/dt are obtained thanks to the fact that −→ωc is very close to
−→ωm because of the action of N. Then the precession torques Lm

and Lc belonging to the orbital plane of normal K (this clearly
appears when the torques are expressed in a vectorial form; see
for example Goldreich 1966), the addition of both equations of
(S) and the scalar product by K of the resulting equation leads
to

dX

dt
' 0,

which implies

dL

dt
= − CcCmψ̇

2√ν
γel

√
CRcEd c

2

(
1− X2

L2

) 1
L1/2

.

This quantity being always negative, the core–mantle friction
(CMF) tends to slow down the rotation and to bring the obliquity
down to 0◦ if ε < 90◦ and up to 180◦ otherwise, what contrasts
with the effect of the tides. Furthermore, one can see that, despite
the strong coupling by pressure forces, there can be a substantial
contribution to the variation of the spin for high viscosities and
moderate speeds of rotation. It must be pointed out that this
contribution has no sense for an arbitrary high viscosity (which
would attach the core to the mantle) and for an arbitrary small
core dynamical ellipticity (for which N vanishes).

Finally, the equation dX/dt = 0 has also the following
remarkable consequence: since

dcos ε

dt
=

1
L

(dX

dt
− X

L

dL

dt

)
,

we have
dL
L

= −d cos ε
cos ε

what yields∫ t2

t1

dω
ω

= −
∫ t2

t1

d cos ε
cos ε

i.e.
ω(t1)
ω(t2)

=
cos ε (t2)
cos ε (t1)

(R)

This simple relation is independent of the variations of ν and
strongly constraints the possible evolution of ε.
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3.3. The atmospheric tides

The Earth’s atmosphere also undergoes some torques which
can be transmitted to the surface by friction: a torque caused by
the gravitational tides raised by the Moon and the Sun, a mag-
netic one generated by interactions between the magnetosphere
and the solar wind. Both effects are negligible; see respectively
Chapman and Lindzen (1970) and Volland (1988).

Finally, a torque is produced by the daily solar heating which
induces a redistribution of the air pressure, mainly driven by
a semidiurnal wave, hence the so-called thermal atmospheric
tides (Chapman and Lindzen, 1970). The axis of symmetry of
the resulting bulge of mass is permanently shifted out of the
direction of the Sun by the Earth’s rotation. As for the body
tides, this loss of symmetry is responsible for the torque which,
at present conditions, tends to accelerate the spin.

Volland (1988) showed that this effect is not negligible, re-
ducing the Earth’s despinning by about 7.5%. But, although the
estimate of their long term contributions surely deserves careful
attention, we have not taken the atmospheric tides into account
in the computations presented in the next sections, assuming
that, as the uncertainty on some of the other factors is still im-
portant, the global results obtained here will not differ much
when taking this additional effect into consideration.

4. Some limits to the coefficients of dissipation

Goldreich (1966), Mignard (1979, 1980, 1981) and Touma and
Wisdom (1994) have studied the past evolution of the Earth–
Moon system taking the distance of the Moon to the Earth as
the independent variable instead of the time. This is because if
one takes the present value ∆t = 638 seconds which fits the
observed receding of the Moon for which Dickey et al. (1994)
give 3.82 cm per year, it is found that the capture or formation of
the Moon occurred at about −1.2 Gyr which contradicts most
of paleogeological observations (see for example Piper, 1978,
Lambeck, 1980).

So ∆t has clearly been smaller in the past, probably be-
cause of the changes in the continental distribution (Krohn and
Sündermann, 1978) and in the oceanic loading during glacia-
tions. We only need for our purpose to consider some acceptable
average value anyway.

With a review of experiments in laboratories and observa-
tions of fluctuations of the Earth’s spin, Lumb and Aldridge
(1991) give a range of possible values for the effective viscosity
ν going from 10−7 up to 4.6 × 105 m2s−1. Although the influ-
ence of the friction is proportional to

√
ν, the uncertainty about

the effect of internal friction still remains a serious problem.
Rochester has chosen to set the upper limit to 10 m2s−1 which
comes from observations of the fluctuations of the Earth’s nu-
tation (Toomre, 1974). Actually this last value changes the spin
very little. On the opposite, Williams asserts that ν should be
much larger. This comes out from his assessment of observa-
tions of sediments and fossils which suggests that the history
of the obliquity would have been very different from the con-
sensual one, starting from 70◦ and going down to the present

23◦27′ with a drastic falldown at about −630 Myr (Williams,
1993).

A simple way to determine some strong constraints, pro-
vided that Rochester’s model is assumed always valid, is to
look for the couples (∆t, ν) which give, with the present model,
an evolution of the length of the day (LOD) similar to the ones
given by the observations of the Earth’s ground over the last two
billion years (Williams, 1989).

The data gathered by Williams (1989) are of distinct ori-
gins and they give some quite different rates of increasing of
the LOD, especially for the first hundreds Myr. We have de-
cided to take as references two of these rates. The first one is
based on the maximum values of the LOD at about −500 Myr
which corresponds to a 20.33 hour rotation period. This gives
the ratio β(−500 Myr) = ω(−500 Myr)/ω(0) ' 1.18. Such
a choice is supported by the sake of getting upper bounds for
the dissipation coefficients. The second rate is based on the −2
Gyr data and the observation of Elatina formation at−650 Myr.
It corresponds to a 19 hour rotation period at −2 Gyr which
gives β(−2 Gyr) ' 1.26. This one is suggested by the fact that
most ancient observations match better with the Moon’s orbital
history and corresponds to a low rate of braking.

We have computed the speed of the Earth’s rotation at−500
Myr and −2 Gyr for 22 values of ∆t, going from 0 to 630
seconds by steps of 30 seconds, and for 25 values of ν, going
from 0 to 243 = 13824 m2s−1 by cubic steps.

The following physical parameters of the present Earth ap-
pearing in the previous equations have been taken from Lam-
beck (1988):

k2 = 0.305,

Cm = 0.9 C,

Cc = 0.1 C,

Rc = 3.47 10−6m,

Ed c = 2.5 10−3,

and γel = 0.57 (Legros, private communication). All other
parameters and initial conditions are taken from Laskar (1986).

The results are shown in Figs. 3a-b where β(t) is given for
a wide range of (∆t, ν). In the computation at −2 Gyr, ∆t only
goes up to 360 seconds because higher values have led to the
collision with the Moon before this date. In Fig. 3 we have su-
perimposed the curves corresponding to the ratiosβ(−500 Myr)
and β(−2 Gyr). For the case−500 Myr, we have also drawn the
curve of β(−500 Myr) = 1.04 which corresponds to the lower
observed rate of deceleration, so that the strip formed by both
curves represents the global uncertainty on the couple (∆t, ν).

It is clear that 600 seconds is an upper limit for average ∆t.
The observations at −2 Gyr set this limit at about 200 seconds.
Moreover, the upper limit for average ν (with no tidal effects) is
about 7400 m2s−1, and we see that the core–mantle friction has
no significant effect below several m2 s−1. The observations at
−2 Gyr lead to νmax ' 1000 m2s−1.

It would be interesting to know the lower limit of ∆t, which
should be the value of the mantle alone because most of the
fluctuations comes from the changes in oceanic loading. It is
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Fig. 3. a Percentage of the ratio of the speed of rotation at −500 Myr
over the present one for various values of the tidal delay ∆t and the vis-
cosity ν. The two bold lines delimit an acceptable range, in agreement
with the observations from sediments and fossils. b Same percentage at
−2 000 Myr. The bold line corresponds to the observation of Williams
(1989).

possible to give an rough estimate to it, knowing that the energy
dissipated in the oceans accounts for about 90 or 95% of the total
(Zschau, 1978), (Cazenave, 1983), (Mignard, 1983), (Lambeck,
1988). In this case, the lowest ∆t would equal 30 or 60 seconds,
hence a largest ν of about 600 or 800 m2s−1 if one relies on
the−2 Gyr observations, and about 4400 or 4700 m2s−1 for the
−500 Myr ones.

5. Williams’ scenario for the history of the Earth’s obliquity

The dissipation mechanisms presented therein give us some
constraints on scenarios of the Earth’s evolution, and our aim
here would be to provide a general framework in which all
scenario for the evolutions of the Earth’s obliquity should be
described. As an example, we show here that the dynamical
constraints obtained here allow to question the scenario pro-
posed by Williams (1993). Interpreting observations of various
deposits in the Earth’s soil which depend on weathering con-

Fig. 4a. Example of possible evolution of the Earth’s obliquity for 5
Gyr in the future, for ∆t = 600 s. The background of the figure is
the same one as in Fig. 1, and is a global view of the stability of the
obliquity, obtained by means of frequency map analysis (see Laskar and
Robutel, 1993). The precession constant (on the left) is plotted against
the obliquity: the two bold curves correspond to the minimum and
maximum values reached by the obliquity. The right y-axis gives the
corresponding time for the motion. The non-hatched zone corresponds
to very regular regions, and we actually observe that in these regions,
the motion suffers only small (and regular) variations. The hatched
parts are the regions of strong chaotic behavior. Indeed, in the present
simulation, as soon as the orbit enters this chaotic zone, very strong
variations of the obliquity are observed, and very high values, close to
90 degrees, are reached.

Fig. 4b. Same as Fig. 4a, but with a difference of 10−8 degree in the
initial obliquity.

ditions, Williams devised the following scenario for the past
evolution of the Earth’s obliquity:

a) a slow and regular decreasing from 70◦ to 60◦ between
−4.5 Gyr and −630 Myr;
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b) a quick falldown from 60◦ to 26◦ between −630 and
−220 Myr;

c) a slow decreasing till the present value.

Concerning the first stage, the main objection to such a
smooth evolution arises from the fact that a 70◦ obliquity would
imply a crossing of the chaotic zone (see Fig. 1), hence strong
fluctuations ranging from about 65 degrees to about 90 degrees
(Laskar et al., 1993b).

Then, we have estimated the value of ν which would corre-
spond to the second and third ones. The slow decreasing of 2.5◦

during the last 430 Myr might be possible, the corresponding
ν being about 300 m2s−1. Now, a falldown from 60◦ to 26◦

within 220 Myr gives, with ∆t = 200 seconds, a huge value of
1.3 × 106 m2s−1 which exceeds the upper limit of Lumb and
Aldridge (1991). Such a viscosity would strongly slow down
the Earth and the corresponding LOD in the past would be very
far from the observed one with β(−220 Myr) ' 1.72.

More simply and independently of the problem of the pos-
sible evolution of the value of ν, it is straightforward to verify
that the variations proposed by Williams do not respect relation
(R). Indeed, as

cos(26◦)
cos(60◦)

' 1.8,

we should haveω(−630Myr) = ω(−220Myr)×1.8 which does
not correspond to any plausible despinning factor even during
the whole last Gyr.

Williams found a support to his assessment in the very large
rate of dε/dt = −0.1′′cy−1 (Kakuta and Aoki, 1972) due to
core–mantle coupling. One one hand, as Rochester (1976) no-
ticed it, this value was based on a model which is irrelevant since
it does not take into account the inertial coupling; Aoki’s model
(Aoki, 1969) is adapted only to a slow–rotating planet like Venus
at present time for which dω/dt is proportional to ν−1/2 (if ν
is not too small). On the other hand, Aoki’s model also verifies
relation (R) — which does not depend on Rochester’s approx-
imations —, and such a rate for dε/dt does not correspond to
the low rate of braking ω̇/ω = −5.8×10−14 proposed by Aoki
and Kakuta (1971); Williams thought this last rate was coherent
with the loss of rotational kinetic energy due to CMF estimated
by Rochester, but he did not take the right term of this loss to
compare with.

Williams mentions that some “special conditions” should
have occurred at the CMB in order to explain the drastic fall-
down. He also suggests that a resonance between the free core
nutation and the retrograde annual nutation caused by the so-
lar torque may have played an important role. Climate friction
(Bills, 1995) might also be a candidate for additional variations
of the obliquity. Such effects remain uncertain. Characteristics
of the Earth’s interior may have been somewhat different in a
remote past, but unless system (S) has been very incomplete for
some time in the last Gyr, his scenario should be rejected.

6. the next five billion years evolution of the Earth–Moon
system

As we have managed to set up some limitations on the possible
values of the tidal dissipation and the viscosity of the outer
core, by using the available geological observations of the past
evolution of the Earth, we are now ready to study its future over
its expected lifetime, i.e. about 5 Gyr.

6.1. with the present tidal coefficient and no core–mantle
friction

Using Laskar’s theory of the solar system, we simultaneously
integrate over 5 Gyr the motion of all the planets (Pluto is not
taken into account) and the angular momenta of the Earth and
the Moon with a 250 yr time step.

The equations for the planetary orbital motion used here are
the averaged equations which were previously used by Laskar
for the demonstration of the chaotic behavior of the solar sys-
tem. They include the Newtonian interactions of the 8 major
planets of the solar system (Pluto is neglected), and relativis-
tic and Lunar corrections (Laskar, 1985, 1989, 1990). The nu-
merical solution of these averaged equations showed excellent
agreement when compared over 4400 years with the numeri-
cal ephemeris DE102 (Newhall et al., 1983, Laskar, 1986), and
over 3 millions years with the numerical integration performed
by Quinn, Tremaine and Duncan (Quinn et al., 1991, Laskar
et al., 1992). Similar agreement was observed with subsequent
numerical integration by Sussman and Wisdom (1992).

This system of equations was obtained with dedicated com-
puter algebra and contains about 50000 monomial terms of the
form αz1z2z3z4z5 (Laskar, 1985). It was first constructed in a
very extensive way, containing all terms up to second order
with respect to the masses, and up to 5th degree in eccentricity
and inclination, which led to 153824 terms, and then truncated
to improve the efficiency of the integration, without significant
loss of precision (Laskar, 1994). The numerical evaluation of
this simplified system is very efficient, since fewer than 6000
monomials need to be evaluated because of symmetries. Numer-
ical integration is carried out using an Adams method (PECE)
of order 12 and with a 250-year stepsize. The integration error
was measured by integrating the equations back and forth over
10 Myr. It amounts to 3× 10−13 after 107 years (40 000 steps),
and behaves like t1.4. Ignoring the chaotic behavior of the orbits,
this would give a numerical error of only 4×10−9 after 10 Gyr.

It is clear that because of the chaotic dynamics with a char-
acteristic time of 5 Myr, the orbital solution loses its accuracy
beyond 100 Myr. This is not important since we do not look for
the exact solution, but for what happens when the system enters
the chaotic zone; the fact that this zone may not be at the exact
location has not much importance.

We have chosen to take the near present value of 600 seconds
for ∆t and no core–mantle friction. In order to have a statistical
view of the possible behaviors, the whole system is simultane-
ously integrated over 5 Gyr for 500 different initial orientations
with obliquities very close to εJ2000 (23◦ 26′ 21.448′′): 10 ini-
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Fig. 5. Probability P for the maximum obliquity εmax to exceed a given
value ε for the Earth with ∆t = 600s. This was performed over 500
orbits with very close initial conditions followed over 5 Gyr.

tial phases ψ separated by 10−9 rad and 50 initial obliquities
separated by 10−8 degree.

Thus we have performed a frequency analysis (see Laskar,
1993) on the precession frequency and also plotted the minimum
and maximum reached obliquity each 10.26 Myr. The whole
computation, for such an experiment, took about 13 days on a
IBM-RS6000/390.

It is quite obvious that we cannot display all the various
solutions, and we just selected two examples of the possible
evolution of the Earth (Fig.4a-b) which are representative of
the whole experiment. The two curves plotted in Figs. 4a and
4b have initial obliquities differing by 36 µas. We see that the
obliquity enters the chaotic region at about +1.5 Gyr and that
it can go from 0◦ to values close to 90◦ as was the case in the
conservative framework. When superimposed on Fig. 1, those
graphs show possible paths of the evolving obliquity through
the different zones of the global dynamics.

The computed speed of rotation of the Earth after 5 Gyr
is about 0.42 ωin. Provided that ρc ' 10 kg m−3 (Hinderer et
al., 1990) and that ψ̇(5Gyr) < ψ̇in, one can easily check that
condition (C) of Sect. 3 has not been violated.

The 500 different paths obtained in this manner allow us
to get a fairly good idea of the probability for the obliquity to
attain some given threshold once the chaotic zone entered. For
instance, we have found that 342 maximum obliquities have
exceeded 81◦ at least once, hence a probability P(ε > 81◦) =
68.4% (see Fig. 5).

6.2. some alternatives

•∆t = 600 seconds is close to the present measured value of the
dissipation coefficient, and is in agreement with the observations
at−500 Myr (Fig. 3a), but this leads to a lunar collision at about
1.2 Gyr in the past. For this reason, we also considered for ∆t
the smaller value of 200 seconds which is close to the lowest
value compatible with these geological observations (Fig. 3a).
As previously, for ∆t = 200 seconds, we followed the evolution
of 500 obliquities. As the dissipation is three times weaker, the
Earth reaches the chaotic zone on a much longer time, after about
4.5 Gyr, and after 5 Gyr it has spent only about 500 Myr in this
chaotic zone; the probability of reaching a given high value of
obliquity is then lower than in the previous case of ∆t = 600
seconds for which the same situation lasted 3.5 Gyr (see Fig.
6), and we have P(ε > 81◦) = 36.6%, which nevertheless is
not a small value. If we continue the integrations over 6 Gyr,
which is still a possible future lifetime for the Earth, we obtain
for P(ε > 81◦) the much higher value of 60.4% (Fig. 6). We
carried on the computation till 8 Gyr in order to look at the
evolution of this probability, and we also plotted in Fig. 6 the
corresponding curves for 7 and 8 Gyr. Then, the set of the four
curves shows that the longer the Earth remains in the chaotic
zone, the higher are the probabilities for the maximum obliquity
to reach any value (the possible maximum hardly exceeding 90◦

after 8 Gyr).

We can thus conclude that for any value of the tidal dis-
sipation compatible with the geological observations depicted
in Fig. 3a, a very large obliquity in the future of the Earth is a
highly probable event.

Finally, we notice that all curves present a falldown at about
70◦ and a step till a second falldown to 0 close to 90◦. This can be
understood by the fact that, as is shown in Laskar et al.(1993b),
the chaotic zone is divided into two regions of strong overlap
of secular resonances. In each of these regions, the diffusion of
the orbits is rapid, but the connection between these two boxes
is more difficult. As soon as a given orbit enters the second box,
related to high values of the obliquity, it will rapidly describe
it entirely, so we observe in this case a jump in the maximum
value reached by the obliquity.

• One would like to consider some very larger coefficients
∆t or ν in order to accelerate the effect of the dissipation and
to shorten a lot the time of integration by the way. For example,
Touma and Wisdom (1994) set a tidal effect about 4000 times
stronger than the present value in their study of the past evolution
of the Earth’s obliquity. We have integrated the system with three
different values: ∆t = 3 × 104, 3 × 105, and 3 × 106 seconds,
the last one roughly corresponding to what Touma and Wisdom
took. The equivalent despinning of the Earth is then respectively
achieved after 100 Myr, 10 Myr and 1 Myr instead of 5 Gyr.

The results clearly show that the dynamics are altered as
much as the time scale of braking is reduced (see Figs. 7a-c). In
the first case, we have found P(ε > 81◦) = 1.2%. In the second
one, the obliquity remains confined below 47.3◦. Finally, secular
resonances have a faint effect in the last case, the obliquity never
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Fig. 6. Probability P for the maximum obliquity εmax to exceed a given
value ε for the Earth with ∆t = 200s after 5, 6, 7 and 8 Gyr.

Fig. 7a. as in Fig. 4ab, the precession constant (on the left) is plotted
against the obliquity: the two bold curves correspond to the minimum
and maximum values reached by the obliquity. Example of evolution
for the obliquity of the Earth with ∆t = 30000s.

exceeding 43.5◦. For both last cases, the 500 initial conditions
nearly give the same evolution.

It is then clear that such a strategy has to be excluded: the
time scale of action of the dissipation must be of the same order
as the true one.

• We have chosen to neglect the core–mantle friction be-
cause the tidal effects are traditionally considered as the only
substantial effects. We could also have undertaken some integra-

Fig. 7b. Example of evolution for the obliquity of the Earth with ∆t =
300000s.

Fig. 7c. Example of evolution for the obliquity of the Earth with ∆t =
3000000s.

tions with non–zero viscosities in order to see the core–mantle
friction play an important role, the obliquity being slowly de-
creasing. As was discussed in Sect. 4, such a scenario is plau-
sible. In any case, the rate of change in obliquity would be
relatively small according to relation (R). As the Earth enters
the chaotic zone before +4.5 Gyr and undergoes strong varia-
tions due to the planetary perturbations, the choice of the couple
(∆t, ν) has finally not very much consequence on the very long
term evolution of the spin, provided the observations and the
time scale of dissipation are respected, according to Fig. 3.

Nevertheless, it must be stressed that for very high viscosi-
ties, the CMF could dominate the evolution of the obliquity be-
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fore the 5 Gyr term. With the highest possible value ν = 7400
m2s−1 suggested by the palaeo-observations, dε/dt reaches only
−16◦/Gyr when ω = 0.5ωin. Then, such a situation appears to
be extreme; this supports our studies with ν = 0.

• The formulation of the tidal dissipation used in these in-
tegrations corresponds to a model for which the function Q is
inversely proportional to the speed of rotation. Consequently, as
suggested by MacDonald’s computations (MacDonald, 1964)
with a constant geometrical phase lag and the present tidal dis-
sipation rate, the choice of the model for which Q is constant
would lead to a faster despinning in the future, and the chaotic
zone would be attained sooner.

7. Conclusion

By adding the non-conservative effects to the previous model
for the long time evolution of the obliquity of the Earth used by
Laskar et al., (1993ab), we possess now a complete model for
the study of the long term variations of the spin of the Earth and
of the orbit of the Moon over time scales comparable to the age
of the Solar System. It has allowed us to find some significant
constraints on the poorly known tidal time lag ∆t and effective
viscosity of the outer core ν thanks to paleo–observations, in
spite of the uncertainty in the interpretation of geological data.
Any further improvement in the knowledge of one of these two
quantities would directly induce an improvement for the second
one and in the history of the Earth’s spin by the way.

It appears in this study that the action of dissipative effects
is weak enough not to cause very significative changes in the
behavior of the obliquity compared to one could expect in a
conservative framework, so to say that with a rough idea of the
time scale of these effects, most of the essential dynamics could
be described from Laskar et al.(1993b), Laskar and Robutel
(1993). The combination of this model with Laskar’s secular
theory of the solar system provides us with a powerful tool for
exploring plausible scenarii for the long term evolution of the
obliquity of the terrestrial planets, and reinforces the importance
of having a global view of the planetary dynamics.

It is still remarkable that in most cases, when using ac-
ceptable rates for the dissipation, the obliquity of the Earth ex-
plores a large part of the chaotic region discovered by Laskar
et al.(1993b), reaching very high maximum values, close to 90
degrees.

The chaotic behavior of the obliquity of the Earth prevented
us to describe precisely the evolution of its spin over its age,
but here we have shown in a simple probabilistic manner that
the most probable destiny of the Earth is to undergo very strong
variations of its obliquity before the inflation of the Sun, if it
does not occur.

These computations also confirms that in absence of the
Moon, that is for precession constants of the order of 20 arc-
sec/year, the Earth would suffer very large variations of its obliq-
uity, which could reach nearly 90 degrees with a high probabil-
ity.

Finally, it should be noted that the chaotic regions for the
obliquity of Venus (Laskar and Robutel, 1993) is very simi-

lar to the one of the Earth (Fig. 1), and thus similar behavior
probably occurred for this planet in the past. We are presently
undertaking similar computations for this planet, for which a
supplementary difficulty consist in a precise understanding of
the possible strong effect of the atmospheric tides.
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