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Existence of collisional trajectories of Mercury, Mars
and Venus with the Earth
J. Laskar1 & M. Gastineau1

It has been established that, owing to the proximity of a resonance
with Jupiter, Mercury’s eccentricity can be pumped to values large
enough to allow collision with Venus within 5 Gyr (refs 1–3). This
conclusion, however, was established either with averaged equa-
tions1,2 that are not appropriate near the collisions or with non-
relativistic models in which the resonance effect is greatly
enhanced by a decrease of the perihelion velocity of Mercury2,3.
In these previous studies, the Earth’s orbit was essentially un-
affected. Here we report numerical simulations of the evolution
of the Solar System over 5 Gyr, including contributions from
the Moon and general relativity. In a set of 2,501 orbits with
initial conditions that are in agreement with our present know-
ledge of the parameters of the Solar System, we found, as in
previous studies2, that one per cent of the solutions lead to a large
increase in Mercury’s eccentricity—an increase large enough to
allow collisions with Venus or the Sun. More surprisingly, in one
of these high-eccentricity solutions, a subsequent decrease in
Mercury’s eccentricity induces a transfer of angular momentum
from the giant planets that destabilizes all the terrestrial planets

3.34 Gyr from now, with possible collisions of Mercury, Mars or
Venus with the Earth.

Owing to chaotic behaviour of the Solar System4–7, the distance
between two initially close orbital solutions increases by a factor of
ten every ten million years4,7,8. It is thus hopeless to search for a
precise solution for the motion of the Solar System over 5 Gyr, that
is, over a time comparable to its age or life expectancy (before the Sun
becomes a red giant). The most precise long-term solutions for the
orbital motion of the Solar System are not valid over more than a few
tens of millions of years9,10. A numerical integration of the Solar
System’s motion over 5 Gyr can thus only be considered as a random
sample of its possible evolution. Statistical studies are then required
to search for possible changes in the planetary orbits that lead to
collisions or disruption of the system.

The first study of the planetary orbits over several billion years was
obtained after averaging the equations of motion over the fast orbital
motion of the planets, which allowed a decrease in integration time of
three orders of magnitude1. This study revealed the possibility of
Mercury’s eccentricity reaching very high values, allowing collisions
with Venus in less than 5 Gyr. However, this method has the draw-
back that the averaged equations are no longer justified in the vicinity
of a collision. Despite the increase in computational power, recent
integrations on gigayear timescales still neglected the relativistic con-
tribution2,3,11. The study of the full Solar System using general rela-
tivity and non-averaged equations on gigayear timescale thus needed
to be done.

The model for the integration of the planetary orbits is derived
from the La2004 model9 that was integrated over 250 Myr for the
study of the palaeoclimates of the Earth and Mars9,12. It comprises the
eight major planets and Pluto and includes relativistic13 and averaged

lunar contributions14 (Supplementary Information). We used the
SABA4 symplectic integrator15, which is adapted to perturbed
Hamiltonian systems. The step size is 2.5 3 1022 years, unless the
eccentricity of the planets increases beyond about 0.4, in which case
the step size is reduced to preserve numerical accuracy.

In a first experiment performed without the Moon or relativistic
contributions, we integrated the equations over 5 Gyr for 201 orbits
with the same initial conditions, except for an offset of 3.8k cm
(k g [2100, 100]) in the semi-major axis of Mercury (its actual
uncertainty is of a few metres (refs 16, 17)). In 60% of the solutions,
we observed large increases in Mercury’s eccentricity, beyond 0.9
(Fig. 1a). The statistics (Supplementary Table 1a) are comparable
to the results of the non-relativistic secular equations2. Among the
121 solutions of large eccentricity (e . 0.7), 34 ended in collision with
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Figure 1 | Mercury’s eccentricity over 5 Gyr. Evolution of the maximum
eccentricity of Mercury (computed over 1-Myr intervals) over 5 Gyr. a, Pure
Newtonian model without the contribution of the Moon, for 201 solutions
with initial conditions that differ by only 3.8 cm in the semi-major axis of
Mercury. b, Full Solar System model with relativistic and lunar
contributions, for 2,501 solutions with initial conditions that differ by only
0.38 mm in the semi-major axis of Mercury.
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the Sun, 86 in collision with Venus and a single one reached the 5-Gyr
limit before collision.

According to the secular analysis2, we could expect a much smaller
number of collisional orbits in the full relativistic model. To estimate
the probabilities of large eccentricity deviations in the relativistic
model, we thus had to increase the scale of the numerical experiment.
Using the JADE supercomputer at the French National Computing
Centre CINES, we integrated 2,501 orbital solutions, Sk, of the com-
plete model over 5 Gyr, with the initial semi-major axis of Mercury
differing by 0.38k mm (k g [21,250, 1,250]) from that in the nominal
solution, S0, which was adjusted to the planetary ephemeris
INPOP0617. The results (Fig. 1b and Supplementary Table 1b) are
comparable to those of the relativistic secular equations2, with
Mercury having a high eccentricity in about 1% of solutions.

Among these 2,501 solutions that are compatible with our best
knowledge of the Solar System, in 20 the eccentricity of Mercury
increased beyond 0.9. At the time of writing, 14 of these have not
yet reached 5 Gyr and may still be running for a few months, as their
step size is greatly reduced. Solution S2947 reached 5 Gyr without
collision, although a close encounter (closest approach, 6,500 km)
occurred between Mercury and Venus at 4.9 Gyr. In S2915, S2210 and
S33, Mercury collided with the Sun at 4.218, 4.814 and 4.314 Gyr,
respectively, whereas in S2812, Mercury collided with Venus at
1.763 Gyr. The most notable solution is S2468, in which a close
encounter of Mars with the Earth with a closest approach of only
794 km occurs at 3.3443 Gyr (Fig. 2). Such a close approach would be
disastrous for life on the Earth, with a possible tidal disruption of
Mars and subsequent multiple impacts on the Earth18,19, but we also
searched for more direct collisions. We integrated 201 different
versions, S

(k)
{468 (k g [2100, 100]), of S2468, starting at 3.344298 Gyr,

each with an offset of 0.15k mm in the semi-major axis of Mars. Within
100 Myr, five cases lead to the ejection of Mars from the Solar System
(semi-major axis .100 AU) and the remaining 196 solutions end in
collision, with the following distribution: Sun–Mercury, 33; Sun–
Mars, 48; Mercury–Venus, 43; Mercury–Earth, 1; Mercury–Mars, 1;
Venus–Earth, 18; Venus–Mars, 23; Earth–Mars, 29.

The most surprising collision is the one of Venus with the Earth,
which occurs in S

({1)
{468 in a five-stage process (Figs 2 and 3). The first

step is the increase in the eccentricity of Mercury, obtained through
perihelion resonance with Jupiter2,3 at 3.137 Gyr. This step is essen-
tial, as it allows a transfer of non-circular angular momentum from
the outer planets to the terrestrial planets20. The eccentricity increase
of Venus, the Earth and Mars, is then obtained through secular reso-
nances among the inner planets while the eccentricity of Mercury
decreases between 3.305 and 3.325 Gyr. Once Mars and the Earth
acquire large eccentricities, close encounters occur and collisions
become possible, as in S

({15)
{468 (Fig. 3c). In S

({1)
{468, the collision with

Mars does not occur, but several close encounters (Fig. 3c) lead to the
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Figure 2 | Example of collisional trajectory for Mars and the Earth.
a, Evolution of the maximum eccentricity of Mercury (red), Mars (green) and
the Earth (blue), recorded over 1-Myr intervals for the solution S({15)

{468 .
b, c, Relative variation, dh, of the total energy of the system (b) and total
angular momentum, dc (c), on a logarithmic scale. During the whole
integration, the relative variations of the total energy and angular momentum
of the system remain below 2.3 3 1028 and 2.2 3 1029, respectively.
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Figure 3 | Collisional trajectories for Mars and Venus with the Earth. The
two solutions, S({15)

{468 (black) and S({1)
{468 (colours), are identical until

3.344298 Gyr. At this time, an offset of 0.15k mm is applied to the semi-
major axis of Mars in the solution S(k)

{468 a, b, Eccentricity (a) and semi-major
axis (b) plotted versus time for Mercury (red), Venus (pink), the Earth (blue)
and Mars (green). c, Minimum Earth2Mars (green) and Earth2Venus
(pink) distances in astronomical units, recorded over each 1,000-yr time
interval. The horizontal lines are the Mars–Earth (6.5322 3 1025

AU, green)
and Venus–Earth (8.30827 3 1025

AU, pink) distances of collision, dmin,
corresponding to the sum of the planets’ radii. For S({15)

{468 , the Earth–Mars
distance reached at 3.344317 Gyr is 3.7752 3 1025

AU, and for S({1)
{468, the

Earth–Venus distance reached at 3.352891 Gyr is 3.3791 3 1025
AU.

d, Relative energy variation.
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diffusion of Mars’s semi-major axis (Fig. 3b) until secular resonances
produce a decrease in the eccentricity of Mercury together with an
additional increase in the eccentricity of Venus and the Earth at about
3.347.3 Gyr (Fig. 3c). At this point, close encounters between Venus
and the Earth occur, with several exchanges of the planets’ orbits
(Fig. 3b) before a final collision at 3.352891 Gyr (Fig. 3c).

The essential trigger for the collisional trajectories of Mars and
Venus with the Earth is the great increase in Mercury’s eccentricity.
If this increase leads rapidly to a collision with the Sun or with Venus,
as in S33 and S2812, the remaining part of the Solar System is not
much affected; these two solutions, after merging of the colliding
bodies, are actually very stable when extended to 5 Gyr. We expect
that this will be the case for most of the solutions in which Mercury
has high eccentricity. However, in some less frequent events, such as
S2468, the eccentricity increase of Mercury leads to a total destabiliza-
tion of the inner Solar System. In the simulations described here, we
restricted the initial conditions to a very small neighbourhood,
assuming that the chaotic behaviour of the system will randomize
the initial conditions. The fact that the probability distribution of
Mercury’s eccentricity (Supplementary Table 1) is very similar to the
results obtained with the averaged equations and a much more widely
distributed set of initial conditions2 leads us to propose that the
probability of a large increase in the eccentricity of Mercury is about
1%. It remains difficult to evaluate the probability of a collision
involving the Earth within 5 Gyr. Indeed, although we studied varia-
tions around solution S2468 that lead to collision with the Earth in
about 25% of the cases, the S2468 orbit is essentially the single event of
its kind in our full sample of 2,501 solutions.

Received 17 February; accepted 22 April 2009.

1. Laskar, J. Large scale chaos in the Solar System. Astron. Astrophys. 287, L9–L12
(1994).

2. Laskar, J. Chaotic diffusion in the Solar System. Icarus 185, 312–330 (2008).
3. Batygin, K. & Laughlin, G. On the dynamical stability of the Solar System.

Astrophys. J. 683, 1207–1216 (2008).
4. Laskar, J. A numerical experiment on the chaotic behaviour of the Solar System.

Nature 338, 237–238 (1989).
5. Laskar, J. The chaotic motion of the Solar System. A numerical estimate of the size

of the chaotic zones. Icarus 88, 266–291 (1990).

6. Laskar, J., Quinn, T. & Tremaine, S. Confirmation of resonant structure in the Solar
System. Icarus 95, 148–152 (1992).

7. Sussman, G. J. & Wisdom, J. Chaotic evolution of the Solar System. Science 257,
56–62 (1992).

8. Laskar, J. The limits of Earth orbital calculations for geological time scale use. Phil.
Trans. R. Soc. Lond. A 357, 1735–1759 (1999).

9. Laskar, J. et al. A long term numerical solution for the insolation quantities of the
Earth. Astron. Astrophys. 428, 261–285 (2004).

10. Varadi, F., Runnegar, B. & Ghil, M. Successive refinements in long-term
integrations of planetary orbits. Astrophys. J. 592, 620–630 (2003).

11. Ito, T. & Tanikawa, K. Long-term integrations and stability of planetary orbits in
our Solar System. Mon. Not. R. Astron. Soc. 336, 483–500 (2002).

12. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation
quantities of Mars. Icarus 170, 343–364 (2004).

13. Saha, P. & Tremaine, S. Long-term planetary integration with individual time
steps. Astron. J. 108, 1962–1969 (1994).
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(a) Without GR
em0 500 1000 1500 2000 3000 4000 5000
0.35 164 423 537 627 766 826 886
0.40 80 313 443 527 667 736 831
0.50 25 124 209 333 517 612 687
0.60 15 95 169 274 433 547 612
0.70 15 90 154 264 423 527 602
0.80 15 90 149 259 423 527 602
0.90 10 85 149 259 423 527 602

(b) With GR
em0 500 1000 1500 2000 3000 4000 5000
0.35 30 91 143 202 318 418 492
0.40 3 20 39 67 126 189 255
0.50 0 0 1 3 10 20 40
0.60 0 0 0 1 2 5 10
0.70 0 0 0 1 1 4 9
0.80 0 0 0 1 1 4 8
0.90 0 0 0 1 1 3 8

Table 1: Probability (×1000) for the eccentricity of Mercury (emax) to reach a given value (em0)
over a given time (500, 1000, 1500, 2000, 3000, 4000, 5000 Myr). Top: without general relativity.
The statistics are made over 201 orbital solutions that differ from 3.8 cm in the initial value of
Mercury’s semi-major axis. Bottom: with general relativity. The statistics are made over 2501
orbital solutions that differ from 0.38 mm in the initial value of Mercury’s semi-major axis.
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The numerical model

The model for the integration of the planetary orbits comprises the 8 major planets and Pluto

with relativistic and lunar contributions. In order to speed up the integrations, the Lunar

contributions have been averaged over the Lunar mean longitude and longitude of perihelion[14].

In addition, a small model of the tidal dissipation in the Earth Moon System has been derived,

providing a realistic evolution of the Earth-Moon distance and of the rotation speed of the Earth

over 5 Gyr. This model has been adjusted to the La2004 solution[9] over 250 Myr and fitted

with a three parameters formula

a = a0(1 + a1/αT + a2T
2)α (1)

where a0 is the Earth-Moon semi-major axis at the origin of time (J2000), T is in Gyr, and

α = 0.113381622646105; a2 = −0.0178457555910623; a1 = 0.101773133860118. The evolution of

the spin rate of the Earth is then derived from the conservation of angular momentum. These

tidal terms induce a small dissipation in the total energy of the Solar system that is taken into

account in order to monitor the precision of the numerical integration[9].

The relativistic equations are the same as in La2004[9] and derive from an Hamiltonian

formulation of Saha and Tremaine[13]. The quadrupole contribution of the Sun is taken into

account with J2 = 2×10−7. In order to speed up computation, the integrations are performed in

standard double precision arithmetic and not in extended precision as in ref[2]. The stepsize is

2.5×10−2 years, unless the eccentricity of the planets increases beyond about 0.4, in which case

the step size is reduced to preserve numerical accuracy. In order to limit the possible drift of

energy that can result from repeated increase of the step size in symplectic integrators, we keep

the step size constant over time intervals of 12.5 yr, which results in a satisfactory conservation

of the energy (Fig. 2b).

The average integrations time are of about 2500 h per run on a Xeon 5472 CPU core, while

the total CPU time for the whole study exceeded 6 million hours. For a better tracking of the

energy and angular momentum, we have not taken into account the mass loss of the Sun. We

have not considered either the tidal deformation of the bodies during close encounters and their

possible tidal disruption[18, 19].
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The initial conditions are obtained by a fit over the solution of the more complete model

INPOP06[17]. In order to compensate for the lack of asteroid contribution, we have added a small

constant term to the precessional motion of the planetary orbits, resulting from a fit of the long

time solution over a version of INPOP06 that has been extended over 1 Myr in the past (Table

2). As a check of the resulting model, the differences in eccentricity and inclination between the

present solution and INPOP06[17] are given over the interval [0,+1Myr] (Table 3). The derived

initial conditions are in Table 4, while all the other parameters are from INPOP06[17].

planet dg ds

Mercury -0.001683033 0.000853116
Mars 0.000365005 -0.000203123
Jupiter 0.000015692 0.000006453

Table 2: Corrections (in arcsec/yr) in the perihelion velocity (dg) and in the node velocity (ds)
for Mercury, Mars, and Jupiter. The main effect of these terms is to correct for the absence of
asteroids in the model.

planet ∆a× 106 (AU) ∆e× 106 ∆i× 106 (rad)
Mercury 0.01 7.61 2.51
Venus 0.05 6.05 1.73
Earth 0.09 4.59 1.36
Mars 0.56 4.39 2.03
Jupiter 0.35 1.52 0.22
Saturn 3.61 2.84 0.19
Uranus 6.24 1.32 0.08
Neptune 4.79 0.20 0.06
Pluto 16.06 0.22 0.09

Table 3: Maximum difference in semi-major axis (∆a), eccentricity (∆e) and inclination in radi-
ans (∆i) for the different planets over the time interval [0,+1Myr], compared to INPOP06[17].
The solution has been adjusted to INPOP06[17] over the time interval [−1Myr, 0]. The solution
for the Earth is compared to the Earth–Moon barycenter of INPOP06.
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body X Y Z
Mer -1.3723006138719493E-01 -4.0324074993791997E-01 -2.0141230251495065E-01
Ven -7.2543875164004101E-01 -4.8921282357574918E-02 +2.3717655135959591E-02
EMB -1.8429523869857883E-01 +8.8475982513797391E-01 +3.8381372854387652E-01
Mar +1.3835794659467666E+00 -1.2458187406789204E-03 -3.7883156713073539E-02
Jup +3.9940405805302190E+00 +2.7339319131097417E+00 +1.0745892889690563E+00
Sat +6.3992728946824826E+00 +6.1720105115817834E+00 +2.2738481118833267E+00
Ura +1.4424722672081669E+01 -1.2508913521035904E+01 -5.6826123000986799E+00
Nep +1.6804916776997999E+01 -2.2982754337214441E+01 -9.8253491124291390E+00
Plu -9.8824902214449857E+00 -2.7981516729922184E+01 -5.7546154515900296E+00
Sun -7.1364558632045867E-03 -2.6470343693797828E-03 -9.2298925054966601E-04
Moo -1.9492816871869883E-03 -1.7828918671608514E-03 -5.0871368540258022E-04
body DX DY DZ
Mer +2.1371774109527775E-02 -4.9330576077080499E-03 -4.8504663887848996E-03
Ven +8.0349594196834088E-04 -1.8498595723320826E-02 -8.3727680942960545E-03
EMB -1.7197730598869702E-02 -2.9096001847899629E-03 -1.2615424684121190E-03
Mar +6.7687800264027093E-04 +1.3807279327919367E-02 +6.3148675769632316E-03
Jup -4.5629353241739114E-03 +5.8747038486458630E-03 +2.6292698127070692E-03
Sat -4.2869731379417009E-03 +3.5215868716827110E-03 +1.6388979154519450E-03
Ura +2.6834835473886366E-03 +2.4552463507823063E-03 +1.0373752265128999E-03
Nep +2.5846532680459892E-03 +1.6616665134371927E-03 +6.1578095014691201E-04
Plu +3.0341305844833063E-03 -1.1343440334706748E-03 -1.2681632917206367E-03
Sun +5.3784605099164219E-06 -6.7581880103245664E-06 -3.0328531274874777E-06
Moo +3.7167046671156826E-04 -3.8469783519282943E-04 -1.7403015998408315E-04

Table 4: Initial conditions for the positions (X, Y, Z) and velocities (DX, DY, DZ), of the Sun,
the planets and the Moon at J2000 in the ICRF reference frame, for the nominal solution S0.
Units are AU and AU/days.
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